Faculty Profile

Hans Pfister

Professor of Physics; George Wesley Pedlow Chair in Pedagogy (1991)

Contact Information

pfister@dickinson.edu

Tome Scientific Building Room 211
717-245-1307

Bio

As an advocate for the environment he encourages sustainable living, supports sustainable technology, and embraces renewable energy sources. With the help of a 2006 Keystone Innovation Zone (KIZ) Seed/Assistance grant he was able to turn one of his visions, a sun-tracking solar concentrator, into a reality. This prototype will soon make some of the hot water for the students living in Dickinson’s Center for Sustainable Living. A 2009 Innovation Transfer Network (ITN)/KIZ Seed/Assistance grant enabled him to design and build a concentrating solar collector, which converts solar energy directly into electricity, using a thermoelectric converter (TEC). A 2007 ITN/KIZ grant supported the design and construction of a dental device, which removes temporary crowns and bridges by a series of micro pulses, applied to the backside of the dental appliances. Over the course of the semester he devotes time as a plasma physicist to work with senior physics majors on his design of a plasma propulsion device known as a Hall thruster. With another group of seniors he built a solar powered Stirling engine. Over the course of the past 18 years he has developed numerous kinesthetic physics experiments, incorporating his students into the experiment, thus allowing them to feel the forces and accelerations on their own body. Three of his inventions, a Kinesthetics Cart for Motion in 1-D, a Kinesthetics Cart for Motion in 2-D, and a Thermodynamic Engine and Ideal Gas Law Demonstration Apparatus are being used at over a thousand colleges, universities, and high schools. Some of his other interests include physics puzzles, tricks, and toys, as applied to the physics classroom.

Education

  • Staatsexam, Eberhard Karls Universitat, 1981
  • Ph.D., University of California at Los Angeles, 1991

2024-2025 Academic Year

Fall 2024

PHYS 314 Renewable Energy Engineering
A project-centered approach to the study of renewable energy sources, energy storage, and energy efficiency. Examples of projects include: the Solar Air Heater (SAH), Evacuated Tube Solar Collectors, Photovoltaic (PV) Arrays, Thermal Storage Devices based on Phase Change Materials (PCMs), LED lighting, modern wind turbines, adiabatic compression and expansion, and the coefficient of performance (COP) of heat pumps. In particular, students design, build, test, and re-engineer their own SAH with an absorber based on physics principles learned in the course. Prerequisite: 131 and 132 or 141 and 142, and 211 or permission of instructor. Offered every two years.

PHYS 392 Contemporary Topics & Careers
This seminar examines physics and astronomy as contemporary research disciplines, their divisions into broad subfields, as well as some research questions of current importance. A second emphasis is on the development of bibliographic and scientific presentation skills. The seminar also familiarizes students with the application process for internships and research experiences. Finally, it prepares physics and astronomy majors for life after Dickinson (career options, graduate programs, cover letters, personal statements, etc.). Prerequisite: Physics major junior status. One-half course credit.