Skip To Content Skip To Menu Skip To Footer

Physics and Astronomy Current Courses

Fall 2024

Course Code Title/Instructor Meets
ASTR 109-01 Mysteries of the Solar System
Instructor: Windsor Morgan
Course Description:
This course explores questions that are as old as humanity; you will step into the shoes of ancient astronomers to ponder the workings of the night sky and Solar System. Why do the stars move the way they do? Why do some bright objects wander the night sky? Can we know what these objects are and where they came from? We will develop practical and critical thinking skills that are crucial to the art of discovery, focusing on the historical use of naked eye and telescopic observations, as well as the use of present day space probes and the electromagnetic spectrum. Our journey will take us to the planets and some fascinating moons. Three hours classroom, one two-hour laboratory a week. This course counts toward the astronomy minor.
01:30 PM-03:20 PM, R
TOME 105
09:00 AM-10:15 AM, TR
TOME 115
Courses Offered in PHYS
Course Code Title/Instructor Meets
PHYS 131-01 Workshop Physics: The Mechanical Universe
Instructor: David Jackson
Course Description:
An introduction to classical mechanics using an inquiry-based, hands-on approach that combines cooperative learning with the use of computer tools for data acquisition, analysis, and mathematical modeling. Both analytic and numerical calculations are introduced for characterizing motion. A selection of kinesthetic experiments is included to enhance student learning. Topics include kinematics, Newton's laws of motion, gravitation, conservation laws, and rotational motion. Recommended for physical science, mathematics, and pre-engineering students and for biology majors preparing for graduate study. An introduction to classical mechanics using an inquiry-based, hands-on approach that combines cooperative learning with the use of computer tools for data acquisition, analysis, and mathematical modeling. Both analytic and numerical calculations are introduced for characterizing motion. A selection of kinesthetic experiments is included to enhance student learning. Topics include kinematics, Newton's laws of motion, gravitation, conservation laws, and rotational motion. Recommended for physical science, mathematics, and pre-engineering students and for biology majors preparing for graduate study. Three two-hour sessions per week. Because of the similarity in course content, students will not receive graduation credit for both 131 and 141. Prerequisite: Completion of, or concurrent enrollment in, MATH 151 or 170.
09:30 AM-11:20 AM, MWF
TOME 101
PHYS 131-02 Workshop Physics: The Mechanical Universe
Instructor: Catrina Hamilton-Drager
Course Description:
An introduction to classical mechanics using an inquiry-based, hands-on approach that combines cooperative learning with the use of computer tools for data acquisition, analysis, and mathematical modeling. Both analytic and numerical calculations are introduced for characterizing motion. A selection of kinesthetic experiments is included to enhance student learning. Topics include kinematics, Newton's laws of motion, gravitation, conservation laws, and rotational motion. Recommended for physical science, mathematics, and pre-engineering students and for biology majors preparing for graduate study. Three two-hour sessions per week. Because of the similarity in course content, students will not receive graduation credit for both 131 and 141. Prerequisite: Completion of, or concurrent enrollment in, MATH 151 or 170.
01:30 PM-03:20 PM, MWF
TOME 101
PHYS 141-01 Physics for the Life Sciences
Instructor: Robert Boyle, Windsor Morgan
Course Description:
Introductory, non-calculus physics, principally for life science and pre-med students. Topics include mechanics, fluid dynamics, thermodynamics. Three one-hour lectures and one three-hour lab per week. Because of the similarity in course content, students will not receive graduation credit for both 131 and 141.
01:30 PM-04:30 PM, M
TOME 105
11:30 AM-12:20 PM, MWF
TOME 115
PHYS 141-02 Physics for the Life Sciences
Instructor: Robert Boyle, Windsor Morgan
Course Description:
Introductory, non-calculus physics, principally for life science and pre-med students. Topics include mechanics, fluid dynamics, thermodynamics. Three one-hour lectures and one three-hour lab per week. Because of the similarity in course content, students will not receive graduation credit for both 131 and 141.
11:30 AM-12:20 PM, MWF
TOME 115
01:30 PM-04:30 PM, T
TOME 105
PHYS 161-01 Introduction to Scientific Computing and Visualization
Instructor: Lars English
Course Description:
This half-credit course will introduce students to basic ideas and methods of scientific computing using a Python-based programming language. No prior knowledge of computer programming is required. Examples will draw heavily from classical mechanics, so some prior familiarity with introductory physics (or concurrent enrollment in PHYS 131) will be helpful, but is not required. Topics range from projectile motion to planetary orbits, from collisions and scattering to oscillations. Other scientific explorations will be guided by student interest. This half-credit course will introduce students to basic ideas and methods of scientific computing using a Python-based programming language. No prior knowledge of computer programming is required. Examples will draw heavily from classical mechanics, so some prior familiarity with introductory physics (or concurrent enrollment in PHYS 131) will be helpful but is not required. Topics range from projectile motion to planetary orbits, from collisions and scattering to oscillations. Other scientific explorations will be guided by student interest.
10:30 AM-11:45 AM, T
TOME 103
PHYS 212-01 Introduction to Relativistic and Quantum Physics
Instructor: Lars English
Course Description:
Completion of both PHYS 211 and PHYS 212 fulfills the WID requirement. A project-based course focusing on special relativity and quantum physics. Projects, such as the detection and measurement of ionizing radiation, relativistic mass increase, or the investigation of delayed choice experiments, are used to understand the concepts of the atom, nuclear structure, relativity, and quantum mechanics. Prerequisite: 132 or 142, and Math 171 or permission of instructor. NOTE: Completion of both 211 and 212 fulfills the WID graduation requirement.
10:30 AM-11:20 AM, MWF
TOME 213
01:30 PM-04:30 PM, W
TOME 103
PHYS 213-01 Analog & Digital Electronics
Instructor: Brett Pearson
Course Description:
Circuit design and the analysis of electronic devices. Modern digital and analog circuit elements, including diodes, transistors, op amps, and various integrated circuits, are used in amplifiers, power supplies, and logic circuits. Class and laboratory work are integrated during class time totaling up to seven hours per week. Students design and build projects at the end of the semester. Prerequisite: 132 or 142, and completion of, or concurrent enrollment in, MATH 171 or permission of instructor.
01:30 PM-04:00 PM, MR
TOME 217
PHYS 311-01 Dynamics & Chaos
Instructor: Brett Pearson
Course Description:
An advanced treatment of classical mechanics using vector calculus and the calculus of variations, as well as an introduction to the analysis of chaotic systems. Topics will include: the dynamics of systems of particles and conservation laws; linear and nonlinear oscillators; iterative maps and the route to chaos; central force motion; rigid body motion; non-inertial reference frames and fictitious forces; Lagrangian and Hamiltonian formulations of dynamics. The course will also focus heavily on analytical and problem-solving techniques. Prerequisite: 211 and 282 or permission of the instructor.
09:30 AM-10:20 AM, MWF
TOME 213
PHYS 314-01 Renewable Energy Engineering
Instructor: Hans Pfister
Course Description:
A project-centered approach to the study of renewable energy sources, energy storage, and energy efficiency. Examples of projects include: the Solar Air Heater (SAH), Evacuated Tube Solar Collectors, Photovoltaic (PV) Arrays, Thermal Storage Devices based on Phase Change Materials (PCMs), LED lighting, modern wind turbines, adiabatic compression and expansion, and the coefficient of performance (COP) of heat pumps. In particular, students design, build, test, and re-engineer their own SAH with an absorber based on physics principles learned in the course. Prerequisite: 131 and 132 or 141 and 142, and 211 or permission of instructor. Offered every two years.
01:30 PM-04:00 PM, TF
TOME 103
PHYS 392-01 Contemporary Topics and Careers in Physics and Astronomy
Instructor: Hans Pfister
Course Description:
This seminar examines physics and astronomy as contemporary research disciplines, their divisions into broad subfields, as well as some research questions of current importance. A second emphasis is on the development of bibliographic and scientific presentation skills. The seminar also familiarizes students with the application process for internships and research experiences. Finally, it prepares physics and astronomy majors for life after Dickinson (career options, graduate programs, cover letters, personal statements, etc.). Prerequisite: Physics major junior status. One-half course credit.
01:30 PM-02:45 PM, W
TOME 213
PHYS 491-01 Advanced Laboratory Capstone I
Instructor: Lars English
Course Description:
In this capstone experience, students will work in groups to study several advanced physics topics in detail. Potential topics include muon decay, microwave diffraction, the speed of light, pulsed nuclear magnetic resonance, and the Hall effect. The course emphasizes collaborative research, investigative techniques, oral and written communication. Prerequisite: Physics major senior status. The physics major requires either the two-semester sequence of 491 & 492 OR two semesters of PHYS 550.
01:30 PM-02:45 PM, MR
TOME 206
PHYS 492-01 Advanced Laboratory Capstone II
Instructor: Lars English
Course Description:
In this capstone experience, students will work in groups to study several advanced physics topics in detail. Potential topics include muon decay, microwave diffraction, the speed of light, pulsed nuclear magnetic resonance, and the Hall effect. The course emphasizes collaborative research, investigative techniques, oral and written communication.Prerequisite: Physics major senior status. The physics major requires either the two-semester sequence of 491 & 492 OR two semesters of PHYS 550.