Faculty Profile

Brett Pearson

Associate Professor of Physics and Astronomy (2007)

Contact Information

pearsonb@dickinson.edu

Tome Scientific Building Room 221
717.245.1049
http://blogs.dickinson.edu/pearsonb/

Bio

Professor Pearson’s research interests center on using ultrafast laser pulses to measure and control molecular systems, with a particular focus on applications in non-linear microscopy and spectroscopy. The optics lab in the department has an ultrafast laser oscillator and pulse shaper, and students have assisted with both the development of the laser system and the ensuing experiments.

Education

  • B.A., Grinnell College, 1997
  • M.S., University of Michigan, 2003
  • Ph.D., 2004

2014-2015 Academic Year

Fall 2014

PHYS 311 Dynamics & Chaos
A project-oriented study of advanced classical mechanics using vector calculus and including an introduction to the analysis of chaotic systems. Topics might include particle dynamics in one, two and three dimensions; harmonic oscillators and chaos theory; central force motion; collisions and conservation laws; rigid body motion; and rotating coordinate systems. Possible examples of projects include projectile motion with air resistance; motion of a chaotic pendulum; and motion in a non-inertial reference frame. Prerequisite: 211 and 282 or permission of the instructor. This course fulfills the QR graduation requirement. Normally offered every other year.

PHYS 491 Senior Research Seminar
Integration of theory and experiment in the conduct of research in contemporary physics or astrophysics, normally conducted in groups. The course emphasizes collaborative research, investigative techniques, and oral and written communication, and culminates in a colloquium presentation and a paper. Prerequisite: Physics major senior status. The two semester sequence (491 & 492 or 491 + Independent Research for candidates for honors in the major) are required for the major. This course fulfills the QR graduation requirement.

Spring 2015

PHYS 431 Quantum Mechanics
Basic postulates are used to develop the theoretical framework for quantum mechanics. The course deals with measurements on quantum systems, the uncertainty principle, the Schrödinger wave equation and the probability interpretation, Heisenberg's matrix mechanics eigenfunctions and eigenvalues, finite and infinite dimensional vector spaces, operator methods, and enables students to use the Dirac formalism for quantum mechanical manipulations for a variety of situations and systems. Prerequisites: 282 and at least one 300 level physics course, or permission of instructor. This course fulfills the QR graduation requirement. Normally offered every other year

PHYS 492 Senior Research Seminar
Integration of theory and experiment in the conduct of research in contemporary physics or astrophysics, normally conducted in groups. The course emphasizes collaborative research, investigative techniques, and oral and written communication, and culminates in a colloquium presentation and a paper. The two semester sequence (491 & 492 or 491 + Independent Research for candidates for honors in the major) are required for the major. This course fulfills the QR graduation requirement.