Faculty Profile

Lars English

Associate Professor of Physics (2003)

Contact Information

englishl@dickinson.edu

Tome Scientific Building Room 219
717.254.8925
http://www.larsenglish.com

Bio

Professor English's research interests focus on the dynamics of nonlinear lattices and networks. Physical systems under investigation range from the microscopic (magnetic crystals / spin lattices) to the macroscopic (coupled pendulum arrays). Driven electrical lattices - comprised of inductors and diodes - have been a recent experimental focus; here we study the spontaneous emergence of highly localized voltage-patterns. A recent numerical project modeled learning in a neural network.

Education

  • B.S., Denison University, 1996
  • M.S., Cornell University, 1999
  • Ph.D., 2003

2015-2016 Academic Year

Fall 2015

PHYS 131 Introductory Physics
An introduction to basic physics topics using the workshop method. This method combines inquiry-based cooperative learning with the comprehensive use of computer tools for data acquisition, data analysis and mathematical modeling. Kinematics, Newton's Laws of motion, conservation laws, rotational motion, and oscillations are studied during the first semester. Additional topics in chaos or nuclear radiation are introduced. Basic calculus concepts are used throughout the course. Recommended for physical science, mathematics, and pre-engineering students and for biology majors preparing for graduate study. Three two-hour sessions per week. Because of the similarity in course content, students will not receive graduation credit for both 131 and 141. Prerequisite: Completion of, or concurrent enrollment in, MATH 151 or 170.

PHYS 131 Introductory Physics
An introduction to basic physics topics using the workshop method. This method combines inquiry-based cooperative learning with the comprehensive use of computer tools for data acquisition, data analysis and mathematical modeling. Kinematics, Newton's Laws of motion, conservation laws, rotational motion, and oscillations are studied during the first semester. Additional topics in chaos or nuclear radiation are introduced. Basic calculus concepts are used throughout the course. Recommended for physical science, mathematics, and pre-engineering students and for biology majors preparing for graduate study. Three two-hour sessions per week. Because of the similarity in course content, students will not receive graduation credit for both 131 and 141. Prerequisite: Completion of, or concurrent enrollment in, MATH 151 or 170.

PHYS 311 Dynamics & Chaos
A project-oriented study of advanced classical mechanics using vector calculus and including an introduction to the analysis of chaotic systems. Topics might include particle dynamics in one, two and three dimensions; harmonic oscillators and chaos theory; central force motion; collisions and conservation laws; rigid body motion; and rotating coordinate systems. Possible examples of projects include projectile motion with air resistance; motion of a chaotic pendulum; and motion in a non-inertial reference frame. Prerequisite: 211 and 282 or permission of the instructor. Normally offered every other year.

Spring 2016

PHYS 132 Introductory Physics
An introduction to basic physics topics using the workshop method. This method combines inquiry-based cooperative learning with the comprehensive use of computer tools for data acquisition, data analysis and mathematical modeling. Topics in thermodynamics, electricity, electronics and magnetism are covered. Additional topics in chaos or nuclear radiation are introduced. Basic calculus concepts are used throughout the course. Recommended for physical science, mathematics, and pre-engineering students and for biology majors preparing for graduate study. Three two-hour sessions per week. (Students enrolled in Physics 132 who have completed Mathematics 170 are encouraged to continue their mathematics preparation while taking physics by enrolling in Mathematics 171.) Because of the similarity in course content, students will not receive graduation credit for both 132 and 142. Prerequisite: 131 and completion of, or concurrent enrollment in MATH 170.

PHYS 331 Thermodynamics & Stat Mechan
The basic laws of thermodynamics are derived from principles of statistical mechanics. Thus, the laws governing our macroscopic world are seen as fundamentally statistical in nature. Familiar quantities, like temperature and pressure, will be re-discovered, and new ones, like entropy and free energy, will be developed and applied to real-world problems in engineering, condensed-matter physics, and chemistry. We will conclude with an examination of phase transitions and quantum statistics. Prerequisite: 211, 212. Offered every two years.

PHYS 560 Stu/Faculty Collaborative Rsch