Faculty Profile

Hans Pfister

Professor of Physics; George Wesley Pedlow Chair in Pedagogy (1991)

Contact Information


Tome Scientific Building Room 211


As an advocate for the environment he encourages sustainable living, supports sustainable technology, and embraces renewable energy sources. With the help of a 2006 Keystone Innovation Zone (KIZ) Seed/Assistance grant he was able to turn one of his visions, a sun-tracking solar concentrator, into a reality. This prototype will soon make some of the hot water for the students living in Dickinson’s Center for Sustainable Living. A 2009 Innovation Transfer Network (ITN)/KIZ Seed/Assistance grant enabled him to design and build a concentrating solar collector, which converts solar energy directly into electricity, using a thermoelectric converter (TEC). A 2007 ITN/KIZ grant supported the design and construction of a dental device, which removes temporary crowns and bridges by a series of micro pulses, applied to the backside of the dental appliances. Over the course of the semester he devotes time as a plasma physicist to work with senior physics majors on his design of a plasma propulsion device known as a Hall thruster. With another group of seniors he built a solar powered Stirling engine. Over the course of the past 18 years he has developed numerous kinesthetic physics experiments, incorporating his students into the experiment, thus allowing them to feel the forces and accelerations on their own body. Three of his inventions, a Kinesthetics Cart for Motion in 1-D, a Kinesthetics Cart for Motion in 2-D, and a Thermodynamic Engine and Ideal Gas Law Demonstration Apparatus are being used at over a thousand colleges, universities, and high schools. Some of his other interests include physics puzzles, tricks, and toys, as applied to the physics classroom.


  • Staatsexam, Eberhard Karls Universitat, 1981
  • Ph.D., University of California at Los Angeles, 1991

2017-2018 Academic Year

Fall 2017

FYSM 100 First-Year Seminar
The First-Year Seminar (FYS) introduces students to Dickinson as a "community of inquiry" by developing habits of mind essential to liberal learning. Through the study of a compelling issue or broad topic chosen by their faculty member, students will: - Critically analyze information and ideas - Examine issues from multiple perspectives - Discuss, debate and defend ideas, including one's own views, with clarity and reason - Develop discernment, facility and ethical responsibility in using information, and - Create clear academic writing The small group seminar format of this course promotes discussion and interaction among students and their professor. In addition, the professor serves as students' initial academic advisor. This course does not duplicate in content any other course in the curriculum and may not be used to fulfill any other graduation requirement.

PHYS 211 Vibrations, Waves & Optics
Completion of both PHYS 211 and 212 fulfills the WID Requirement.

Spring 2018

PHYS 114 Climate Change/Renewable Energ
An introduction to the physics of global climate change and a hands-on exposure to several types of renewable energy. The first third of this project-centered course introduces the basic physical principles of global climate change with a focus on radiative equilibrium, greenhouse effect, energy balance, and entropy. Since the energy sources of an energetically sustainable future will consist of renewable energies and possibly thermonuclear fusion energy, the remaining two thirds of the course is devoted to an exploration of wind turbines, solar concentrators, thermoelectric convertors, and photovoltaic systems. This course will not count toward major requirements in physics. Offered every two years.

PHYS 132 Introductory Physics
An introduction to basic physics topics using the workshop method. This method combines inquiry-based cooperative learning with the comprehensive use of computer tools for data acquisition, data analysis and mathematical modeling. Topics in thermodynamics, electricity, electronics and magnetism are covered. Additional topics in chaos or nuclear radiation are introduced. Basic calculus concepts are used throughout the course. Recommended for physical science, mathematics, and pre-engineering students and for biology majors preparing for graduate study. Three two-hour sessions per week. (Students enrolled in Physics 132 who have completed Mathematics 170 are encouraged to continue their mathematics preparation while taking physics by enrolling in Mathematics 171.) Because of the similarity in course content, students will not receive graduation credit for both 132 and 142. Prerequisite: 131 and completion of, or concurrent enrollment in MATH 170.