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Abstract

Tracking multiple targets whose models are indistin-
guishable is a challenging problem. Simply instantiating
several independent 1-body trackers is not an adequate so-
lution, because the independent trackers can coalesce onto
the best-fitting target. This paper presents an observation

density for tracking which solves this problem by exhibit-
ing a probabilistic exclusion principle. Exclusion arises
naturally from a systematic derivation of the observation
density, without relying on heuristics. Another important
contribution of the paper is the presentation of partitioned
sampling, a new sampling method for multiple object track-
ing. Partitioned sampling avoids the high computational
load associated with fully coupled trackers, while retaining
the desirable properties of coupling.
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1. Introduction

This paper proposes a mathematically rigorous methodol-
ogy for tracking multiple objects. The fundamental problem
to be addressed is demonstrated in figure 1. Two instanti-
ations of the same tracking algorithm, with different ini-
tial conditions, are used to track two targets simultaneously.

Figure 1. With an observation model designed for one target,
two trackers initialised in distinct configurations eventually
lock on to the one target which bests fits the model. The ob-
jective is to derive an observation model which does not permit
the presence of two targets to be inferred from measurements of
only one.

in configuration space too easily. More specifically, a single

When one target passes close to the other, both tracking al-
gorithms are attracted to the single target which best fits
the head-and-shoulders model being used. One might think
of avoiding this problem in a number of ways: interpreting
the targets as “blobs” which merge and split again [8, 9],
enforcing a minimum separation between targets [14], or
incorporating enough 3D geometrical information to distin-
guish the targets [11]. However, each of these solutions
can be unattractive. A blob interpretation does not main-
tain the identity of the targets, and is difficult to implement
for moving backgrounds and for targets which are not easily
segmented. A minimum separation relies on heuristics and
fails if the targets overlap. Incorporating 3D information is
impossible without detailed scene modeling.

So it seems we must instead address the fundamental
problem: that the observation model used to interpret image
measurements permits two targets to occupy the same point

piece of image data (such as an edgel, or a colour blob),
must not independently reinforce mutually exclusive hy-
potheses. What is needed is a “probabilistic exclusion prin-
ciple”, and an observation model exhibiting this behaviour
is described in this paper. The formal model will initially
be derived for “wire frame” targets — objects which have
detectable boundaries but which do not occlude each other.
We then describe how occlusion reasoning about solid ob-
jects can be incorporated naturally into the same frame-
work. The most interesting feature of this approach is that
it works even when the targets are indistinguishable given
the available information. This is of both theoretical and
practical interest.

Many visual tracking systems for multiple objects have
been developed. One standard technique is the probabilis-
tic data association filter (PDAF) [1], and other successful
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examples include [8, 9, 13, 14]. These generally employ
a combination of blob identification and background sub-
traction; both techniques are complementary to the method
proposed here. In particular, our exclusion principle does
not allow two targets to merge when their configurations
become similar; instead, the model continues to interpret
the data in terms of two targets. As will be seen, it is a nat-
ural consequence of the methodology that the probability
distribution for an obscured target diffuses until it is rein-
forced by further data. Furthermore, the method works for
unknown and constantly changing backgrounds. The au-
thors of [14] proposed a promising method for combining
colour blob and edge information, and incorporated an ex-
clusion principle by using a joint PDAF. However, their al-
gorithm for fusing edgel information enforced an arbitrary
minimum separation between targets. Gordon [7] employs a
similar multi-target tracking methodology to this paper but
with a rather different observation model and no explicit ex-
clusion principle.

One of the difficulties with tracking multiple objects is
the high dimensionality of the joint configuration space.
Section 5 introduces a method known as partitioned sam-
pling which diminishes the computational burden asso-
ciated with the increased dimensionality of multi-target
spaces.

2. The observation model

The target objects in this paper are described by their out-
lines, which are modeled as B-splines. We will call any
such outline a contour. The space of contours which can
correspond to a target or set of targets is called the shape
space[3], and is parameterised as a low-dimensional vector
space X'. The space X" generally has 5-50 dimensions. A
configuration x € X is measured by the method of figure 2,
obtaining a list of image coordinates Z = (z1,%2,...2).
A component of Z is itself a vector z; consisting of the mea-
surements made along fixed measurement lines (see the fig-
ure) of the configuration x. So Z is a function of both the
image and the configuration.

Consider just one measurement line, of length L, po-
sitioned in an image known to contain two target ob-
jects. A one-dimensional edge detector is applied to this
line, and some features are detected at image coordinates
z1,%2,...%n. For a given target configuration x, there are
three possibilities to consider: the measurement line may
intersect ¢ = 0, 1 or 2 of the targets. The probability densi-
ties for each case are denoted p.(n;z). To calculate the p,,
several concrete assumptions are adopted:

e ¢ = 0 (“random background clutter””): The probability
of obtaining n features is b(n), learnt from randomly
placed measurement lines in typical images. The po-
sitions of the n features z = (21, 22, . . . z5,) are drawn
from the uniform distribution on the measurement line.

-

=
-

Figure 2. Measurement methodology. The thick white line is
x — a mouse-shaped contour in some hypothesised configura-
tion. The thin lines are measurement lines, along which a one-
dimensional feature detector is applied. Black dots show the out-
put of the feature detector, which in this case responds to rapid
changes in intensity — one-dimensional edges.

e ¢ = 1 (“single target”): One of the n features cor-
responds to the target boundary, whose hypothesised
position on the measurement line is denoted v. If the
boundary feature is z;, then z; is assumed to be drawn
from a fixed probability distribution G(z;|v). In this
paper G(z;|v) is a Gaussian centred on v with variance
o2 (we take o = 7 pixels in the examples later). The
remaining n — 1 features are assumed to be drawn from
the random background clutter distribution described
above.

e c = 2 (“two targets”): Two of the n features, say z;, z;,
correspond to target boundaries at hypothesised posi-
tions vy, v5. They are drawn from G(z;|v1), G(z;|v2)
respectively with, importantly, 7 # j. In other words,
any edge feature can correspond to at most one tar-
get boundary. It is this assumption which leads to the
enforcement of a probabilistic exclusion principle de-
scribed later on. Again the remaining n — 2 features
are drawn from the background distribution.

It is clear that this model can be generalised to higher values
of ¢, but for clarity only the cases ¢ = 0, 1, 2 are considered
here. With the above assumptions, some simple combinato-
rial arguments show the appropriate pdfs are:

po(n;z1,...2n) = b(n)/L" ()
p1(n;z1,...zp|v) = b(n —1) Z G(z|v)/nL" !
k=1
p2(n; 21, ... 2Zp|ve, v2) = b(n —2) %ﬁf?fi)

i#j

However, one more detail is required for this to be an ac-
ceptably realistic model: occasionally the target object’s
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boundary is not detected, because the background and tar-
get happen to have similar grey-scale values. It is therefore
assumed that when ¢ = 1 there is a small fixed probability
qo1 of the edge detector failing to detect the target bound-
ary, and ¢1; = 1 — qoi that it will succeed. This is pre-
cisely analogous to the non-detection probabilities used in
PDAFs [1]. Similarly, when ¢ = 2, there are fixed probabil-
ities go2, 12, g22 that 0,1, 2 target boundaries are detected
successfully. Thus we can define overall pdfs for the cases
c=0,1,2 as follows:

Po() = po(")
P1(|v) = qo1po () + quip1 (-|v)
P2(|v1, v2) = qo2po(-) + qua(p1(-lv1) + pi(-[v2)) /2
+ q2p2(-|v1, v2)

Typical graphs of the last two functions are shown in fig-
ure 3. Here and later we take qo; = 0.1,q11 = 0.9,q02 =
0.05,q12 = 0.2, g2 = 0.75; these values were determined
by trial and error on simple examples.

The above discussion was framed in terms of a single
measurement line, but for any given hypothesised configu-
ration x, the measurements Z will arise from say M dis-
tinct measurement lines. Let ¢(i) be the number of target
boundaries crossing the ith measurement line for a given
configuration x, and let () be the coordinates of these in-
tersections. By making the approximation that outputs on
distinct measurement lines are statistically independent, we
define the exclusive likelihood function as

P(Z]x) = Hp CRIZR) )

3. Tracking multiple wire frames

Tracking is performed in this paper by the Condensation
algorithm [10], which is capable of dealing with complex
likelihood functions such as (1). A Condensation tracker
represents the state of a system at time ¢ by a weighted
set of samples or particles s!,...s%y whose weights are
mh,...mh. The set is propagated to the next time step by
(1) resampling: sample N times with replacement from the
set of partlcles st, accordmg to the weights ! — this pro-
duces a set 31 ,... 8t N ; (i) dynamical propagation: sample
from p(x t+1|xt = st) to choose each s!™!; and (iii) mea-
surement: examine the image to obtain the features Z!*+!,
then assign each of the new particles a weight 7rt+1 x

p(ZH|xtHl = stt1), The three transformations of the
particle set in any time step can be conveniently summarised
diagrammatically:

r -
i)+ [ > -
— — [ posterior
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Figure 3. 1- and 2-target likelihood functions for a single mea-
surement line. Top: p1(n;z|v) graphed with respect to v. The
likelihood peaks near the 4 measurements z; (shown as shaded cir-
cles). Bottom: p2(n; z|v1, v2) graphed with respect to v, v2. The
likelihood peaks near pairs of measurements z;, z; (shaded circles
and dotted lines), but a probabilistic exclusion principle operates:
because the sum in the definition of p» excludes i = j, the proba-
bility peaks are much smaller on the line v1 = v».

The ~ symbol represents resampling as described above,
the * is application of some dynamics and the X repre-
sents multiplication (i.e. re-weighting) by the measurement
density. Of course, to demonstrate the exclusion principle
we use the likelihood function P(Z|x) as the measurement
density. Note that P as defined in (2) is not valid for opaque
objects, since the model expects to observe all boundaries,
even when occluded. However, it is valid for wire frame ob-
jects, so an experiment on wire frames was performed. As a
control for the experiment, we need a likelihood P’, similar
to P, but which does not incorporate an exclusion princi-
ple. Naming the two targets A and B, and writing c4 (7) for
the number of intersections of A with line ¢, let v A) be the
coordinates of these crossings and define the /-body density

Z|X HpcA z) Z)ly ) 4

and similarly for Pg. We take P’ = P4 Pg, so the posteri-
ors for A and B given Z are treated as independent. A typi-
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cal graph of P’ for just one measurement line would be sim-
ilar to figure 3 but with four additional peaks down the line
v; = vy. Figure 4 shows the results: as expected, P suc-
cessfully maintains exclusion between the targets whereas
P’ does not.

. Proc. ICCV 99 4

geometric aspect to be inferred is whether target A can oc-
cluded target B or vice versa.
The process density can then be decomposed as follows:

P(X¢|X¢—1) = Pyelxe, Xi—1) p(xe[xe-1),

and if y,—1 = j and y; = ¢ this can be written more explic-
itly as

P(Xe| X—1) = Tij(xe, Xe—1)D(Xe [Xe—1)-

where Tj; is a transition matrix and p is a density specifying
the continuous dynamics for a particle. Here it is appropri-

(¢) tracking using probabilistic exclusion principle

Figure 4. The exclusion principle operating on a wire-frame
example. (a) Three stills from a sequence of two pieces of wire
with similar shapes. Note that for several frames in the middle
of the sequence, the two wires have very similar configurations.
(b) Results using the likelihood P’, which does not incorporate
an exclusion principle. When the configurations become similar,
both targets settle on the best-fitting wire. (¢) Successful tracking
using the exclusion principle likelihood P.

4. Tracking multiple opaque objects

The wire-frame model can be adapted for use with solid
objects. The method uses the mixed state Condensation
tracker of [10], combined with a “2.1D” model of the tar-
gets. The basic idea of a mixed state Condensation tracker
is that each particle carries a discrete label in addition to
the continuous parameters describing its configuration. The
extended state is defined to be

X = (x,y),x € R,y € {1,...N,},

where y is a discrete variable labeling the current model,
and x is a vector of continuous parameters specifying the
configuration of the targets. In the two-object case, x =
(x*,xP) and y can take one of two values: y = 1if A is
nearer the camera than B, and y = 2 if B is nearer than
A. This is what we mean by a 2.1D model: the only 3D

ate for T3;(x¢, X¢—1) to be independent of x;_1. If x and
xB overlap then the occlusion relationship cannot change
in the the current time-step and so we take Tj;(x;) to be the
identity matrix. If x;* and x” do not overlap then there is a
small, fixed probability value of y will change, represented
1-6 06

0 1-4§
The examples later take § = 0.01, which corresponds to a
time constant of 2.0 seconds for a given discrete state.

The mixed state Condensation tracker presented here in-
corporates a significant difference to that of [10] — the ob-
servation density p(Z|X;) depends not only on x; but also
on the discrete state y;. The multi-target likelihood func-
tion (2) is used, but now the intersection counts ¢(%) are cal-
culated using the discrete variable y and the 2.1D geometry
to determine if a given boundary feature should be visible
or not, as in figure 5. To emphasise this we can write (i, y)
for the number of visible target boundaries intersecting the
ith measurement line of a configuration (x, y); the coordi-
nates of the visible boundaries on the ith line are written
v(49)_ Then a likelihood incorporating occlusion reasoning
can be defined as in (2), but replacing ¢(4) by ¢(4, y):

by taking Tj;(x;) = < ) with 0 < § < 1.

M
Poccl(Z|x) = Hﬁc(z,y) (Z(Z) |V(i7y))‘ )

=1

The likelihood Poce1 performs well in experiments. Fig-
ure 6 shows a typical sequence involving occlusion. The
configuration space has 16 dimensions: 8 key-frames from
principal components analysis of templates [2, 5], for each
of 2 targets). Tracking is performed with N = 2000 par-
ticles, and predictive dynamics in the form of Brownian
motion with an amplitude matched to the speed of a walk-
ing person. Note how the occluded contours diffuse at 0.7
seconds. Because of the exclusion principle they coalesce
again only when some evidence from the correct target is
observed. The undesirable tracking behaviour of figure 1
has been corrected.

As a canonical tracking challenge, the same multiple tar-
get methodology was applied to the “leaf sequence” used in
[10]. Two leaves were tracked, using an affine shape space
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Figure 5. Intersection counts calculated from 2.1D geometry.
In this diagram, y = 1, meaning the shaded area is occluded by
target A. Visible intersections of measurement lines and target
boundaries are shown as solid circles. The solid lines have inter-
section number ¢ = 2, dotted have ¢ = 1 and dashed ¢ = 0. These
are the c-values used in (5).

and N = 4000 samples with learnt dynamics. The need for
4000 samples is reduced to 750 by the partitioned sampling
method described in the next section. Tracking is successful
despite occlusions; some stills are shown in figure 7.

S. Partitioned sampling for Condensation

A potential limitation of the Condensation algorithm is that
if the state space has many dimensions, then the number of
particles required to model a distribution can be very large
indeed. This is of particular concern when tracking mul-
tiple objects, since the number of dimensions in the state
space is proportional to the number of objects. Fortunately,
“partitioned sampling” significantly reduces this curse of
dimensionality. It is the statistical analogue of a hierarchi-
cal search: the intuition is that it should be more efficient
to search first for whichever target is unoccluded, and only
then to search for another target which may lie behind.

We must omit some details here, but the basic algorithm
is as follows. Assume the dynamics for each target can be
decomposed as p(x"|x) = [, pp(x"[x")pa(x'|x), where
pa are the dynamics for target A and similarly for B. Also
recall the one-body densities P4, Pp defined by (4). Then
one time-step of the partitioned sampling algorithm is de-
fined by the diagram in figure 8. In figure 8, the ~ Py
symbol means “resample according to weights oc P4, then
re-weight the selected particles with weights oc 1/P4.” It
can be shown this operation does not alter the underlying
distribution represented. Hence we can prove figure (8) is a

0.0 seconds

0.8 seconds

0.73 seconds

Figure 6. Successful tracking with a density incorporating oc-
clusion reasoning 20 of the 2000 particles are shown in each
frame, with widths proportional to their probabilities. Each par-
ticle consists initially of two white contours: one initialised on
target A and one on target B. A contour is drawn in black if its
value of y implies that it is partially occluded.

;B

Figure 7. Tracking multiple leaves, in moving clutter and with
occlusions. The black contour shows a correctly inferred occlu-
sion.

valid simulation of (3) by simply deleting the ~ P4, ~ Pp
steps and fusing the two paths which now have identical ef-
fects on the particles.

Particles for which y = 1 follow the top path, which
positions the A-components first (near peaks in P4), since
these particles believe A is unoccluded. Particles for which
y = 2 follow the bottom path, since they believe B is unoc-
cluded. The final result is that many more particles survive
the resampling process, compared to the non-partitioned
process, and the posterior is represented more accurately.
Figures 9 and 10 demonstrate this on a toy example with a
2-dimensional configuration space.

Evaluating the performance of particle filters such as
Condensation is a difficult problem [4, 6, 12]. To compare
the two schemes (figure 8) and (equation 3) we use Doucet’s
[6] estimated effective sample size N defined for a set of
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Figure 8. Diagrammatic representation of partitioned sampling. Particles with different discrete states y follow different paths through

the diagram.

xA xA
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(a)
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Figure 9. Conventional (i.e. non-partitioned) Condensation. The true position of the target in this 2-dimensional configuration space is
shown as a cross; particles representing a probability distribution are shown as circles whose areas are proportional to their weights. Each
step shown is one stage in the condensation diagram (3). (a) The prior. (b) After the dynamics have been applied. (c) After reweighting
by the posterior. The posterior is centred at approximately the correct position, but this representation of the posterior is not very accurate
because relatively few particles have significant weights. In technical terms, the effective sample size (6) is low. Superior results are

achieved using partitioned sampling (figure 10).

particles with weights 7y, ... 7N as

Intuitively, this corresponds to the number of “useful” par-
ticles: if all have the same weight 1/N then N = N,
whereas if all but one of the weights are negligible we have
N=1. Any other distribution of the weights falls between
these two extremes. Figure 11 compares N for the con-
ventional (‘“unpartitioned”) and partitioned methods. It is
clear that partitioned sampling achieves much higher values
of N than unpartitioned sampling and that we can therefore
expect much better tracking performance for the same com-
putational expense. We can show this is indeed the case in a
practical example: figure 12 shows stills from a certain se-
quence tracked by each method. With partitioned sampling,
and N = 750 particles, the tracking succeeds. However,
despite using 4 times as many particles, unpartitioned sam-
pling fails to track on the same sequence.

(6)

6. Conclusion

An exclusion principle for tracking multiple, indistinguish-
able targets has been introduced, which prevents a single

piece of image data independently contributing to similar
hypotheses for different targets. In its raw form, the model
is valid only for wire-frame objects. However, by extend-
ing the tracking methodology to permit discrete states for
describing the world in 2.1 dimensions, the same type of
model can be used to track solid objects. Moreover, the ap-
proach requires only a simple model of the targets and no
knowledge whatsoever of the background, which may itself
be moving non-rigidly. A second contribution of the paper
is to introduce partitioned sampling: a method of using par-
ticle filters with multiple objects, without incurring exces-
sive additional computational cost for the extra dimensions.

So far the probabilistic exclusion principle has been de-
veloped for only the specific type of edge-based measure-
ments described here. However, the fundamental idea is
that any single measurement should reinforce multiple hy-
potheses coherently; it is hoped this can be used to guide
the implementation of exclusion principles for more general
observation processes.
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Figure 10. Partitioned sampling. Each step shows a stage from the condensation diagram figure 8. The 2-dimensional configuration has
been augmented with a binary variable y, shown as black (y = 1) or grey (y = 2), and the value of this variable determines which branch
is taken in figure 8. (a) The prior. (b) Dynamics have been applied in the x“-direction for black particles and the xZ-direction for grey
particles. (c) The weighted resampling operation has been performed. (d) The remaining dynamics are applied, and then the particles
are re-weighted by the posterior. Note how fine-grained the sample set for the posterior is, compared with the final set from conventional
sampling in figure 9. In other words, this representation of the posterior has a higher effective sample size (6) than that in figure 9.

—— partitioned
---- conventional

10

Figure 11. Estimated effective sample size N for partitioned
and conventional (unpartitioned) sampling methods. The
graph shows the average value of N following a 10-frame se-
quence tracking two leaves. Note the superior performance of the
partitioned sampling method.
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