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Abstract

Tracking multiple targets is a challenging problem, especially when the targets are “identical”,

in the sense that the same model is used to describe each target. In this case, simply instanti-

ating several independent 1-body trackers is not an adequate solution, because the independent

trackers tend to coalesce onto the best-fitting target. This paper presents an observation density

for tracking which solves this problem by exhibiting a probabilistic exclusion principle. Ezclu-
ston arises naturally from a systematic derivation of the observation density, without relying on
heuristics. Another important contribution of the paper is the presentation of partitioned sam-
pling, a new sampling method for multiple object tracking. Partitioned sampling avoids the high
computational load associated with fully coupled trackers, while retaining the desirable properties

of coupling.

1 Introduction

This paper proposes a mathematically rigorous methodology for tracking multiple objects. The
fundamental problem to be addressed is demonstrated in figure 1. T'wo instantiations of the same
tracking algorithm, with different initial conditions, are used to track two targets simultaneously.
When one target passes close to the other, both tracking algorithms are attracted to the single
target which best fits the head-and-shoulders model being used. One might think of avoiding
this problem in a number of ways: interpreting the targets as “blobs” which merge and split
again (Haritaoglu et al., 1998; Intille et al., 1997), enforcing a minimum separation between
targets (Rasmussen and Hager, 1998), or incorporating enough 3D geometrical information to

distinguish the targets (Koller et al., 1994). However, each of these solutions can be unattractive.
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A blob interpretation does not maintain the identity of the targets, and is difficult to implement
for moving backgrounds and for targets which are not easily segmented. A minimum separation

relies on heuristics and fails if the targets overlap. Incorporating 3D information is impossible

without detailed scene modelling.

So it seems we must instead address the fundamental problem: that the observation model
used to interpret image measurements permits two targets to occupy the same point in config-
uration space too easily. More specifically, a single piece of image data (such as an edgel, or a
colour blob), must not simultaneously reinforce mutually exclusive hypotheses. What is needed
is a “probabilistic exclusion principle”, and an observation model exhibiting this behaviour is
described in this paper. The formal model will initially be derived for “wire frame” targets —
objects which have detectable boundaries but which do not occlude each other. We then de-
scribe how occlusion reasoning about solid objects can be incorporated naturally into the same
framework. The most interesting feature of this approach is that it works even when the targets
are indistinguishable given the available information. This is of both theoretical and practical
interest.

Many visual tracking systems for multiple objects have been developed. One standard tech-
nique is the probabilistic data association filter (PDAF) (Bar-Shalom and Fortmann, 1988),
and other successful examples include (Haritaoglu et al., 1998; Intille et al., 1997; Paragios and
Deriche, 1998; Rasmussen and Hager, 1998). These generally employ a combination of blob
identification and background subtraction; both techniques are complementary to the method
proposed here. In particular, our exclusion principle does not allow two targets to merge when
their configurations become similar; instead, the model continues to interpret the data in terms
of two targets. As will be seen, it is a natural consequence of the methodology that the proba-
bility distribution for an obscured target diffuses until it is reinforced by further data. Further-
more, the method works for unknown and constantly changing backgrounds. Rasmussen and
Hager (1998) proposed a promising method for combining colour blob and edge information, and
incorporated an exclusion principle by using a joint PDAF. However, their algorithm for fusing
edgel information enforced an arbitrary minimum separation between targets. Gordon (1997)
employs a similar multi-target tracking methodology to this paper but with a rather different
observation model and no explicit exclusion principle.

One of the difficulties with tracking multiple objects is the high dimensionality of the joint
configuration space. Section 5 introduces a method known as partitioned sampling which di-
minishes the computational burden associated with the increased dimensionality of multi-target

spaces.



2 The observation model

The target objects in this paper are described by their outlines, which are modelled as B-splines.
We will call any such outline a contour. The space of contours which can correspond to a target
or set of targets is called the shape space (Blake and Isard, 1998), and is parameterised as a
low-dimensional vector space X. The space X generally has 5-50 dimensions. This framework
is based on standard concepts from the theory of snakes and deformable templates (e.g. (Kass
et al., 1987; Szeliski and Terzopoulos, 1991)) and is summarised concisely in (Blake and Isard,

1998).

A configuration x € X is measured by the method of figure 2, obtaining a list of image

coordinates Z = (z1),2® ... 2(M). A component of Z is itself a vector z(™) consisting of
the measurements made along fixed measurement lines (see the figure) of the configuration
x. An advantage of this measurement line approach is that we have reduced the problem of
analysing a 2D image to that of analysing several 1D measurement lines. The statistical processes
generating features on different measurement lines are treated as independent (the merits of this
approximation are discussed in section 2.2), so we need only specify this process on 1D subsets
of the image.

So consider just one fixed measurement line, of length L, positioned in an image known to
contain two target objects. A one-dimensional edge detector is applied to this line, and some

features are detected at image coordinates z = (21, 22, ... 2z,). Some of the z; might correspond

to the target objects” boundaries, while the others are due to clutter in the image. So we must
develop a generative model for both the target and clutter features — this is analogous to the
models adopted in some pattern recognition tasks, such as the generation of printed matter as
“character + ink spatter” (Hinton et al., 1992). For a given target configuration x, there are
three possibilities to consider: the measurement line may intersect ¢ = 0,1 or 2 of the targets.
The probability densities for each case are denoted p.(n;z). To calculate the p., several concrete

assumptions about the generative model for z are adopted:

e ¢ = 0 (“random background clutter”): The probability of obtaining n features is b(n),
learnt from randomly placed measurement lines in typical images. The positions of the n
features z = (z1, 22, ... 2p) are drawn from the uniform distribution on the measurement

line. These assumptions are discussed in section 2.1.

e ¢ =1 (“single target”): One of the n features corresponds to the target boundary, whose
hypothesised position on the measurement line is denoted v. If the boundary feature is z;,

then z; is assumed to be drawn from a fixed probability distribution G(z;|v), termed the
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Figure 1: With an observation model designed for one target, two trackers initialised in

distinct configurations eventually lock on to the one target which bests fits the model. The

objective is to derive an observation model which does not permit the presence of two targets to be

inferred from measurements of only one.

Figure 2: Measurement methodology. The thick white line is x — a mouse-shaped contour in some
hypothesised configuration. The thin lines are measurement lines, along which a one-dimensional feature
detector is applied. Black dots show the output of the feature detector, which in this case responds to
rapid changes in intensity — one-dimensional edges. Note that many spurious edges are generated by

shadows, or more generally by clutter in the image.



“boundary feature distribution”. In this paper G(z;]v) is a Gaussian centred on v with
variance 02 (we take o = 7 pixels in the examples later; see table 1 for the justification

of this value). The remaining n — 1 features are assumed to be drawn from the random

background clutter distribution described above.

e ¢ =2 (“two targets”): Two of the n features, say z;,z;, correspond to target boundaries
at hypothesised positions v, 1. They are drawn from G(z;|v1), G(z|v2) respectively with,

importantly, ¢ # j. In other words, any edge feature can correspond to at most one target

boundary. It is this assumption which leads to the enforcement of a probabilistic exclusion
principle described later on. (The same assumption is made in (Rasmussen and Hager,
1998) to enforce exclusion in the context of a joint PDAF). Again the remaining n — 2

features are drawn from the background distribution.

The model can be generalised to higher values of ¢, but for clarity only the cases ¢ = 0,1, 2
are considered here. The assumption for ¢ = 2 that any one edge feature corresponds to at most
one target is crucial, and requires further explanation. While it is true that wherever two targets
cross, there is a single edge corresponding to two targets, such points form a very sparse set in
the image. The possibility that such a point lies on one of the measurement lines is therefore
disregarded. For an example, look ahead to figure 8.

The mathematical consequences of these assumptions are collected in the next proposition,
which is proved in the appendix. Note that p(n;z) is a probability distribution over both n and
z — this notation is explained in the appendix. Also note the density p follows the generative

model in assuming that the measurements (z1,... ,2,) might come in any order with equal

likelihood; if it is assumed instead that the measurements are made in a prescribed order (e.g.

21 < z9,... < z,) then each density should be multiplied by n!.

Proposition 1 The probability density functions resulting from the assumptions above are

po(n;z) = b(n)/L"

pr(mizlv) = b(n — 1)) Galv)/nL"! (1)
k=1
patmsin ) = b —2) 3 ST el
i#]

As described so far, the generative model assumes that if a target boundary is present, then
the edge detector will detect it. This is unrealistic: occasionally the target object’s boundary
is not detected, because the background and target happen to have similar grey-scale values.

Hence a final step is added to the generative model. It is assumed that when ¢ = 1 there is



a small fixed probability qg; of the edge detector failing to detect the target boundary, and
q11 = 1 — qo1 that it will succeed. This is precisely analogous to the non-detection probabilities
used in PDAFs (Bar-Shalom and Fortmann, 1988). Similarly, when ¢ = 2, there are fixed
probabilities qgpa, 12, g22 that 0,1,2 target boundaries are detected successfully. Thus we can

define pdfs p for the final generative model as follows, for the cases ¢ =0,1,2:

Po(-) = po(-)
P1(-|v) = qoipo(-) + quip1(-|v) (2)
P2(-lv1, v2) = qozpo(-) + qu2(p1(-|v1) + p1(-|re))/2

+ q2op2(-|v1, 12)

Typical graphs of the last two functions are shown in figures 3 and 4.

The above discussion was framed in terms of a single measurement line, but for any given
hypothesised configuration x, the measurements Z will arise from say M distinct measurement
lines. Let ¢(i) be the number of target boundaries intersecting the ith measurement line for a
given configuration x, and let v be the coordinates of these intersections. By making the as-
sumption that outputs on distinct measurement lines are statistically independent (section 2.2),

we define the exclusive likelithood function as

M
P(2ZIx) = [ [ ey (27w ?). (3)
=1
We call ¢(i) the intersection number of the ith measurement line.

2.1 Discussion of the background model

Recall that the numbers b(n),n € N specify the probability of obtaining n features on a mea-
surement line positioned randomly on the background, and that these probabilities are learnt
from typical training images. Of course this innocuous statement conceals a perennial problem
in computer vision: how does one characterise a “typical” image, and even worse, how does
one specify a prior for such images? Even when an image is reduced to the simple level of
one-dimensional features, there is no straightforward answer to this question. However, it turns
out the tracking system described later is extremely robust to the choices of b(n). Indeed, we
routinely set b(0) = b(1) = ... = b(Nmax) = 1/(1 4+ nmax) for some nmayx, with b(n) = 0 when
n > Nmax. For measurement lines of 40 pixels, and an edge convolution operator with weights
(—0.375, —0.625,0,0.625,0.375), one can take nmax =~ 10 and obtain results indistinguishable

from when the b(n) are learnt from the entire sequence to be tracked. Another simple approach



which gives equally good results in all our experiments is to learn the b(n) from the first image
of the sequence.

An alternative approach to modelling the occurrence of background features is the careful
use of a Kalman filter framework to disregard spurious features (e.g. (Peterfreund, 1998)), but
in order for this to work in cluttered backgrounds, one needs much more accurate dynamical
models than those available in the type of problems considered here. Other researchers explicitly
adopt a uniform distribution on the b(n) (e.g. (Lowe, 1992)), as suggested above.

Our second assumption about random background clutter features is that their positions
are drawn from a uniform distribution. What is the corresponding assumption about 2D image
features that would make this true? It would certainly hold provided the positions of all edgels
of a given orientation were also distributed uniformly. We find this is sufficiently true over the
small regions (scale around 40 pixels) occupied by the measurement lines, but it is clear that
this approximation is unsatisfactory for larger regions. Further work is needed here: perhaps
the recent ideas on filters and scale-invariance (Mumford and Gidas, 1999; Zhu et al., 1998) can

be applied to obtain a more coherent theory.

2.2 Independence of measurement lines

The exclusive likelihood function (3) was derived assuming that feature occurrences on distinct
measurement lines are statistically independent. Of course this is an approximation, since there
are generally continuous edges in the background as well as on the boundary of the target object.
There have been some attempts to allow explicitly for this type of dependence — for example,
the Markov discriminant of (MacCormick and Blake, 1998b), or MRF's in general (Chellappa
and Jain, 1993; Kent et al., 1996; Winkler, 1995). However, these are too computationally
expensive for tracking tasks, so instead we adopt the assumption of independence between
measurement lines. One might hope this approximation is acceptable if the measurement lines
used for inferences are sufficiently far apart. Figure 5 investigates the meaning of “sufficiently
far” in this context. This figure shows the autocorrelation of a random process z(d) defined as
follows (see also figure 6). First, randomly position a measurement line, uniformly in position
and orientation, on a typical background image (in this case the first frame of the leaf sequence
— see figure 16). Apply a feature detector, select the closest feature to the centre of the
measurement line, and define z(0) to be the offset of this feature. The value of z(d) is defined
by first displacing the original measurement line a distance of d pixels in the direction of its
normal, then applying the feature detector and setting z(d) to be the offset of the most central

feature. Of course figure 5 does not establish the joint independence of the feature occurrences



on all measurement lines which are sufficiently far apart. The autocorrelation function involves
only 2nd-order moments, whereas independence requires that moments of all orders vanish. In
addition, even if pairwise independence of the measurement lines was established, it would still
not follow that they were jointly independent. Nevertheless, figure 5 does imply that the outputs
of measurement lines separated by less than 10-20 pixels are rather strongly correlated, but that
this correlation is much weaker for separations of 30 or more pixels. The likelihoods in this paper

employed a separation between measurement lines of approximately 30 pixels.

2.3 A separate interior model

Features detected in the interior of an opaque target object are not generated by random
background clutter. This contradicts the simple generative model above, and it was shown in
(MacCormick and Blake, 1998a) that a more complex model explicitly accounting for the interior
of the target can improve the resulting inferences. However, even simple interior models lead
to intractable pdfs involving numerical integration. Hence, for simplicity, the results in this
paper assume that features detected in the interior of an opaque target are drawn from the same

distribution as the background.

2.4 Selection of measurement lines

Often we need to perform Bayesian inference on the image, based on the measurements Z
of several hypothesised configurations xi,...x,. For Bayes’ Theorem to be valid, the set of
measurement lines must be fixed in advance. However, it is sometimes convenient to allow the

precise choice of measurement lines to depend on the configuration x, as in figure 2. When the

x; are tightly clustered, this is a minor approximation which was adopted in this paper for ease
of implementation. Our experiments on other tracking tasks with measurement lines fixed in

advance produce indistinguishable results.

3 Tracking multiple wire frames

Tracking is performed in this paper by the Condensation algorithm (Isard and Blake, 1998a),
which is capable of dealing with complex likelihood functions such as (3). Condensation is a
filtering algorithm which performs a Bayesian estimation of the posterior for the state of a system
at each time step. Because of the complex likelihood function, there is no closed form of the
Bayesian update at each time step. Condensation circumvents this problem by approzimating

the distribution to be estimated using “weighted particle sets”. To be specific, a Condensation



tracker represents the state of a system at time ¢ by a weighted set of samples or particles
st ... s whose weights are 7}, ... m,. This set is intended to be an approximate representation
of some probability distribution function p(x), in the sense that selecting one of the s; with
probability proportional to m; is approximately the same as making a random draw from p(bz).
This concept is formalised in section 5.1.

Given a particle set (sf,7!)" , which represents the posterior at time ¢, the Condensation
algorithm generates a particle set representing the posterior at time ¢ + 1 in three steps: (i) re-
sampling: sample N times with replacement from the set of particles s!, according to the weights
7wt — this produces a set st’,...s4'; (ii) dynamical propagation: sample from p(x*!|x! = st')

i

to choose each sf“; and (iii) measurement: examine the image to obtain the features Z!*!, then
assign each of the new particles a weight 7rf+1 o p(ZH X! = 3§+1). The three transformations

of the particle set in any time step can be conveniently summarised diagrammatically:

(prior) — [~ 1 — <Ep([x)> — <K p(Zx']> — (posterior)
(a) (b) (€)

The ~ symbol represents resampling as described above, the * is application of a stochastic

(4)

dynamical step, and the X represents multiplication (i.e. re-weighting) by the measurement
density. The labels (a)—(c) refer to an example given later (figure 12), and can be disregarded for
the moment. Of course, to demonstrate the exclusion principle we use the exclusive likelihood

function P(Z|x) as the measurement density. Note that P as defined in (3) is not valid for

opaque objects, since the model expects to observe all boundaries, even those which are occluded.

However, it is valid for wire frame objects, so an experiment on wire frames was performed. As a
control for the experiment, we need a likelihood P’, similar to P, but which does not incorporate
an exclusion principle. Naming the two targets A and B, and writing c (i) for the number of
intersections of A with line 4, let 1/1(:) be the coordinates of these intersections and define the

1-body likelihood

M
PA(Z[x) = [[Beriy 1), (5)
=1

and similarly for Pg. We take P’ = P4 Ppg, so the posteriors for A and B given Z are treated as
independent. A typical graph of P’ for just one measurement line is shown at the top of figure 4
— note that in contrast to the graph of P below it, P’ has four additional peaks down the line
v1 = vo. Figure 7 shows the results of the wire frame experiment: as expected, P successfully

maintains exclusion between the targets whereas P’ does not.



4 Tracking multiple opaque objects

The wire-frame model can be adapted for use with solid objects. The method uses the mixed
state Condensation tracker of (Isard and Blake, 1998c), combined with a “2.1D” (Mumford and
Nitzberg, 1990) or “layered” (Irani and Anandan, 1998) model of the targets. The basic idea
of a mixed state Condensation tracker is that each particle carries a discrete label in addition
to the continuous parameters describing its configuration. Let y be a discrete variable labelling
the current model, and let x be a shape space vector of continuous parameters specifying the

configuration of the targets. The extended state is defined to be
X = (x,9),x e R4,y € {1,... N,}. (6)

In the two-object case, x = (x4, x?) and y can take one of two values: y = 1 if A is nearer the
camera than B, and y = 2 if B is nearer than A. This is what we mean by a 2.1D model: the
only 3D geometric aspect to be inferred is whether target A can occlude target B or vice versa.

We assume the dynamics of the continuous parameters do not depend on the discrete state,

so that p(x¢|X;—1) = p(x¢|x;—1). Then the process density can be decomposed as follows:

p(Xt|Xt—1) = P(yt|Xt7Xt—1)p(Xt|Xt—1)-,

and if y;_1 = 7 and y; = ¢ this can be written more explicitly as
p(Xt|Xi-1) = Tij(xe, X¢—1)p(Xe|Xt-1):

where T;; is a transition matrix and p is a density specifying the continuous dynamics for a
particle. Here it is appropriate for Tj;(x;,x;—1) to be independent of x;_;. If x,‘f‘ and xP
overlap then the occlusion relationship cannot change in the the current time-step and so we
take Tj;(x;) to be the identity matrix. If x;' and x do not overlap then we assume there is a
1-6 0
0 1—46

small, fixed probability that y will change, represented by taking Tj;(x;) =

with 0 < 0 < 1.

The mixed state Condensation tracker presented here incorporates a significant difference
to that of (Isard and Blake, 1998c) — the observation density p(Z;|X;) depends not only on
x; but also on the discrete state y;. The multi-target exclusive likelihood function (3) is used,
but now the intersection counts c¢(i) are calculated using the discrete variable y and the 2.1D
geometry to determine if a given boundary feature should be visible or not, as in figure 8. To
emphasise this we can write ¢(4,y) for the number of visible target boundaries intersecting the

ith measurement line of a configuration (x,y); the coordinates of the visible boundaries on the

10



ith line are written (&%), Then the likelihood in the occluded case is
Pocel le Hpc ,y l)|V ) )- (7)

To understand this, compare with equation (3) The functions p.,c = 0, 1,2 are still as defined
in (2). The only change is that the intersection numbers ¢ and target boundary positions v
now depend on the discrete state y which specifies which target is in front of the other. The
derivation of (7) is otherwise identical to (3). A detailed example is given in figure 8.

The likelihood P,e performs well in experiments. Figure 9 shows a typical sequence in-
volving occlusion. The configuration space has 16 dimensions: 8 key-frames from principal
components analysis of templates (Baumberg and Hogg, 1994; Cootes and Taylor, 1992), for
each of 2 targets. Tracking is performed with N = 2000 particles, and predictive dynamics in

the form of Brownian motion with an amplitude matched to the speed of a walking person.
Note how the occluded contours diffuse at 0.7 seconds. Because of the exclusion principle they
coalesce again only when some evidence from the correct target is observed. The undesirable
tracking behaviour of figure 1 has been corrected.

As a canonical tracking challenge, the same multiple target methodology was applied to the
“leaf sequence” used in (Isard and Blake, 1998a). Two leaves were tracked, using an affine shape
space and N = 4000 samples with learnt dynamics. (The need for 4000 samples is reduced to
750 by the partitioned sampling method described in the next section.) Tracking is successful
despite occlusions; some stills are shown in figure 10

Table 1 gives details of the parameter values used for all the experiments.

5 Partitioned sampling for Condensation

A potential limitation of the Condensation algorithm is that if the state space has many dimen-
sions, then the number of particles required to model a distribution can be very large indeed.
This is of particular concern when tracking multiple objects, since the number of dimensions in
the state space is proportional to the number of objects. Fortunately, “partitioned sampling”
significantly mitigates this curse of dimensionality. It is the statistical analogue of a hierarchical
search: the intuition is that it should be more efficient to search first for whichever target is

unoccluded, and only then to search for another target which may lie behind.

5.1 Weighted resampling

The partitioned sampling algorithm requires an additional operation on particle sets, termed

weighted resampling. This operation does not alter the distribution represented by the particle
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49(z =0[v)

p1(n;z|v) A

Figure 3: 1-target likelihood function for a single measurement line. Left: The boundary feature
distribution G(z = 0O|v). Right: The 1-target likelihood function p;(n;z|v) graphed with respect to v.
The likelihood is a linear combination of shifted copies of G(z|-) and of the constant py. It peaks near

the 4 measurements z; (shown as shaded circles).

qo1,q11) (0.1,0.9)
o2, q12,G22)  (0.05,0.2,0.75)

Non-detection probabilities, c =1 (
(

Non-detection probabilities, ¢ = 2

Clutter feature probabilities b(n) MLE from first frame of sequence
Discrete transition probability 0 0.01

Boundary feature distribution G(z|v) Gaussian with std dev of 7 pixels
Length of measurement lines L 40 pixels

Table 1: Parameter values and other choices used for experiments. Suitable non-detection
probabilities were determined by trial and error on simple examples. The discrete transition probability
corresponds to a time constant of 2.0 seconds for a given discrete state. The standard deviation of the
boundary feature distribution is estimated from the mean-square mismatch of templates fitted to the

targets. The measurement lines extend approximately 3 of these standard deviations in each direction.
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Figure 4: 2-target likelihood functions for a single measurement line. Top: A naive 2-target
likelihood py (n; z|v1)p1(n; z|ve) formed by taking the product of two 1-target densities (figure 3). The
likelihood peaks near pairs of measurements z;,2; (shaded circles and dotted lines). Bottom: The 2-
target likelihood po(n;z|v1,v2) derived from the generative model. Again, the likelihood peaks near
pairs of measurements z;, z; (shaded circles and dotted lines), but now a probabilistic exclusion principle
operates: because the sum in the definition of ps excludes i = j, the probability peaks are much smaller

on the line v; = vs.
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Figure 5: Feature autocorrelation is low for displacements of more than 30 pixels. This is
our justification for treating distinct measurement lines as statistically independent. The random process
z(d) whose autocorrelation is graphed here is described in the text and figure 6, and the autocorrelation
function is defined as usual by R(d) = (E[z(d)z(0)] — E[z(0)]?)/(E[z(0)?] — E[z(0)]?).

Figure 6: Investigating feature correlation. The top solid black line is a measurement line positioned
randomly on a typical background image. The value of the random process z(d) is the offset of the most
central detected feature after the initial measurement line has been displaced by d pixels in the direction
of its normal.
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(c) tracking using probabilistic exclusion principle

Figure 7: The exclusion principle operating on a wire-frame example. (a) Three stills from
a sequence of two pieces of wire with similar shapes. Note that for several frames in the middle of the
sequence, the two wires have very similar configurations. (b) Results using the likelihood P’, which does
not incorporate an exclusion principle. When the configurations become similar, both targets settle on

the best-fitting wire. (c) Successful tracking using the exclusion principle likelihood P.
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Figure 8: Intersection numbers calculated from 2.1D geometry. In this diagram, y = 1, meaning
the shaded area is occluded by target A. Visible intersections of measurement lines and target boundaries
are shown as solid circles. The solid lines have intersection number ¢ = 2, dashed have ¢ = 1 and dot-

dashed ¢ = 0. These are the c-values used in (7).
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Figure 9: Successful tracking with a density incorporating occlusion reasoning (c.f. figure 1).
20 of the 2000 particles are shown in each frame, with widths proportional to their probabilities. Recall

that a single “particle” in this context is a joint hypothesis for the configuration of both targets. Initially,

each particle consists of two white contours: one initialised on each of the two targets. A contour is drawn

in black if its value of y, as defined in (6), implies that it is partially occluded.

Figure 10: Tracking multiple leaves, in moving clutter and with occlusions. Three stills from

a tracked sequence are shown. The black contour shows a correctly inferred occlusion.
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set. However, it can be used to reposition the locations of the particles so that the representation
is more efficient for future operations.

Weighted resampling is usually carried out with respect to a strictly positive importance
function g(x). Given a particle set s1, ... s, with weights 71, ... m,, the basic idea is to produce
a new particle set by resampling, with replacement, from the s;, using probabilities proportional
to g(s;) — this has the effect of selecting many particles in regions where g is peaked. The
weights of the resampled particles are calculated in such a way that the overall distribution
represented by the new particle set is the same as the old one. Intuitively, g(x) is a function
with high values in regions where we would like to have many particles. The objective of the
weighted resampling is to populate such regions so that subsequent operations on the particle set
will produce accurate representations of the desired probability distributions. Figure 11 shows a
simple one-dimensional example of weighted resampling with respect to an importance function.

A more formal discussion follows.

Definition (Weighted resampling) Let sq,...s, be a particle set with weights 7y, ... m,,
and let p1, ... p, be any list of strictly positive weights with Y p; = 1. The operation of weighted

!/

resampling with respect to the p; produces a new particle set s/, ...s;, with weights 7{,... 7},

by the following algorithm:
1. Fori=1,...n

(a) Randomly select an index k € {1,...n} with probability px.

(b) Set s; = sg.

(c) Set 7 = mx/pk.
2. Normalise the 7} so that > 7} = 1.

Often, the p; are determined from a strictly positive function g(x), in the sense that p; o< g(s;).
In this case, g(x) is called the importance function and we refer to weighted resampling with
respect to g(x).

Before stating the key property of importance resampling, we must define precisely what it

means for a particle set to represent a distribution.

Definition (Representation of a probability distribution by a particle set) Suppose
we have a (possibly stochastic) algorithm which takes a positive integer n as input, and outputs
a particle set sq,... s, with weights my,...m,. This particle set can be regarded as a probability
distribution py(x) = Y ;" mid(x — s;) — a weighted sum of Dirac §-functions centred on the s;.

The particle set is said to represent a probability distribution p(x) if p, — p, weakly, as n — oc.
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Remark (i). Let P(X) be the space of all probability distributions on the configuration space
X, and let P(P(X)) be the space of all probability distributions on P(X). Although we are
used to considering weak convergence in the space P(X), the convergence referred to above is
in the weak topology on P(P(X)). Nevertheless, the definition of weak convergence remains the
same (Billingsley, 1995). Specifically, we require that for all continuous, bounded, real-valued
functions f on P(X), the expectation of f(p,) tends to f(p) as n — oo. The expectation is over
all possible random choices of the s; and m;. Interested readers are referred to (MacCormick,

2000; Del Moral, 1998).

Remark (ii). Strictly speaking, it is the algorithm for producing a particle set of arbitrary size
which represents a given distribution. Nevertheless, it is convenient to speak of the set itself as
representing a distribution when no confusion can arise.

Now it is possible to state accurately the fact that weighted resampling does not affect the

distribution represented.

Proposition 2 Suppose (s;, 7))}, is a particle set representing a probability distribution p(x),
and (s}, )" is the result of weighted resampling with respect to an importance function g(x).

Suppose further that
e the support of p is a closed and bounded subset of R%

e the m; in the particle set are proportional to some continuous function f, i.e.

f(xi)
2?21 f(x;)

m =

e g is continuous and strivtly positive on the support of p
Then (s}, w1, represents p(x).

A sketch of the proof is given in the appendix.

Note that weighted resampling has a similar objective and effect to the “importance resam-
pling” introduced in (Isard and Blake, 1998b), but that the algorithms for the two types of
resampling are completely different. Importance resampling draws particles randomly from the
importance distribution, then attaches weights to these particles by calculating transition prob-
abilities from each of the old particles to each of the new ones. A crucial advantage of weighted
resampling is that its number of operations is O(n), whereas the calculation of transition prob-
abilities in importance resampling is O(n?). Weighted resampling is a generalisation of both
tempered weights (Carpenter et al., 1999) and the auxiliary particle filter (Pitt and Shepherd,
1997).

19



5.2 Basic partitioned sampling

Let us return to the problem of tracking two targets, A and B. If each target deforms and
moves in a space of M dimensions, there are 2M dimensions to be inferred at each time step.
By employing partitioned sampling, this problem will be reduced to the more feasible task of
performing 2 inferences of M dimensions each. To be more concrete, suppose it is known that
target A partially occludes target B. Then we can localise the two targets efficiently by first
inferring the configuration of target A, and then using this knowledge to localise B. To infer
the configuration of A, we will use the 1-body likelihood P4 defined by (5).

The basic algorithm is as follows. Suppose we can decompose the joint dynamics as

Pt = [ palo X pa (¢ i’

where p4 are the dynamics for target A and similarly for B. (This assumption would hold if, as
is often the case, the dynamics of the targets were independent of each other.) One time step of
the partitioned sampling algorithm consists of five steps: given a particle set (s!, 7)™, which
represents the posterior at time ¢, (i) resampling: just as in standard Condensation, sample the
s; with replacement, using probabilities proportional to the m;, and set all weights in the new
particle set to 1/n; (ii) first partition of the dynamics: apply dynamics for target A only to all
particles; (iii) weighted resampling: perform weighted resampling with respect to the importance
function P4; (iv) second partition of dynamics: apply dynamics for target b only to all particles;
(v) multiply by likelihood: multiply the weight wf“ of each particle by the likelihood p(Z|sf+1).
These steps are summarised by the following diagram:
00— = AR — [ ] —+ <G> = <SoB)> — (poirion)
(a) (0) (¢) (d)

(8)
The symbol ~ P4 means “perform weighted resampling with respect to the importance function
P4”, and the labels (a)—(d) refer to the example given later in figure 13. The validity of this

algorithm is guaranteed by the following

Proposition 3 If p(x"|x) = [, pp(X"|x")pa(x'|x), the posterior generated by diagram (8) is
the same as that generated by diagram (4).

Proof. 1t is easy to check the conditions of Proposition 2 are satisfied here: in tracking problems
we can always restrict the configuration space to be closed and bounded; the weights before
the weighted resampling operation are all equal so are certainly derived from a continuous

function; and the importance function P4 is positive and continuous. So by Proposition 2, the
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reweighting operation ~ P4 has no effect (asymptotically, as the number of particles N — 00) on
the distribution represented. Hence we may delete this step from the diagram without affecting
the posterior. The step * p4(x'|x) is now followed immediately by * pp(x”|x’) and by assumption
the consecutive application of these steps is equivalent to * p(x”|x). Making this substitution

on the diagram, we obtain (4), as desired. [ |

Remark. 1t is clear from the proof that instead of P4 in diagram (8), one could use any strictly
positive function without affecting the posterior. However the objective of partitioned sampling
is to obtain an accurate representation of the posterior with a moderate number of particles.
Hence we would like the weighted resampling step to position as many particles as possible
near peaks in the posterior. Because we assumed target A partially occludes target B, the
one-body density P4 is a good choice as importance reweighting function. Particles surviving
the weighted resampling step lie in peaks of P4, and this function has peaks in the “right” place

because target A is completely visible.

Example Consider a simple example with a 2-dimensional configuration space; then each par-
ticle in a particle set can be schematically represented on a plane, with area proportional to
its weight. Figure 12 uses this convention to illustrate one iteration of the conventional (non-
partitioned) Condensation algorithm. Box (a) shows the prior — a Gaussian centred on the

centre of the image. The black cross shows the actual position of the target, which of course

is not known to the algorithm at this stage. Box (b) shows the distribution after the prior has

been resampled and the dynamics (which in this case are isotropic additive Gaussian) have been

applied. Note that at this point each particle has equal weight. In (c), the particles have the
same configurations as in (b), but their weights are now proportional to the observation density.
This is the particle representation of the posterior distribution.

Figure 13 shows the application of partitioned sampling in the same scenario. The dynamics
and observations are partitioned into z and y components. Box (a) shows the same prior as in
figure 12. In (b), the prior has been resampled and the x“-component of the dynamics has been
applied. To produce (c), we first perform weighted resampling on these particles, with respect to
an importance function centred on an observation of the x*-coordinate of the target. Recall that
this has no effect on the distribution represented, but of course it selects many particles whose
x“-coordinate is close to the target’s — this will be beneficial later. Next the x”-component of
the dynamics is applied, producing the particle set shown in (c). Finally, this set is multiplied

by the joint observation density for x* and x” coordinates. The result is shown in (d). Notice

how dense this representation is, compared to the final outcome of non-partitioned sampling in
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Figure 11: Weighted resampling. A uniform prior po(X), represented as a particle set (top), is
resampled via an importance resampling function g to give a new, re-weighted particle set representation
of pg. Note that these are one-dimensional distributions; the particles are spread in the y-direction only

so they can be seen more easily.
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Figure 12: Conventional (i.e. non-partitioned) Condensation. The true position of the target in
this 2-dimensional configuration space is shown as a cross; particles representing a probability distribution
are shown as circles whose areas are proportional to their weights. Each step shown is one stage in the
condensation diagram (4). (a) The prior. (b) After the dynamics have been applied. (c) After reweighting
by the posterior. The posterior is centred at approximately the correct position, but this representation
of the posterior is not very accurate because relatively few particles have significant weights. In technical
terms, the estimated effective sample size (10) is low. Superior results are achieved using partitioned

sampling (figures 13 and 14).
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figure 12.

5.3 Branched partitioned sampling

Branching is a refinement of partitioned sampling which is needed in our application to a mixed
state Condensation tracker. In the discussion above, it was assumed target A partially occluded
target B. This enabled us to select the one-body density P4 as a suitable importance function
for the reweighting step in (8). However at any given time step, there are some particles for
which y = 1 (i.e. A is unoccluded) and some for which y = 2 (i.e. B is unoccluded). It would
be preferable to select a different importance function for each y value.
This is achieved by the branched partitioned sampling algorithm summarised on the following
diagram:
G — P <G> —
o) —{~ e <P (i)
G PR — <G> — Y
ify=2 R
(a) () (c) (d)

Particles for which y = 1 follow the top path, which positions the x*-components first (near

peaks in P4), since these particles believe A is unoccluded. Particles for which y = 2 follow the
bottom path, since they believe B is unoccluded. The final result is that many more particles
survive the resampling process, compared to the non-partitioned process, and the posterior is
represented more accurately.

One technical point: the sum of weights 7; in any one branch need not be unity. Hence when
performing weighted resampling, the new weights must be normalised to have the same sum as

before the resampling.

Example In figure 14, the 2-dimensional example has been augmented to include a binary
discrete label, indicated by the colour of each particle (grey or black). The prior, (a), gives
an equal weighting to the two discrete states. Box (b) shows the particle set one step after
the branching: black particles have had the x*-component of the dynamics applied to them,
whereas grey particles have received the x®-component. Box (c) shows the particle set after
the branches merge again. The black particles receive weighted resampling with respect to an
observation of the target’s x*-coordinate, while the grey particles receive weighted resampling
with respect to an observation of the target’s x?-coordinate. Then the remaining dynamics are
applied: the x* component to the grey particles, and the x? component to the black particles.
This results in (c). Finally, the weights are multiplied by the joint observation density for x*

and x?, producing the posterior shown in (d).
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Figure 13: Partitioned sampling. A simple example implementing the condensation diagram (8).
The 2-dimensional configuration space is partitioned as the cross product of the x4 and x® dimensions,
and the true position of the target is shown as a cross. (a) The prior. (b) The particles in (a) have been
resampled, and dynamics have been applied in the x“-direction. (c) The weighted resampling operation
has been performed, and the remaining dynamics (i.e. in the xp direction) applied. (d) The particles in
(c) are re-weighted by the posterior. Note how fine-grained the sample set for the posterior is, compared
with the final set from conventional sampling in figure 12. In other words, this representation of the

posterior has a higher estimated effective sample size (10) than that in figure 12.

xB xB xB ’ xB

xA xA : XA xA

(a) (b) (c) (d)

Figure 14: Branched partitioned sampling. Each step shows a stage from the Condensation diagram
(9). The 2-dimensional configuration has been augmented with a binary variable y, shown as black (y = 1)
or grey (y = 2), and the value of this variable determines which branch is taken in (9). (a) The prior. (b)
Dynamics have been applied in the x4-direction for black particles and the xZ-direction for grey particles.
(c¢) The weighted resampling operation has been performed, and the remaining dynamics applied. (d) The
particles from (c) are re-weighted by the posterior. The estimated effective sample size of the posterior
is greater than for the unpartitioned method (figure 12) but in this simple example is no better than the
non-branched, partitioned method (figure 13). However, that is because this example is symmetric in A
and B: the branched method would be superior if the 2 importance functions P4, Pp used to produce

(c) were not equally good predictors of particle position.
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5.4 Performance of partitioned sampling

Evaluating the performance of particle filters such as Condensation is a difficult problem (Car-
penter et al., 1999; Doucet, 1998; Kong et al., 1994; Liu and Chen, 1995; Liu and Chen, 1998).
To compare the two schemes (9) and (4) we use Doucet’s (Doucet, 1998) estimated effective

sample size N defined for a set of particles with weights 7, ... 7y as

N -1
N = (2 ﬁ) (10

Intuitively, this corresponds to the number of “useful” particles: if all have the same weight 1/N
then N = N, whereas if all but one of the weights are negligible we have N = 1. Any other
distribution of the weights falls between these two extremes. Figure 15 compares N for the
conventional (“unpartitioned”) and partitioned methods. It is clear that partitioned sampling
achieves much higher values of N than unpartitioned sampling and that we can therefore expect
much better tracking performance for the same computational expense. We can show this is
indeed the case in a practical example: figure 16 shows stills from a certain sequence tracked
by each method. With partitioned sampling, and N = 750 particles, the tracking succeeds.
However, despite using 4 times as many particles, unpartitioned sampling fails to track on the

same sequence.

6 Conclusion

An exclusion principle for tracking multiple, indistinguishable targets has been introduced, which
prevents a single piece of image data independently contributing to similar hypotheses for dif-
ferent targets. In its raw form, the model is valid only for wire-frame objects. However, by
extending the tracking methodology to permit discrete states for describing the world in 2.1
dimensions, the same type of model can be used to track solid objects. Moreover, the approach
requires only a simple model of the targets and no knowledge whatsoever of the background,
which may itself be moving non-rigidly. A second contribution of the paper is to introduce
partitioned sampling: a method of using particle filters with multiple objects, without incurring
excessive additional computational cost for the extra dimensions.

The exclusion principle and the partitioned sampling algorithm were described and demon-
strated for 2 targets. In principle, there are obvious generalisations to an arbitrary number of
targets, but it remains to be seen whether these suffer from implementation difficulties.

So far the probabilistic exclusion principle has been developed for only the specific type of

edge-based measurements described here. However, the fundamental idea is that any single
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Figure 15: Estimated effective sample size N for partitioned and conventional (unparti-
tioned) sampling methods. The graph shows the average value of N following a 10-frame sequence

tracking two leaves. Note the superior performance of the partitioned sampling method.

partitioned, N = 750 unpartitioned, N = 3000

Figure 16: Unpartitioned sampling can fail when partitioned sampling does not, even if more
particles are used. The final frame from a tracked sequence is shown: with unpartitioned sampling, the

tracking fails despite using 4 times as many particles as the partitioned method.
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measurement should reinforce multiple hypotheses coherently; it is hoped this can be used to

guide the implementation of exclusion principles for more general observation processes.
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A Proof of proposition 1

Remarks. Because of the discrete parameter n which indicates how many arguments z; follow,
the functions p. are not quite probability density functions in the standard sense. However, this
is a technical detail which can be avoided by explaining the notation more clearly. For example,
po(n; z1,. .. 2zy) is just shorthand for pg(z1, ... zn|n, v)Prob(n), so that po(n; z1,...2,)dz1 ... dz,
is just the probability of obtaining n features and that these features lie in the volume dz; ... dz,
centred on z = (z1,...2y).

Another subtle point is that each z; is a point in the image, which would normally be
described by an z and y coordinate. However in this context the features are constrained to lie
on the measurement line, which is a one-dimensional subset of the image. So the notation dz;

refers to a small one-dimensional subset of the image.

Proof. The formula for pgy follows almost immediately from the assumptions. By definition there
is a probability b(n) of obtaining n features, and these are distributed uniformly on the length
L of the measurement line. Hence po(n;zy,...2,) = b(n)/L".

The formula for p; relies on a simple combinatoric argument. First note the generative model
described above is equivalent to the following: (i) The number of background features, say m,
is selected with probability b(m). (ii) The positions of the background features are drawn from
the uniform distribution on the measurement line, obtaining say by, ... by,. (iii) The position a
of the boundary feature is selected by a random draw from G(a|v). (iv) The total number of
features n is set to m + 1, and the vector (a,by,...b,) is randomly permuted and reported as
(#1,...2p). In mathematical terms, we can say that a permutation p is selected uniformly at
random from the symmetric group S, and applied to the vector (a,by,...by).

After stage (iii), the pdf p(m;a, by, ... by|v) of the unpermuted vector is just b(m)G(alv)/L™,
and since each of the n! permutations has an equal probability we calculate

p1(n; 21, ... zp|v) = b(m) Z w « i

PESH

b 1) zn: G (zk|v)

nLn—l
k=1

n!

27



where the last line follows by collecting together the (n — 1)! permutations which leave zj, fixed.

The same type of reasoning leads to the stated formula for ps. |

B Sketch proof of proposition 2

A rigorous proof of Proposition 2 is given in (MacCormick, 2000), and related results can be
found in (Doucet, 1998; Kong et al., 1994; Liu and Chen, 1995). However, the following informal

proof is more intuitive and illuminating.

Sketch of proof. Set p; = g(si)/>_;9(s;). Run step 1 of the weighted resampling algorithm,

obtaining the s} and the unnormalised 7. Set K = > | mi. We need the following lemma.
Lemma 4 Asn — oo, K/n — 1 weakly.

Informal proof of lemma. When n is large, each index k € {1,...n} is selected approximately

npy times. By collecting these together we can write
" " n
K ;Pi I;pknpk n];ﬂk n
which completes the informal proof of the lemma.

Define indices k1, k2, ... so that s, = sg,. Then by the lemma we know the normalised weight
7w, is approximately 7. /npg,. To complete the proof of Proposition 2 it will be enough to show
that the total weight assigned to a value s; is the same (as n — o0) in the initial and final
particle sets. But this is now immediate: there are approximately npy, values equal to s, and

each has final weight g, /npg,. Thus the total weight assigned to s} is npy, X 7, /npg, = Tk,,

just as in the initial particle set (s;, ;). [ |
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