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Abstract

A method of localising objects in images is proposed.
Possible configurations are evaluated using the contour
discriminant, a likelihood ratio which is derived from
a probabilistic model of the feature detection process.
We treat each step in this process probabilistically, in-
cluding the occurrence of clutter features, and derive
the observation densities for both correct “target” con-
figurations and incorrect “clutter” configurations. The
contour discriminant distinguishes target objects from
the background even in heavy clutter, making only the
most general assumptions about the form that clutter
might take. The method generates samples stochasti-
cally to avoid the cost of processing an entire image,
and promises to be particularly suited to the task of
initialising contour trackers based on sampling meth-
ods.

1 Introduction

Object localisation is one of the classic Computer
Vision problems for which good solutions can often
be found in specific applications, but for which more
general solutions seem elusive with current technol-
ogy and techniques. In this paper the task is defined
as follows. There is only one class of object to be
localised, and all elements of the class have a simi-
lar structure. Examples of suitable classes are faces,
hands, and cars; any element of the class is called a
target. Given an image containing one or more targets,
the task is to determine the location and configuration
of each. Generally the targets comprise only a small
fraction of the image.

A class of targets is modelled with a configuration
space of specified dimension, for example the six 3D
Euclidean degrees of freedom with others for articula-
tion or non-rigidity. A particular emphasis of this pa-
per is on localisation for contour tracker initialisation,
and this will guide our definition of successful outputs
in terms of accuracy, confidence levels and speed.

We are not aware of any previous attempt to

use contour outlines for object localisation as de-
scribed here, but several authors have made proba-
bilistic arguments based on different feature detection
paradigms: [8] used decision theory and likelihood ra-
tios for matching facial features, and [5, 9] both accept
hypotheses based on the probability that straight lines
and point features should fall in certain configurations.

The approach to object localisation presented in
this paper applies to objects with complex outlines
which need not contain corners or straight lines. It
requires no knowledge of the background, is robust
to lighting changes and works well in cluttered back-
grounds. At the heart of the method is the idea of
random sampling from a prior on the target’s configu-
ration. Because of the measurement regime adopted,
only one-dimensional image processing is needed and
only on a fraction of the image’s pixels. The key to
evaluating how “target-like” the samples are is a quan-
tity called the contour discriminant, which is derived
using a probabilistic model of the observations. The
method is shown to perform very well on static im-
ages; a typical output is shown in figure 1. Note that
in addition to finding the three targets successfully, the
method has given us the contour discriminant of each
plausible sample. These values can be used for certain
inferences described later. Potential applications to
contour tracker initialisation are also discussed. The
nature of the output makes the method particularly
well-suited to initialising trackers which use random
sampling [4, 6, 7].

2 The target model and prior

The target objects in this paper are described by
their outline, which is modelled as a B-spline as de-
scribed in [2], for example. Any such outline is called
a contour, and the space of possible configurations for
a given target will be denoted by W. Given an image
containing the target, and a hypothesised configura-
tion wyyp € W, we adopt the measurement method-
ology of [2]: first, cast normals (called measurement



Ranking D(w) Ranking D(w)

1 408.1 6 8.4
2 58.6 7 6.3
3 34.1 8 4.5
4 25.1 9 24
) 14.9 10 1.9

Figure 1: Finding head-and-shoulders outlines
in an office scene. The results of a sample of 1,000
configurations are shown ranked by contour discrim-
inant. The table shows the numerical values of the
discriminant D; a value greater than one means a con-
figuration is more target-like than clutter-like.

lines) onto the image at pre-specified points around
the contour; second, apply a 1-dimensional feature de-
tector along each measurement line. A typical output
is shown in figure 2. The distance from a feature to the
contour is called the innovation of the feature. The
number of features detected on the rth measurement
line will be denoted N,, and we write v, 1,2 ...V N,
for the feature innovations on that line. When dis-
cussing only one measurement line, the simpler nota-
tion {N, (v1,vs...vn)} will be used.

An essential ingredient in the proposed method is
a prescription for choosing wpyp. This will require
a prior density f(w) on W, which could be specified
by the user but for our applications was learnt au-
tomatically by the following method. First obtain a
video sequence of a target object undergoing typical
behaviour. Initialise a contour tracker by hand, track
the target throughout the sequence, and recover the
implied configuration in each frame. Placing this data
in suitable bins defines a distribution on W, which can
then be redistributed to achieve desired global proper-
ties. For instance, in all results shown later, the prior
was redistributed so that the translation component

Figure 2: Measurement methodology. The black
dots are the outputs of a 1D feature detector applied
to the measurement lines. This template and model
were used to produce the results of figure 1.

of the configuration is uniformly distributed over the
image. The result of sampling from a prior created
like this is shown in figure 3.

3 The observation model

Now we need a way of assessing the likelihood that
a sample w from the prior is actually equal to the tar-
get configuration wi,ye. This requires a probabilistic
model of how the measurements arise; such a model is
described in this section and a useful statistic called
the contour discriminant is introduced.

The first question is: what are the measurements?
Understanding this is crucial, since throughout this
paper we do not regard the grey-level values of the
entire image as the measurements. This is despite
the fact that (for static images at least) the image
is obtained from the camera, stored in memory, and
therefore in some sense “measured”, before we begin
analysis. Rather, this set of grey-levels is regarded
as a large population which is too expensive to ob-
serve exhaustively; we will sample from it and will
hopefully draw conclusions after observing only a frac-
tion of the population. Therefore, from now we re-
serve the word measurement to mean the output of
the feature detector described above — so for each
measurement line, the measurements are the num-
ber of features found, N, and the feature innovations
V1, Vs ...vN. The output for one measurement line will
be denoted by z, so z = {N, (v1,va...vN)}; the out-
put for the rth measurement line in a configuration
is z, = {N;, Wr1,Vr2...vpn,)}. Finally, we write
z = (z1,22...2R), where R is the number of measure-
ment lines on a configuration. Note that this notation
specifies the measurements for a single configuration.
Measurements for different configurations will be dis-



tinguished by superscripts as in z(1),z().

at w were caused by clutter. If the prior probabili-
ties of the two options are equal, this is equivalent to

L W

Figure 3: The prior density. Shown here are fif-
teen samples from a prior for head-and-shoulders out-
lines constructed by the learning method described in
the text. W is the 6-dimensional space of affine trans-
formations. This prior is the one used to produce the

accepting w = weyye When
Prob(z|w = wyrye) > Prob(z|w due to clutter ).

This motivates the following definition. If z is the
set of measurements for a configuration w then the
contour discriminant of w is the likelihood ratio

Prob(z|w = wirye)

D = .
(w) Prob(z|w due to clutter)

(1)

By reasoning adapted from [3], one can show the con-
tour discriminant can be used for three main types of
inferences:

o If D(w) > 1, then w is more “target-like” than
“clutter-like”. That is, it is more likely that the
measurements were generated by a target in con-
figuration w than by random background clutter.

e In any set of configurations, the single configu-
ration most likely to equal wipye is the one with
greatest contour discriminant.

results of figure 1. The learnt motions comprised the
head tilting up to about 40° from the vertical in every
direction, and the prior was redistributed afterwards
to have the following properties: wuniform over both
translation parameters, and a Euclidean scaling factor
obeying a mormal distribution with mean 1 and stan-
dard deviation about 7%.

3.1 Applying Bayesian decision theory

We need a decision rule to deal with the following
scenario: given a fixed image and K different configu-
rations {w®,...w )} which is most likely to be the
target’s configuration w,ye? Or even better, we would
like to know the probability that w®) = wiye, k =
1,... K. Bayesian decision theory [3] answers these
questions.

Consider the case where the sample consists of only
one configuration, w, and we must choose between two
possibilities: either w = wgpye, Or the features found
near w were caused by clutter. We perform a mea-
surement on the configuration, obtaining the result
z = (z1,...2zRr) where each z, = (N,,v,). Assuming
a zero-one loss function, the optimum Bayes decision
rule for deciding between the two possibilities is to
accept W = Wypye if

Prob(w = wirye|z) > Prob(w due to clutter|z),

otherwise reject and conclude that the measurements

o If a set of configurations {w™, ... w(F)} is “well-
separated”,! and it is known that one element of
the set is wyrye, then the probability that wk) =
Wirge is D(w®™)/ 37 D(wH)).

The second and third types of inference can be eas-
ily adapted to incorporate a prior f(w) on W by using
instead the discriminant D(w) = D(w)f(w). Note,
however, that the density f(w) should be expressed
with respect to a measure on W which reflects the hu-
man notion of one contour being nearly the same as
another. This can be done rigorously but the details
are omitted.

3.2 Model description

The first step in specialising the Bayesian frame-
work above to our application is to specify some as-
sumptions of the model.

Non-detection probability Because some parts of
the target’s outline may have insufficient contrast with
the background, it is possible that true boundary fea-
tures will remain undetected even for the correct con-
figuration wgyye. We follow [1] by assigning such non-
detection events a fixed probability ¢, independently
on each measurement line.

Feature detector and model error Two sources
of error cause non-zero innovations for the boundary

Hn practical terms, this technical assumption means that no
two contours in the set overlap each other significantly.



features, even for a perfect hypothesis. The first is
error in the model, such as modelling a slightly non-
rigid object in a configuration space W which allows
only rigid transformations of the template. The sec-
ond, and less significant, is uncertainty in the feature
detector itself. It is assumed these two effects cause
the feature detector to report feature innovations with
an error whose p.d.f. is £(-). In this paper we take £ to
be Gaussian with standard deviation o. The examples
shown later used o = 5 pixels.

Clutter model The detection of clutter features is

solute minimum by learning the interior model from
a single image — the same one from which the shape
of the template is learnt. Suppose that m, interior
features were detected on the rth measurement line of
the template, the interior portion of which has length
. Then we modelled p for this measurement line as a
Poisson distribution with density parameter m,./l.

3.3 The contour discriminant

Now the probabilistic model for the detection pro-
cess can be stated, and from this the observation den-
sity and hence the contour discriminant will be de-

regarded as an i.i.d. random process on the exterior
(i.e. exterior to the target object) portion of each
measurement line. The probability that n clutter fea-
tures are detected on a measurement line is denoted by
m(n). When necessary, the notation m;(n) will be used

rived. Consider just one measurement line of length
L, and suppose the target boundary intersects the line
at zero innovation. In the case that the target is de-
tected, the model for the generation of features is as
follows:

to emphasise the fact that 7 depends on the length [ of
the measurement line lying outside the target object.
Regardless of the choice of w, we assume the distribu-
tion of the position of the clutter features is uniform
over the length of the measurement line.

Interior model The detection of interior features
on a measurement line is modelled in the same way
as clutter is on the exterior: an i.i.d. random process
whose probability of producing m features is denoted
p(m), or p;(m) when we want to emphasise this distri-
bution depends on the length [ of the interior portion
of the measurement line. Again, the distribution of
the feature positions is taken to be uniform over the
length [.

A seemingly sensible choice for 7 () is a Poisson dis-
tribution, with parameter learnt from typical scenes.
Certainly, on a sufficiently small scale, it would be
hard to argue for anything else. But experiments
showed that estimating a single global Poisson den-
sity parameter for the clutter distribution is a poor
choice, since most images are divided into distinct
regions with very different clutter feature densities.
Hence a new approach is required, for which the mod-
elled properties of clutter features are as “uniform” as
possible. The examples shown later assume not only
a uniform distribution for the position of the clutter
measurements, but that the probability of obtaining n
clutter measurements in a length [ is constant for all
n. In other words, we set m# = 1. This distribution is
non-normalisable, but all the formulae below can be
made rigorous for 7 = 1 by taking a suitable limit. In
particular, note that the contour discriminant (2) is
invariant to the normalisation of .

In the case of the interior features, we should cer-

tainly exploit any prior knowledge available. In the
examples shown later the training was kept to an ab-

1. Draw a randomly from £(a). (So a is the reported
innovation of the target.)

2. Draw m randomly from pp/514(m), and draw
b1,...by from Rect(—L/2,a). (So m is the num-
ber of interior features, and bq,...b,, are their
innovations.)

3. Draw n randomly from 7p/5_,(n), and draw
c1,...cp from Rect(a,L/2). (So n is the num-
ber of exterior (clutter) features, and ¢y, . . . ¢, are
their innovations.)

4. Set N =n+m+1. (So N is the total number of
features found.)

5. Reorder (a,by,...bm,c1,...
with v < vy < ... <wp.

6. Report (N, (v1,va,...VN)).

In the undetected case, a is a hidden variable but
the other steps are identical. A final piece of notation
specifies whether or not the target object intersects
the measurement line, and whether or not its bound-
ary was detectable. Let P, denote the event that the
target object boundary is present at innovation v on
the measurement line under consideration, and P’ de-
note the event that it is not present. Also, let V' be
the event that the boundary of the target is visible (i.e.
detectable), and V' the event that it was not visible.

It is not difficult to show that under these assump-
tions the observation density when the target is visible
at zero innovation is given by

flz=N,v)|P,V) =

(k—1)! (N —k)!
(L/2+ve) ™t (D)2 = )N
where pg n is the probability, given Py and V, that

the target object’s boundary was the kth of IV fea-
tures found. These coefficients can be pre-calculated

cn) as (v1,...UN)

N
> penE ()
k=1



by numerical integration. A similar formula holds for
the density given the target was undetected, but this
time it involves an integration over the hidden vari-
able:

e J! vV —j)!
S Z/ L/2 +a) (L)2—a)N I

X PL/2+a(J)7TL/2—a(N —j)da

The density when no object is present is

N'?TL(N)

1= (NP = =5

The factorials in these formulae arise from the per-
mutations of symmetric variables in uniform pdfs; in
certain special cases they combine to produce bino-
mial coefficients in the contour discriminant, which
have nice intuitive interpretations.

Actually, these formulae are for the rather reductive
case of only one measurement line. If we are prepared
to assume the model above holds independently on the
R different measurement lines, we get

R
flzlw) = T] (@f z|Po, V') + (1 = @) f (20| P, V) ,
r=1 B
f(z|no object present) = H fz | P).
r=1

These two expressions can now be substituted in (1),
giving an explicit expression for the contour discrimi-
nant:

D(w) = f(z|w)/ f(z|no object present)

R
B (af G Po, V) + (1= ) f (2| P, V)
=11 ( (2P ) (2)

r=1

4 Localisation by random sampling

The obvious next question is: will the results of
the previous section help us to find objects in clut-
tered static images? This will be done by randomly
sampling from a prior. The main example given
here shows the sampling method applied to finding
head-and-shoulders outlines in an office environment.
A contour template was obtained by hand-drawing
round the head in figure 2, from which the parame-
ters for the interior model were also learnt. A prior
f(w) was learnt by the technique described in section
2 (see figure 3). Then, the following simple procedure
was applied to a completely different scene: sample
from f(w) 1000 times, apply a simple local maximisa-
tion to each, calculate the contour discriminant of each

sample using equation (2), and report the 10 configu-
rations with the greatest contour discriminants. Fig-
ure 1 shows the results: the three true targets were
found, and 4 of the reported 10 samples were spuri-
ous. The procedure takes 1.7 seconds on an SGI O2
(R5000, 180MHz). Similar results were obtained with
other scenes; two examples are given in figure 4.

It is natural to wonder whether the full complex-
ity of the measurement model described is necessary
for the intended applications, especially if there are
more easily calculated alternatives which perform just
as well. To test this we applied the same algorithm
to the same example, using instead of the contour
discriminant the density function used in [6]. This
simpler discriminant has two qualitative differences
to the contour discriminant: the background clut-
ter is assumed to be a Poisson process with con-
stant parameter A\, and the target is treated as a
wire frame — in other words, the interior features
are modelled in the same way as clutter. In the
notation of this paper the simpler discriminant is

R N,
| (q)‘ + Zj:l &(
discriminant was significantly worse than the contour

discriminant: only two of the three targets were found
and there were seven spurious hypotheses.

Vm)). The performance of this

(a) scene to examine (c) scene to examine

(b) localisation output (d) localisation output

Figure 4: More localisation results. In each ex-
ample, 1,000 samples were drawn from the prior. The
sample of highest contour discriminant is shown in
black, and the 2nd and 3rd highest are in white. (In
(b), the three contours are nearly identical.) In both
cases, the background and lighting were different in the
learnt template and examined scene.



5 Application to tracker initialisation

One objective of this work is to use the framework
of sections 2—4 for initialising contour trackers, or for
reinitialising them after they have lost lock on the tar-
get. The method seems particularly suited to trackers
based on sampling (such as Condensation [6], but see
also [4, 7]), since the contour discriminant enables us
to infer the entire posterior distribution of the target
configuration rather than just a point estimate. Fig-
ure 5 shows the type of distribution which has been
used in a successful preliminary implementation. In
the future we hope to develop a system which will
allocate resources intelligently between two modules:
one for tracking based on learnt dynamics, and the
other for reinitialising based on a learnt prior.

Figure 5: Posterior distribution for tracker ini-
tialisation. The total mass of each displayed contour
is proportional to the log of its contour discriminant.
Such a distribution can be used to initialise trackers
based on random sampling.

6 Conclusion

The new method for object localisation uses a quan-
tity termed the contour discriminant, a likelihood ra-
tio which expresses probabilistically whether a con-
figuration is target-like or clutter-like. Because it is
based on probabilities, the contour discriminant can
be used for statistical inferences. In particular, its
magnitude determines the probabilities in a “clutter
versus target” hypothesis test for a single configura-
tion, which is useful for cut-off and termination cri-
teria. Moreover, the normalised discriminants of cer-
tain sets of configurations are the probabilities for a
multiple-hypothesis test on which configuration is the
target. Of course, likelihood ratios are commonly used
by vision researchers. The crucial aspect the contour

discriminant is that it is derived from a probabilistic
model of the feature detection process. This model is
essential for the approach to work: it has been shown
that a cruder model (with less appropriate clutter as-
sumptions and no explicit model of features in the
interior of the target) gives inferior performance.

The method requires no previous knowledge of the
background, is not affected by lighting changes, and is
effective in cluttered scenes. Another advantage of
the approach is flexibility — the set-up time for a
new class of target objects is only that required to
click round a typical outline with the mouse. The
method is fast because it treats the image grey-levels
as a large population which is too expensive to observe
completely, and instead performs simple processing on
a small number of pixels in each member of a random
sample.

The approach works well for targets whose configu-
rations, as defined by their outline in B-spline rep-
resentation, can be described by a reasonably sim-
ple manifold. Impressive results have been demon-
strated in several examples. Implemented on a desk-
top graphics workstation, the method always found
all the targets in the 1000 samples allowed; this takes
under two seconds.

The potential applications to contour tracker ini-
tialisation were also discussed. The method seems
particularly suited to initialisation of sampling track-
ers since it provides an estimate of the whole posterior
density rather than just its mode. Future work will
put this in a rigorous statistical context.
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