Dickinson College

Tome Scientific Building Room 221

717.245.1049

http://blogs.dickinson.edu/pearsonb/

Professor Pearson’s research interests center on using ultrafast laser pulses to measure and control molecular systems, with a particular focus on applications in non-linear microscopy and spectroscopy. The optics lab in the department has an ultrafast laser oscillator and pulse shaper, and students have assisted with both the development of the laser system and the ensuing experiments.

- B.A., Grinnell College, 1997
- M.S., University of Michigan, 2003
- Ph.D., 2004

PHYS 131 Introductory Physics

An introduction to basic physics topics using the workshop method. This method combines inquiry-based cooperative learning with the comprehensive use of computer tools for data acquisition, data analysis and mathematical modeling. Kinematics, Newton's Laws of motion, conservation laws, rotational motion, and oscillations are studied during the first semester. Additional topics in chaos or nuclear radiation are introduced. Basic calculus concepts are used throughout the course. Recommended for physical science, mathematics, and pre-engineering students and for biology majors preparing for graduate study. Three two-hour sessions per week. Because of the similarity in course content, students will not receive graduation credit for both 131 and 141. Prerequisite: Completion of, or concurrent enrollment in, MATH 151 or 170.

PHYS 311 Dynamics & Chaos

A project-oriented study of advanced classical mechanics using vector calculus and including an introduction to the analysis of chaotic systems. Topics might include particle dynamics in one, two and three dimensions; harmonic oscillators and chaos theory; central force motion; collisions and conservation laws; rigid body motion; and rotating coordinate systems. Possible examples of projects include projectile motion with air resistance; motion of a chaotic pendulum; and motion in a non-inertial reference frame. Prerequisite: 211 and 282 or permission of the instructor.

PHYS 132 Introductory Physics

An introduction to basic physics topics using the workshop method. This method combines inquiry-based cooperative learning with the comprehensive use of computer tools for data acquisition, data analysis and mathematical modeling. Topics in thermodynamics, electricity, electronics and magnetism are covered. Additional topics in chaos or nuclear radiation are introduced. Basic calculus concepts are used throughout the course. Recommended for physical science, mathematics, and pre-engineering students and for biology majors preparing for graduate study. Three two-hour sessions per week. (Students enrolled in Physics 132 who have completed Mathematics 170 are encouraged to continue their mathematics preparation while taking physics by enrolling in Mathematics 171.) Because of the similarity in course content, students will not receive graduation credit for both 132 and 142. Prerequisite: 131 and completion of, or concurrent enrollment in MATH 170.

PHYS 431 Quantum Mechanics

Basic postulates are used to develop the theoretical framework for quantum mechanics. The course deals with measurements on quantum systems, the uncertainty principle, the Schrödinger wave equation and the probability interpretation, Heisenberg's matrix mechanics eigenfunctions and eigenvalues, finite and infinite dimensional vector spaces, operator methods, and enables students to use the Dirac formalism for quantum mechanical manipulations for a variety of situations and systems. Prerequisites: 212 and 282 and at least one 300-level physics course, or permission of instructor. Normally offered every other year