### Major

A physics major consists of a minimum of 11 courses, usually five core courses, at least four electives, and two courses of research during the senior year. Students should be aware that most physics courses have mathematics corequisites and/or prerequisites, as listed in the course description. Courses above the 200-level typically require a facility with multivariate calculus (normally requiring completion of three courses in mathematics). Each student majoring in physics is expected to acquire a basic knowledge of classical and modern physics by taking a core sequence consisting of two semesters of workshop physics (131, 132 or 141, 142) followed by 211, 212 and 282. Students will then select at least four elective courses tailored to their preparation, interests, and goals. At least two of these must be at the 300-level or above. All physics majors not enrolled in a 3-2 engineering program must complete the senior research sequence 491, 492. In general the introductory courses intended primarily for non-science majors, Life in the Universe (105) and Introductory Astronomy (109, 110) may not be applied towards a physics major.

**Physics-Engineering Track:**

13 courses

PHYS 131, 132, 211, 212, 213, 282, 311, 312, 331 OR 314, 491 and 492

COMP 131

CHEM 131 OR 141

### Minor

**Minor in Physics**

A physics minor is expected to acquire a basic knowledge of classical and modern physics by taking six of the department's course offerings, including a two semester workshop physics sequence (131, 132 or 141, 142) and 212. The remaining three courses required for the minor must be at or above the 200-level. A student may not apply courses used to fulfill the requirements of a minor in physics to fulfill the requirements of a minor in astronomy.

**Minor in Astronomy**

Options are available for students who wish to add an astronomical perspective to a major in any field. The minor consists of the following: 109; 110 OR 208; an astrophysics course at the 300 level or above; three regularly offered courses, independent study, independent research, or internship credits offered by the Department of Physics and Astronomy. One of these courses/experiences may, upon prior approval by the Department, be offered by another department or be an external experience such as a summer Research Experience for Undergraduates. No more than three of these courses or experiences may count toward both the physics major and the astronomy minor.

### Suggested curricular flow through the major

The Physics major is designed to allow students to start in either the first year or the sophomore year.

The following are suggested courses for a student starting the first year:

*First Year*

PHYS 131/132

MATH 151/170 or 170/171

*Sophomore Year*

PHYS 211, 212, 282

MATH 270 or 171/270

*Sophomore or Junior Year (depending on course offerings)*

PHYS 213

*Junior Year*

Four 300-level or above Physics courses, including 311, 331 or 431 (depending on course offerings)

PHYS 392 (half-credit junior seminar)

*Senior Year*

PHYS 491, 492; 312, 331 or 431 (depending on course offerings)

**Physics-Engineering Track**

*First year*

PHYS 131/132

MATH 170/171

*Sophomore Year*

PHYS 211, 212, 282

MATH 270

CHEM 131 or 141

*Sophomore or Junior Year *

PHYS 213

*Junior Year*

PHYS 311, PHYS 331 or PHYS 314

COMP 131

*Senior Year*

PHYS 312, 491, 492

Students planning to do graduate study in physics, astronomy or engineering need to include 311 and 312 (potentially 331 and/or 431 as well, depending on field of study). For students not planning to do graduate study in physics or engineering, options include 313, 314, 315 and 361 as offered. Students planning to do graduate study in astronomy need to additionally take 208, 306 or 406 as offered.

### Independent study and independent research

Independent study or research is strongly encouraged by the department. Independent research projects are readily available in the many areas, including pattern formation, plasma physics, non-linear dynamics, molecular and laser physics, and astrophysics. Independent research students have often published papers and/or given talks at physics and astronomy meetings. Students planning on graduate study are encouraged to discuss with faculty the independent research they plan to pursue during the required 491/492 course sequence their senior year.

### Honors

The research topic pursued in the senior year in the 491, 492 Research Seminar may be extended into an honors project with an in-depth paper and an oral defense before the physics faculty. For more detailed requirements, go to the department's web site.

### Courses

**The following course is offered as part of the college's Bremen Summer Immersion Program. Students are housed with German host families. The course is being taught in English.**

204 The Fourth State of Matter - An Introduction to Plasma Physics

Offered in the Bremen Summer Immersion Program. The fact that more than 99% of the visible universe is in the plasma state certainly warrants a thorough study of this 4th state of matter. This course explores a variety of space plasmas, ranging from intergalactic plasmas to the very local effect of the solar wind plasma on aurora, global communication systems and power grids. Students investigate the large spectrum of laboratory plasmas, and study numerous plasma applications from Plasma TV's plasma processing to plasma propulsion and encounter the present day difficulties fusion researchers face in harnessing the ultimate energy source for humankind. Spreadsheet simulations are used to visualize intricate plasma particle trajectories in a variety of electric and magnetic field configurations.

*Prerequisite: 131 and 132 and GRMN 101 and 104. Offered every two years.*

**Courses in Astronomy**

105 Life in the Universe

A comprehensive study of the astronomical possibilities of extraterrestrial life including a brief survey of the universe, conditions necessary for life, and astronomical observations (including UFOs) which support or deny the premise that life in the universe is a common phenomenon.

Attributes: Quantitative Reasoning

109 Astronomy w/Lab

Introduction to the modern concepts of the physical nature of the astronomical universe. Historical development of astronomical ideas and origin and evolution of the solar system. A terminal laboratory course for non-science students. Three hours classroom, one two-hour laboratory a week. This course will not count toward major requirements in physics.

Attributes: Appropriate for First-Year, Lab Sciences (Division III), Quantitative Reasoning

110 Astronomy w/Lab

Introduction to the modern concepts of the physical nature of the astronomical universe. Cosmology and the structure and evolution of the stars and galaxies. A terminal laboratory course for non-science students. Three hours classroom, one two-hour laboratory a week. This course will not count toward major requirements in physics.

Attributes: Appropriate for First-Year, Lab Sciences (Division III), Quantitative Reasoning

**Courses in Physics**

NOTE: Because of the similarity in course content, students will not receive graduation credit for both of the following pairs: 102 and 202, 131 and 141, 132 and 142.

102 Meteorology

The physical basis of modern meteorology: characteristics of atmospheric motions, clouds, and weather systems; methods of weather observation and forecasting; meteorological aspects of air pollution.

*Does not count toward a physics major. (See also PHYS 202.) Because of the similarity in course content, students will not receive graduation credit for both 102 and 202.*

Attributes: Appropriate for First-Year, ES Foundations of Env Sci Crs, Quantitative Reasoning

114 Climate Change and Renewable Energies

An introduction to the physics of global climate change and a hands-on exposure to
several types of renewable energy. The first third of this project-centered course
introduces the basic physical principles of global climate change with a focus on
radiative equilibrium, greenhouse effect, energy balance, and entropy. Since the energy sources of an energetically sustainable future will consist of renewable energies and possibly thermonuclear fusion energy, the remaining two thirds of the course is devoted to an exploration of wind turbines, solar concentrators, thermoelectric convertors, and photovoltaic systems.

*This course will not count toward major requirements in physics. Offered every two years.*

Attributes: Appropriate for First-Year, ES Foundations of Env Sci Crs, Lab Sciences (Division III), Quantitative Reasoning, SINE Elective

131 Introductory Physics

An introduction to basic physics topics using the workshop method. This method combines inquiry-based cooperative learning with the comprehensive use of computer tools for data acquisition, data analysis and mathematical modeling. Kinematics, Newton's Laws of motion, conservation laws, rotational motion, and oscillations are studied during the first semester. Additional topics in chaos or nuclear radiation are introduced. Basic calculus concepts are used throughout the course. Recommended for physical science, mathematics, and pre-engineering students and for biology majors preparing for graduate study.* Three two-hour sessions per week. Because of the similarity in course content, students will not receive graduation credit for both 131 and 141. Prerequisite: Completion of, or concurrent enrollment in, MATH 151 or 170. *

Attributes: Appropriate for First-Year, ES Foundations of Env Sci Crs, Lab Sciences (Division III), Quantitative Reasoning

132 Introductory Physics

An introduction to basic physics topics using the workshop method. This method combines inquiry-based cooperative learning with the comprehensive use of computer tools for data acquisition, data analysis and mathematical modeling. Topics in thermodynamics, electricity, electronics and magnetism are covered. Additional topics in chaos or nuclear radiation are introduced. Basic calculus concepts are used throughout the course. Recommended for physical science, mathematics, and pre-engineering students and for biology majors preparing for graduate study. *Three two-hour sessions per week. (Students enrolled in Physics 132 who have completed Mathematics 170 are encouraged to continue their mathematics preparation while taking physics by enrolling in Mathematics 171.) Because of the similarity in course content, students will not receive graduation credit for both 132 and 142. Prerequisite: 131 and completion of, or concurrent enrollment in MATH 170. *

Attributes: Appropriate for First-Year, ES Foundations of Env Sci Crs, Lab Sciences (Division III), Quantitative Reasoning, Sustainability Connections

141 Physics for the Life Sciences

Introductory, non-calculus physics, principally for life science and pre-med students. Topics include mechanics, thermodynamics, acoustics, optics, electricity, magnetism, and modern physics.

*Three two-hour workshop sessions a week. Because of the similarity in course content, students will not receive graduation credit for both 131 and 141. *

Attributes: ES Foundations of Env Sci Crs, Lab Sciences (Division III), Quantitative Reasoning

142 Physics for the Life Sciences

Introductory, non-calculus physics, principally for life science and pre-med students. Topics include mechanics, thermodynamics, acoustics, optics, electricity, magnetism, and modern physics.

*Three two-hour workshop sessions a week. Because of the similarity in course content, students will not receive graduation credit for both 132 and 142. Prerequisite : 141. *

Attributes: ES Foundations of Env Sci Crs, Lab Sciences (Division III), Quantitative Reasoning

202 The Physics of Meteorology

The physical basis of meteorology, characteristics of atmospheric motion, clouds and weather systems. The course deals with current weather as determined by observation, local weather instruments, and current data and displays obtained from computer networks. Similar to Physics 102, but with additional emphasis on mathematical analysis of physical atmospheric systems. Because of the similarity in course content, students will not receive graduation credit for both 102 and 202.

*Prerequisite: 131 or 141 or permission of instructor.*

Attributes: ES Foundations of Env Sci Crs

208 Introductory Astrophysics

An introduction to the physical basis of astronomy, including discussion of the creation and evolution of the solar system, the stars, and galaxies. Astronomical measurement and units, and dynamical systems, such as binary star systems and star clusters, will be discussed. Similar to Physics 108 or Physics 110, but with additional emphasis on mathematical analysis of astrophysical phenomena.

*Prerequisite: 131 or 141 or permission of instructor. *

Attributes: Quantitative Reasoning

211 Vibrations, Waves & Optics

The physics of periodic motions, oscillating systems, resonances, propagating waves and optical phenomena. The course is centered around various projects such as the investigation of a kinetic art apparatus, the study of a tuned-mass-damper in a high-rise building, an examination of the Fourier spectrum of different musical instruments, and the dispersion relation for a very large slinky. The course culminates with a presentation at either the "Rainbow Symposium" or the "Vision Symposium."

*Prerequisite: 131 and 132 or 141 and 142, and MATH 170 or permission of instructor. NOTE: Completion of both 211 and 212 fulfills the WID requirement.*

Attributes: Lab Sciences (Division III)

212 Introduction to Relativistic and Quantum Physics

A project-based course focusing on special relativity and quantum physics. Projects, such as the detection and measurement of ionizing radiation, relativistic mass increase, or the investigation of delayed choice experiments, are used to understand the concepts of the atom, nuclear structure, relativity, and quantum mechanics.

*Prerequisite: 132 or 142, and Math 171 or permission of instructor. NOTE: Completion of both 211 and 212 fulfills the WID graduation requirement. *

Attributes: Quantitative Reasoning

213 Analog & Digital Electronics

Circuit design and the analysis of electronic devises. Modern digital and analog circuit elements, including diodes, transistors, op amps, and various integrated circuits, are used in amplifiers, power supplies, and logic circuits. Class and laboratory work are integrated during class time totaling up to seven hours per week. Students design and build projects at the end of the semester.

*Prerequisite: 132 or 142 or permission of instructor. *

Attributes: Lab Sciences (Division III), Quantitative Reasoning

282 Introduction to Theoretical Physics

A project-centered approach to topics in theoretical physics. Projects will be selected to motivate a review of multivariable calculus and then stimulate the investigation of a number of mathematical tools including the nabla operator, Gauss' and Stokes' theorem, Legendre and Bessel functions, and Fourier analysis. The applications of some topics in linear algebra and the theory of functions of a complex variable may also be examined.

*Prerequisite: 211 or permission of instructor. Corequisite: MATH 171 or permission of the instructor.*

306 Intermediate Astrophysics

A project-based course in selected areas of astrophysics closely allied to the development of the physical sciences in the twentieth century, including atomic spectroscopy, stellar atmospheres and stellar magnetic fields, nuclear reactions, energy generation and nucleosynthesis in stars; the structure and evolution of planetary surfaces and atmospheres.

*Prerequisite: 211 and 212 or permission of instructor.*

311 Dynamics & Chaos

A project-oriented study of advanced classical mechanics using vector calculus and including an introduction to the analysis of chaotic systems. Topics might include particle dynamics in one, two and three dimensions; harmonic oscillators and chaos theory; central force motion; collisions and conservation laws; rigid body motion; and rotating coordinate systems. Possible examples of projects include projectile motion with air resistance; motion of a chaotic pendulum; and motion in a non-inertial reference frame.

*Prerequisite: 211 and 282 or permission of the instructor. *

Attributes: Quantitative Reasoning

312 Electrodynamics

This course will investigate electrostatics, magnetostatics, and electrodynamics in vacuum and in matter. Maxwell's equations of electrodynamics are developed and explored in depth. Vector calculus is used throughout this course. Possible projects include the experimental study of capacitors, the force and torque on a magnetic dipole, and an exploration of Farady-induced electric fields.

*Prerequisite: 211, 212 and 282, or permission of instructor. *

Attributes: Quantitative Reasoning

313 Computer Interfacing and Laboratory Instrumentation

A study of the interfacing techniques needed for data acquisition and the control of laboratory equipment. An introduction to the LabView programming environment and how it can be used to automate typical laboratory tasks, for example, the control of linear or rotational actuators or the measurement and analysis of audio signals.

*Prerequisite: 213 or permission of instructor. Normally offered every other year.*

314 Energy & Environmental Physics

A project-oriented approach to the study of the thermodynamics of fossil fuel engines and devices, the physics of solar and other alternative energy sources, energy conservation principles, the physics of nuclear fission reactors and nuclear fusion research, the physics of the atmosphere, air pollution, global climate change, and ozone depletion. Examples of projects include: energy conservation analysis, and the design, construction and testing of modern wind turbines or solar energy sources.

*Prerequisite: 131 and 132 or 141 and 142, and 212 or permission of instructor. Offered every two years. *

Attributes: ES Applications of Env Sci Crs

315 Principles of Medical Imaging

This course will examine the physical principles that allow physicians to look inside the human body and will investigate how these principles are implemented in practice. This course will involve some hands-on projects, with possible topics including Magnetic Resonance Imaging (MRI), medical ultrasound, and Positron Emission Tomography (PET).

*Prerequisite: 212 and MATH 270 or permission of instructor. Normally offered every other year.*

Attributes: Quantitative Reasoning

331 Thermodynamics and Statistical Mechanics

The basic laws of thermodynamics are derived from principles of statistical mechanics. Thus, the laws governing our macroscopic world are seen as fundamentally statistical in nature. Familiar quantities, like temperature and pressure, will be re-discovered, and new ones, like entropy and free energy, will be developed and applied to real-world problems in engineering, condensed-matter physics, and chemistry. We will conclude with an examination of phase transitions and quantum statistics.

*Prerequisite: 211, 212. Offered every two years.*

361 Topics in Modern Phys

Topics to be selected from areas such as atomic, nuclear, plasma, or solid state physics, or modern optics and acoustics, or advanced electronics.

*Prerequisite: 211 and 212. One-half or one course credit.*

392 Junior Seminar

This course revolves around student reports and discussions on several topics in contemporary physics. Emphasis is on the development of bibliographic skill, seminar presentation and report writing techniques as well as increasing the breadth and depth of the student's knowledge of recent research. Preparation for senior research and life after Dickinson will also be topics of discussion.

*Prerequisite: Physics major junior status. One-half course credit.*

406 Advanced Astrophysics

A project-based course in selected areas of astrophysics. Topics selected from areas of astronomy and astrophysics that require a background in dynamics and electromagnetism. Topics may include celestial mechanics and orbit determination, numerical simulation of many-body systems, galactic dynamics, spectroscopy and electrodynamics of the interstellar medium, or general relativity and cosmology.

*Prerequisite: 311, 312 or permission of instructor.*

412 Advanced Electrodynamics and Plasmas

A continuation of the topics covered in Physics 312 with an emphasis on electromagnetic waves in air, in conductors, and in space plasmas. Possible projects include the reflection and transmission of electromagnetic waves at an interface, waveguides, plasma waves in space, electromagnetic radiation from antennas, and the equilibrium and stability of plasmas.

*Prerequisite: 312 or permission of instructor. Offered only occasionally.*

431 Quantum Mechanics

Basic postulates are used to develop the theoretical framework for quantum mechanics. The course deals with measurements on quantum systems, the uncertainty principle, the SchrÃ¶dinger wave equation and the probability interpretation, Heisenberg's matrix mechanics eigenfunctions and eigenvalues, finite and infinite dimensional vector spaces, operator methods, and enables students to use the Dirac formalism for quantum mechanical manipulations for a variety of situations and systems.

*Prerequisites: 282 and at least one 300 level physics course, or permission of instructor. Normally offered every other year*

Attributes: Quantitative Reasoning

432 Topics in Theoretical Physics

Intended for students planning to continue their physics education in graduate school. Topics will include those mathematical and theoretical subjects not covered in earlier courses taken by the particular students enrolled.

*Prerequisite: At least seven previous courses in physics or permission of instructor. Offered every two years.*

491 Senior Research Seminar

Integration of theory and experiment in the conduct of research in contemporary physics or astrophysics, normally conducted in groups. The course emphasizes collaborative research, investigative techniques, and oral and written communication, and culminates in a colloquium presentation and a paper.

*Prerequisite: Physics major senior status. The two semester sequence (491 & 492 or 491 + Independent Research for candidates for honors in the major) are required for the major. *

Attributes: Quantitative Reasoning

492 Senior Research Seminar

Integration of theory and experiment in the conduct of research in contemporary physics or astrophysics, normally conducted in groups. The course emphasizes collaborative research, investigative techniques, and oral and written communication, and culminates in a colloquium presentation and a paper.

*The two semester sequence (491 & 492 or 491 + Independent Research for candidates for honors in the major) are required for the major. *

Attributes: Quantitative Reasoning