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Abstract

Continuously-Adaptive Discretization for Message-PaggCAD-MP) is a new
message-passing algorithm for approximate inferencet Message-passing al-
gorithms approximate continuous probability distribnsausing either: a family
of continuous distributions such as the exponential fanalyarticle-set of dis-
crete samples; or a fixed, uniform discretization. In castir@AD-MP uses a dis-
cretization that is (i) non-uniform, and (ii) adaptive tettructure of the marginal
distributions. Non-uniformity allows CAD-MP to localizeteresting features
(such as sharp peaks) in the marginal belief distributiaitistime complexity that
scales logarithmically with precision, as opposed to unifdiscretization which
scales at best linearly. We give a principled method foriaigethe non-uniform
discretization according to information-based measu@AaD-MP is shown in
experiments to estimate marginal beliefs much more prigdisean competing ap-
proaches for the same computational expense.

1 Introduction

Message passing algorithms such as Belief Propagation [[BRXploit factorization to perform
inference. Exact inference is only possible when the dhistion to be inferred can be represented
by a tree and the model is either linear-Gaussian or fullgrdie [2, 3]. One attraction of BP is
that algorithms developed for tree-structured models esaplied analogously [4] to models with
loops, such as Markov Random Fields.

There is at present no general-purpose approximate digothat is suitable for all problems, so
the choice of algorithm is governed by the form of the modelicklof the literature concentrates on
problems from statistics or control where point measurdés@me made (e.g. of an animal population
or a chemical plant temperature), and where the state éolig non-linear or the process noise
is non-Gaussian [5, 6]. Some problems, notably those frompcer vision, have more complex
observation distributions that naturally occur as piesewionstant functions on a grid (i.e. images),
and so it is common to discretize the underlying continuowsiehto match the structure of the
observations [7, 8]. As the dimensionality of the stateespacreases, a ha uniform discretization
rapidly becomes intractable [8]. When models are complegtfans of the observations, sampling
methods such as non-parametric belief propagation (NBP)JR have been successful.

Distributions of interest can often be represented by afagtaph [11]. “Message passing” is a
class of algorithms for approximating these distributionsvhich messages are iteratively updated
between factors and variables. When a given message is todagedp all other messages in the
graph are fixed and treated as though they were exact. Thathfggroceeds by picking, from



a family of approximate functions, the message that minésia divergence to the local “exact”
message. In some forms of the approach [12] this minimindtikes place over approximate belief
distributions rather than approximate messages.

A general recipe for producing message passing algoriteommarized by Minka [13], is as fol-
lows: (i) pick a family of approximating distributions; Yipick a divergence measure to minimize;
(i) construct an optimization algorithm to perform thisinimization within the approximating
family. This paper makes contributions in all three stepthisf recipe, resulting in a new algorithm
termedContinuously-Adaptive Discretization for Message-RagéCAD-MP).

For step (i), we advocate an approximating family that hasived little attention in recent years:
piecewise-constant probability densities with a boundedlver of piecewise-constant regions. Al-
though others have used this family in the past [14], it hagamour knowledge been employed in a
modern message-passing framework. We believe piecewisgtant probability densities are very
well suited to some problem domains, and this constituteskiief contribution of the paper. For
step (ii), we have chosen for our initial investigation thectusive” KL-divergence [13]—a stan-
dard choice which leads to the well known Belief Propagatimssage update equations. We show
that for a special class of piecewise-constant probaliktysities (the so-callethturally-weighted
densities), the minimal divergence is achieved by a digidln of minimum entropy, leading to
an intuitive and easily-implemented algorithm. For stay), (we employ a greedy optimization
by traversing axis-aligned binary-split kd-trees (expéal in Section 3). The contribution here is an
efficient algorithm called “informed splitting” for perforing the necessary optimization in practice.

As we show in Section 4, CAD-MP computes much more accurgieapnations than competing
approaches for a given computational budget.

2 Discretizing afactor graph

Let us consider what it means diiscretizean inference problem represented by a factor graph with
factors f; and continuous variables, taking values in some subsetRf'. One constructs a non-
uniform discretization of the factor graph by partitionitige state space of each variabig into

K regionsHE for k = 1,..., K. This discretization induces a discrete approximatiprf the
factors, which are now regarded as functions of discretebtesz/, taking integer values in the set
{1,2,...,K}:
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wherea ~ b\c means “all neighbors of b exceptc”, x’ is an assignment of values to all variables,
and|H%| = [,,. 1. Thus, given a factor graph of continuous variables and tcpéar choice of dis-

cretization{ H*}, one gets a piecewise-constant approximation to the melsgy first discretizing
the variables according to (1), then using BP according ¥e(2. The error in the approximation
to the true marginals arises from (3) whéfix) is not constant ovex in the given partition.

Consider the task of selecting between discretizationsoofirtinuous probability distributiop(x)
over some subsédt of Euclidean space. Aiscretizationof p consists in partitionind/ into K
disjoint subsetd/, ..., Vx and assigning a weight;, to eachV}, with >°, w, = 1. The corre-
sponding discretized probability distributigiz) assigns densityy /| Vx| to V.. We are interested
in finding a discretization for which the KL divergen&d.(p||q) is as small as possible. The opti-

mal choice of theu;, for any fixed partitionind/, . . ., Vi is to takew;, = fmevk p(x) [14]; we call
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Figure 1: Expanding a hypercube in two dimensions. HypercubeH (b), a subset of the full
state space (a), is first “expanded” into the sub-culés —, H™—, H=", H*+} (c) by splitting
along each possible dimension. These sub-cubes are tlmmgined to form two possible split
candidates H'~, H'*} (d) and{H?~, H?>*} (e). Informed belief values are computed for the
re-combined hypercubes, including a new estimateB(de) (f), by summing the beliefs in the
finer-scale partitioning. The new estimates are more atewgiace the error introduced by the
discretization decreases as the partitions become smaller

these thenatural weights forp(x), given theV,. There is a simple relationship between the quality
of anaturally-weightediscretization and its entrogi(-):

Theorem 1. Among any collection of naturally-weighted discretiza®fp(z), the minimum KL
divergence tg(x) is achieved by a discretization of minimal entropy.

Proof. For a naturally-weighted discretizatign KL(p||q) = — Zszl wy, log % + [ plogp =
H(q) — H(p). H(p) is constant, s&L(p||¢) is minimized by minimizingH(q). O

Suppose we are given a discretizatipii*} and have computed messages and beliefs for every
node using (2)-(4). The messages have not necessarilyegtactixed point, but we nevertheless
have some current estimate for them. For any arbitrary loyerH at -, (not necessarily in its
current discretization) we can define tinformed belief denotedh(), to be the belief would
receive if all other nodes and their incoming messages eéfranaltered. To compute the informed
belief, one first computes new discrete factor function &alinvolving H using integrals like (1).
These values are fed into (2), (3) to produce “informed” ragssmn; ,(H) arriving atz,, from each

neighborf;. Finally, the informed messages are fed into (4) to obtagnnformed beIiefS(H).

3 Continuously-adaptive discretization

The core of the CAD-MP algorithm is the procedure for passimgessage to a variahlg,. Given
fixed approximations at every other node, any discretinatiar induces an approximate belief dis-
tribution ¢, (z,). The task of the algorithm is to select the best discretimatand as Theorem 1
shows, a good strategy for this selection is to look for anadirweighted discretization that min-
imizes the entropy of,,. We achieve this using a new algorithm called “informedtsplj” which

is described next.

CAD-MP employs an axis-aligned binary-split kd-tree [1&]répresent the discrete partitioning of
a D-dimensional continuous state space at each variable dthe sepresentation was used in [14]
where it was called a Binary Split Partitioning). For ourpases, a kd-tree is a binary tree in which
each vertex is assigned a subset—actually a hypercube—aftieespace. The root is assigned the
whole space, and any internal vertex splits its hyperculbbalggbetween its two children using an
axis-aligned plane. The subsets assigned to all leavatigrathe state space into hypercubes.

We build the kd-tree greedily by recursively splitting leagdrtices: at each step we must choose
a hypercube7” in the current partitioning to split, and a dimensidrto split it. According to
Theorem 1, we should choogeandd to minimize the entropy of the resulting discretization—
provided that this discretization has “natural” weightsptactice, the natural weights are estimated
using informed beliefs; we nevertheless proceed as thdughwere exact and choose theand



d-values leading to lowest entropy. A subroutine of the atgor involves “expanding” a hypercube
into sub-cubes as illustrated in the two-dimensional casEigure 1. The expansion procedure
generalizes td) dimensions by first expanding & subcubes and then re-combining these into
2D candidate splits. Note that for alle {1,..., D}

b(H) = b(H™) + b(H). (5)

ane we have expanﬁded each hypercube in the current partgiand thereby computed values for
b(HE), b(HE1~) andb( HE-41) for all k andd, we choosé: andd to minimize the “split entropy”

7oy O(HE) 5 prhid— DHY™) & kar b(HAT)
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Note that from (5) we can perform this minimization withowtrmalizing the@(~).

We can now describe the CAD-MP algorithm using informedtsptj, which re-partitions a vari-
able of the factor graph by producing a new kd-tree whoseekeave the hypercubes in the new
partitioning:

1. Initialize the root vertex of the kd-tree with its assdethypercube being the whole state
space, with belief 1. Add this root to a leaf geaind “expand” it as shown in Figure 1.

2. While the number of leave<| is less than the desired number of partitions in the dis-
cretized model:

(a) Pick the leafd and split dimensior that minimize the split-entropy (6).

(b) Create two new vertice® — andH T by splitting H along dimensionl, and “expand”
these new vertices.

(c) RemoveH from £, and add# ~ and H™* to L.

All variables in the factor graph are initialized with thevial discretization (a single partition). Vari-

ables can be visited according to any standard messagegasbedule, where a “visit” consists
of repartitioning according to the above algorithm. A simpkample showing the evolution of the
belief at one variable is shown in Figure 2.

If the variable being repartitioned hdsneighbors and we require a partitioning igfhypercubes,
then a straightforward implementation of this algorithmuiees the computation &fK x 2P x
KT message components. Roughly speaking, then, informettirgplpays a factor o2+ over
BP which must comput& 2T message components. But CAD-MP trades this for an expaienti
factor in K since it can home in on interesting areas of the state spawcg bimary search, so if
BP requiresK patrtitions for a given level of accuracy, CAD-MP (empirigalachieves the same
accuracy with onlyO(log K) partitions. Note that in special cases, including someleve! vision
applications [16], classical BP can be performedifkT") time and space; however this is still
prohibitive for largeK .

4 Experiments

We would like to compare our candidate algorithms againstntfarginal belief distributions that
would be computed by exact inference, however no exacténtar algorithm is known for our
models. Instead, for each experiment we construct a fine-scaform discretizatiorD of the
model and input data, and compute the marginal belief tigionsp(z,; D) at each variable
x4 Using the standard forward-backward BP algorithm. Giverardate approximatiod we
can then compare the marginalse,,; C) under that approximation to the fine-scale discretization
by computing the KL-divergenc& L(p(z.; Dy)||p(z+;C)) at each variable. In results below, we
report the mean of this divergence across all variablessigthph, and refer to it in the text a¢C).
While a “fine-enough” uniform discretization will tend to thele marginals, we do nat priori
know how fine that is. We therefore construct a sequence abepaniform discretization®’ of
the same model and data, and comput®’) for each of them. Ifu(D?) is converging rapidly
enough to zero, as is the case in the experiments below, we d@avidence that the fine-scale
discretization is a good approximation to the exact matgina



Observation (local factor)

Figure 2: Evolution of discretization at a single variable. The left image is the local (single-
variable) factor at the first node in a simple chain MRF whosées have 2-D state spaces. The
next three images, from left to right, show the evolutionte informed belief. Initially (a) the par-
titioning is informed simply by the local factor, but afteessages have been passed once along the
chain and back (b), the posterior marginal estimate hateshdind the discretization has adapted ac-
cordingly. Subsequent iterations over the chain (c) do nbstntially alter the estimated marginal
belief. For this toy example only 16 partitions are used, #renormalized log of the belief is
displayed to make the structure of the distribution moreaagipt.

We compare our adaptive discretization algorithm agairst-parametric belief propagation
(NBP) [9, 10] which represents the marginal distributioa aariable by a particle set. We generate
some importance samples directly from the observatiomiligton, both to initialize the algorithm
and to “re-seed” the particle set when it gets lost. Partiels typically do not approximate the tails
of a distribution well, leading to zeros in the approximatarginals and divergences that tend to
infinity. We therefore regularize all divergence computas as follows:

i - e+ fp@ . e+l a@
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where{H*} are the partitions in the fine-scale discretizatidp. All experiments use = 10~*
which was found empirically to show good results for NBP.

We begin with a set of experiments over ten randomly gengratput sequences of a one-
dimensional target moving through structured clutter ofisir-looking distractors. One of the
sequences is shown in Figure 3a, where time goes from botidopt The measurement at a time-
step consists in 240 “pixels” (piecewise-constant regamfnsmiform width) generated by simulating
a small one-dimensional target in clutter, with additiveu€sian shot-noise. There are stationary
clutter distractors, and also periodic “forkings” where auving clutter distractor emerges from the
target and proceeds for a few time-steps before disapmeaEach sequence contains 256 time-
steps, and the “exact” marginals (Figure 3b) are computadistandard discrete BP with 15360
states per time-step. The modes of the marginals genergtatl the experiments are similar to
those in Figure 3b, except for one run of NBP shown in Figurehdt failed entirely to find the
mode (red line) due to an unlucky random seed. However, stakitions differ in fine structure,
where CAD-MP approximates the tails of the distribution imbetter than NBP.

Figure 4a shows the divergenges) for the various discrete algorithms: both uniform dis@ation

at various degrees of coarseness, and adaptive disciatizasing CAD-MP with varying numbers
of partitions. Each data point shows the mean divergeriegfor one of the ten simulated one-
dimensional datasets. As the number of adaptive partiiocreases, the variance pf-) across
trials increases, but the divergence stays small. Highargiences in CAD-MP trials correspond
to a mis-estimation of the tails of the marginal belief at & féme-steps. The straight line on
the log/log plot for the uniform discretizations gives usifidence that the fine-scale discretization
is a close approximation to the exact beliefs. The adaptiseretization provides a very faithful
approximation to this “exact” distribution with vastly fewpartitions.

Figure 4b shows the divergences for the same ten one-dioraisirial sequences when the
marginals are computed using NBP with varying numbers ofiggas. The NBP algorithm was
run five times on each of the ten simulated one-dimensiortalsdés with different random seeds
each time, and the particle-set sizes were chosen to appaitedy match the computation time of
the CAD-MP algorithm. The NBP algorithm does worse absbjutee divergences are much larger
even after regularization, indicating that areas of higiebare sometimes mis-estimated), and also



Figure 3:0ne of the one-dimensional test sequences. The region of the white rectangle in (b) is
expanded in (d)—(g), with beliefs now plotted on log inténscale to expand their dynamic range.
CAD-MP using only 16 partitions per time-step (e) alreadydurces a faithful approximation to the
exact belief (d), and increasing to 128 partitions (f) fiksmore details. The NBP algorithm using

(a): Obervations
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(e)
Exact beliefs (d) are represented more faithfully by CAD-{@F, (f) than NBP (g)
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Figure 4: Adaptive discretization achieves the same accuracy as uniform discretization using

many fewer partitions, but non-parametric belief propagation is less effective. See Section 4

for details.




varies greatly across different trial sequences, and waenm with different random seeds on the
same trial sequence. Note also that iffe are bi-modal—values qgi(-) above around 0.5 signify
runs on which NBP incorrectly located the mode of the maldiedief distribution at some or all
time-steps, as in Figure 3c.

We performed a similar set of experiments using a simulateddimensional data-set. This time
the input data is &4 x 64 image grid, and the “exact” fine-scale discretization is a¢solution
of 512 x 512 giving 262144 discrete states in total. Figures 4c and 4dvshat adaptive dis-
cretization still greatly outperforms NBP for an equivdleomputational cost. Again there is a
straight-line trend in the log/log plots for both CAD-MP andiform discretization, though as in
the one-dimensional case the variance of the divergencessaises with more partitions. NBP again
performs less accurately, and frequently fails to find trghhieight regions of the belief at all at
some time-steps, even with 3200 particles.

Adaptive discretization seems to correct some of the wadlin limitations of particle-based meth-
ods. The discrete distribution is able to represent prdithabiass well into the tails of the distri-
bution, which leads to a more faithful approximation to thxaa beliefs. This also prevents the
catastrophic failure case for NBP shown in Figure 3c, whbeemode of the distribution is lost
entirely because no particles were placed nearby. More@AD-MP’s computational complexity
scales linearly with the number of incoming messages attarfadBP has to resort to heuristics to
sample from the product of incoming messages once the nuohibeessages is greater than two.

5 Reéated work

The work most closely related to CAD-MP is the 1997 algoritbiKozlov and Koller [14]. We
refer to this algorithm as “KK97”; its main differences to OAVIP are: (i) KK97 is described in a
junction tree setting and computes the marginal postefigrst the root node, whereas CAD-MP
computes beliefs everywhere in the graph; (ii) KK97 diseestmessageéon junction tree edges)
rather tharvariables(in a factor graph), so multiplying incoming messages togetequires the
substantial additional complexity of merging disparatscdétizations, compared to CAD-MP in
which the incoming messages share the same discretiz8iitference (i) is the more serious, since
it renders KK97 inapplicable to the type of early-vision lplem we are motivated by, where the
marginal at every variable must be estimated.

Coarse-to-fine techniques can speed up the convergencepyf BP [16] but this does not address
the discrete state-space explosion. One can also prunéateespace based on local evidence [17,
18]. However, this approach is unsuitable when the datatiombas high entropy; moreover, it is
very difficult to bring a state back into the model once it hasrbpruned.

Another interesting approach is to retain the uniform ditzation, but enforce sparsity on messages
to reduce computational cost. This was done in both [19] fiictvmessages are approximated us-
ing a using a mixture of delta functions, which in practiceulés in retaining thé< largest message
components) and [20] (which uses an additional unifornrithistion in the approximating distri-
bution to ensure non-zero weights for all states in the disation). However, these approaches
appear to suffer when multiplying messages with disjoiratigsenvhose tails have been truncated to
enforce sparsity: such peaks are unable to fuse their esédeorrectly. Also, [20] is not directly
applicable when the state-space is multi-dimensional.

Expectation Propagation [5] is a highly effective algamitifor inference in continuous-valued net-
works, but is not valid for densities that are multimodal tanes.

6 Discussion

We have demonstrated that our new algorithm, CAD-MP, perfoaccurate approximate infer-
ence with complex, multi-modal observation distributiamsl corresponding multi-modal posterior
distributions. It substantially outperforms the two starimethods for inference in this setting:
uniform-discretization and non-parametric belief progiémn. While we only report results here on
simulated data, we have successfully used the method ofel@ivision problems and are prepar-
ing a companion publication to describe these results. WeveeCAD-MP and variants on it may

be applicable to other domains where complex distributionst be estimated in spaces of low to



moderate dimension. The main challenge in applying thenigcie to an arbitrary factor graph is
the tractability of the definite integrals (1).

This paper describes a particular set of engineering charegivated by our problem domain. We
use kd-trees to describe partitionings: other data stresttould certainly be used. Also, we employ
a greedy heuristic to select a partitioning with low entrepther than exhaustively computing a
minimimum entropy over some family of discretizations. W& experimented with a Metropolis
algorithm to augment this greedy search: a Metropolis mowssists in “collapsing” some sub-tree
of the current partitioning and then re-expanding usingh@oaized form of the minimum-entropy
criterion. We have also tried tree-search heuristics tbatat need the)(22) “expansion” step,
and thus may be more effective whénis large. The choices reported here seem to give the best
accuracy on our problems for a given computational budgetelier many others are possible and
we hope this work will serve as a starting point for a renevmterest in adaptive discretization in a
variety of inference settings.
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