
Fast Superpixels for Video Analysis

Fabio Drucker and John MacCormick
Dickinson College, Carlisle, PA

Abstract

The computational cost of video and motion analysis can
be dramatically reduced by over-segmenting each frame of
video into “superpixels”. But most superpixel algorithms
are themselves computationally expensive, and are thus in-
appropriate for use with real-time video. This paper ad-
vocates and analyzes the use of superpixels derived from
minimum-cost paths that can be computed by dynamic pro-
gramming. It is shown that superpixels can be computed
comfortably in real time using such methods (30–40 times
faster than the most efficient alternative), while sacrificing
about 3% in the accuracy of the superpixels. The efficacy of
the approach is demonstrated with a simple video analysis
application.

1. Introduction
The partitioning of an image into “superpixels” — con-

tiguous regions that are perceptually similar — is an im-
portant pre-processing step in certain computer vision algo-
rithms. Existing algorithms for producing superpixels are
both accurate and efficient, and have been used with great
success in large-scale applications such as the segmenta-
tion of all images in a large database [8]. Superpixel pre-
processing also has the potential to vastly reduce the cost of
video analysis, since it can reduce the number of correspon-
dences between frames from millions of pixels to perhaps a
thousand superpixels (e.g. [11, 15]). However, for at least
some video analysis applications, existing superpixel tech-
niques are too expensive for real-time processing of video.
Hence, there is a strong motivation to reduce the cost of
superpixel computation. This paper does exactly that, by
describing and analyzing PathFinder, an extremely low cost
superpixel algorithm based on computing least-cost paths
via dynamic programming.

It is important to distinguish clearly between two differ-
ent but related tasks, defined in this paper as follows. Seg-
mentation partitions an image into a small number (say, 1–
50) of regions that correspond to real-world objects. Over-
segmentation partitions an image into a moderate number
(say, a few hundred) of superpixels, each of which corre-

sponds to part of a real-world object. Clearly, these are not
mathematically rigorous definitions, as they depend on the
psychological concept of an “object”. Nevertheless, we find
these definitions useful in practice.

2. Related work and this paper’s contribution
To the best of our knowledge, the fastest existing super-

pixel algorithm is the “Efficient Graph-Based Image Seg-
mentation” (EGBIS) of Felzenszwalb and Huttenlocher [5].
Section 4.2 demonstrates that PathFinder is 30–40 times
faster than EGBIS on moderately-sized images, while sac-
rificing about 3% in the accuracy of the superpixels.

Another extremely efficient superpixel technique is the
watershed algorithm [14]. Although inexpensive in its
vanilla form, the watershed algorithm requires additional
(expensive) morphological operations for some applications
(e.g.[15]), and appears vulnerable to highly-textured re-
gions. In this paper, we therefore concentrate on compar-
isons with EGBIS, while acknowledging that a more com-
plete future study should compare with watershed, and pos-
sibly other approaches.

Numerous other high-quality and relatively efficient
segmentation/superpixel algorithms exist, including mean
shift [3] and weighted aggregation [12]. While they produce
excellent segmentations, these algorithms are at least sev-
eral times slower than EGBIS. To our knowledge, the con-
siderable remaining literature on image segmentation com-
prises algorithms many times slower than those mentioned
above (e.g. [7, 10, 13]), rendering them unsuitable for real-
time applications.

The superpixel lattices (SL) of Moore et al. [9] are
closely related to PathFinder. Both approaches form su-
perpixel boundaries from minimum-cost paths that traverse
the entire image. SL possesses two options for computing
minimum-cost paths: graph-cuts, and dynamic program-
ming. The graph-cut variant is more computationally ex-
pensive than PathFinder, and is not discussed further here.
The superpixel lattice dynamic programming (SLDP) ap-
proach, on the other hand, is very similar to PathFinder and
has approximately the same computational cost. The main
differences lie in the way that topological constraints on the
paths are enforced. SLDP was motivated by the objective

that the superpixels lie in a regular grid, so it forces each
path to lie in a vertical or horizontal strip and prevents paths
of the same orientation from intersecting. Pathfinder has no
requirement for a regular grid of superpixels, so it allows
paths to wander arbitrarily and simply terminates paths that
intersect with an existing path of the same orientation.

Seam carving [1] is another algorithm using dynamic
programming to find minimum-cost paths in an image. The
seam carving technique extracts paths across (or down) the
entire image just as Pathfinder does, but its authors empha-
size the application to image resizing rather than superpix-
els for video analysis.

Although PathFinder was developed independently, it
is clear that it has close similarities to both SLDP and
seam carving, and therefore we claim no novelty for the
PathFinder algorithm itself. We do claim to provide a use-
ful and novel analysis of the computational cost of such
algorithms, since the SL paper focused on accuracy trade-
offs resulting from the superpixels’ grid structure, and did
not address computational cost. Thus, the main contribu-
tion of this paper lies in its advocacy and analysis of very
inexpensive superpixel algorithms based on dynamic pro-
gramming (whether SLDP, PathFinder, or some other vari-
ant). Specifically, we (i) show that dynamic programming
approaches can compute superpixels cheaply enough for
real-time video analysis; (ii) discuss potential weaknesses
of dynamic programming approaches and suggest ways of
alleviating them; (iii) show that the use of a dynamic pro-
gramming approach sacrifices only a modest amount of ac-
curacy; and (iv) demonstrate the usefulness of the resulting
superpixels in a simple video analysis application. The con-
clusion is that PathFinder-like algorithms should be attrac-
tive to researchers attempting real-time analysis of motion
in video.

3. The PathFinder algorithm

As already discussed, the Pathfinder algorithm is simi-
lar to SLDP (the dynamic programming variant of Super-
pixel Lattices), and we claim no particular novelty for it.
However, because there are numerous differences between
Pathfinder and SLDP, this section gives a complete and con-
crete description of PathFinder. The description can also be
regarded as a minor but important contribution of this pa-
per, since the dynamic programming aspect of Superpixel
Lattices was described only in a brief summary by Moore
et al.

3.1. Strongest vertical paths

We assume that any image can be segmented into con-
tiguous regions that are “perceptually similar”. The defini-
tion of perceptual similarity is application-dependent, and
further discussion of it is outside the scope of this paper. For

our purposes, it is sufficient to assume that given any partic-
ular image, there is some unknown, “true” segmentation of
this image into perceptually similar regions, assigning each
pixel to exactly one contiguous region. We say there is a
vertical boundary at the image location (i, j) if the pixels at
locations (i, j) and (i+1, j) lie in distinct perceptually sim-
ilar regions. (Note the slight asymmetry in the definition:
vertical boundaries occur between horizontal neighbors, so
a vertical boundary “at” (i, j) is actually just to the east of
(i, j).)

The origin is taken to be at the top left of the image, so
increasing the (vertical) j-coordinate of a location moves
it downwards. A downwards path is a sequence of pixel
locations whose successive vertical locations increase by
exactly 1 and whose successive horizontal locations differ
by at most 1. Formally, if the path consists of locations
(i1, j1), (i2, j2), . . . , (iN , jN), then jn+1 − jn = 1 and
|in+1−in| ≤ 1 for n = 1, . . . , N−1. Similarly, an upwards
path moves up through the image, deviating horizontally by
at most one pixel location in each row, so jn+1 − jn = −1
and again |in+1− in| ≤ 1. A vertical path is an upwards or
downwards path.

The input to a vertical PathFinder algorithm is an array of
values we will call horizontal perceptual difference (HPD)
strengths, and denote s(i, j), i = 1, . . . , I, j = 1, . . . , J . A
definition of these strengths is again application-dependent,
but for the algorithm to be useful, the HPD strengths must
satisfy two properties: (i) A high value of s(i, j) indicates
a high probability of a vertical boundary at location (i, j).
(ii) Strengths should be additive, so that the sum of the
strengths along a vertical path is a good proxy for detect-
ing vertical boundaries: given two vertical paths, the one
with the higher sum of HPD strengths should have a higher
probability of coinciding with a “true” boundary between
perceptually similar regions.

In practice, the HPD strengths would typically be the
output of a horizontally-oriented filter or some other sim-
ple edge detector with very low computational cost. We
don’t insist that the HPD strengths represent genuine prob-
abilities or likelihoods derived from a probabilistic gener-
ative model, or that the additivity property follows from a
generative model with suitable independence assumptions.
Rather, the above two properties are stated as ideal goals
that should be verified empirically, as being very approxi-
mately true.

Hence, it makes sense to define the strength of a vertical
path as the sum of its HPD strengths. Formally, for a ver-
tical path V = ((i1, j1), (i2, j2), . . . , (iN , jN)), its strength
S(V) =

∑N
n=1 s(in, jn).

The strongest vertical path passing through (i, j), de-
noted V (i, j), is defined in the obvious way:

V (i, j) = arg max
V |(i,j)∈V

S(V) (1)

where the argmax runs over all vertical paths V that pass
through (i, j).

It should be immediately clear that strongest vertical
paths can be computed by a simple dynamic programming
algorithm. We state the algorithm here for completeness,
again without claiming any novelty. First, arrays of upward
path strengths U(i, j) and upward path directions u(i, j)
are constructed. U(i, j) is the strength of the strongest up-
ward path beginning at (i, j), and u(i, j) is the horizon-
tal location through which the strongest such path passes
in row j − 1. In other words, if u(i, j) = i′, then i′ ∈
{i− 1, i, i+1}, and the strongest upward path beginning at
(i, j) passes through (i′, j− 1). Note that U(i, j) is defined
for i = 1, . . . I, j = 1, . . . J , whereas u(i, j) is defined for
i = 1, . . . I, j = 2, . . . J (i.e. the top row is omitted from
its domain). To avoid special notation for corner cases, we
define U(i, j) = −∞ for invalid values of i.

The values of U and u are computed recursively, begin-
ning at the top of the image and moving down. The first row
of U is initialized to the HPD strengths:

U(i, 1) = s(i, 1), i = 1, . . . , I. (2)

Subsequent rows (with i = 1, . . . , I and j = 2, . . . , J) are
computed according to:

u(i, j) = arg max
i′∈{i−1,i,i+1}

U(i′, j − 1) (3)

U(i, j) = S(i, j) + U(u(i, j), j − 1) (4)

Arrays for downward path strengths D(i, j) and direc-
tions d(i, j) are defined analogously, except that to avoid
double counting when we compute entire vertical paths later
on, the downward definitions are not perfectly symmetric
with the upward ones. While the upward paths include the
current location (i, j), the downward ones do not. Thus,
D(i, j) is the strength of the strongest downwards path from
(i, j), excluding the HPD strength of (i, j) itself; and if this
strongest downwards path passes through (i′, j + 1), then
d(i, j) = i′. D(i, j) is defined for i = 1, . . . I, j = 1, . . . J
(and equals −∞ for invalid i-values), while d(i, j) is de-
fined for i = 1, . . . I, j = 1, . . . J − 1. Arrays D and d are
computed from the bottom up, initializing

D(i, J) = s(i, J), i = 1, . . . , I. (5)

and computing subsequent rows (with i = 1, . . . , I and j =
J − 1, . . . , 1) via:

d(i, j) = arg max
i′∈{i−1,i,i+1}

(S(i′, j + 1) + D(i′, j + 1)) (6)

D(i, j) = S(d(i, j), j + 1) + D(d(i, j), j + 1) (7)

Finally, we can define the total strength of V (i, j) , denoted
P (i, j), as the sum of the strongest upwards and downwards
paths from that point:

P (i, j) = U(i, j) + D(i, j). (8)

Note that this is where we use the asymmetric definitions of
U and D to avoid double counting the location (i, j).

3.2. Backtracking to find a strongest path

Once the arrays u, d of strongest path directions have
been computed, strongest vertical paths can be obtained
via a standard backtracking technique that incurs very little
computational cost. Suppose we are interested in comput-
ing V (i∗, j∗), the strongest vertical path passing through
(i∗, j∗). Write the individual locations in the desired
path, running from the top of the image to the bottom, as
(i1, 1), (i2, 2), . . . , (iJ , J). Then clearly we have ij∗ =
i∗, since the path must pass through (i∗, j∗). From this
point, we can recurse upwards, setting ij−1 = u(ij , j) for
j = j∗, . . . , 2; and downwards, setting ij+1 = d(ij , j) for
j = j∗, . . . , J − 1.

3.3. Strongest horizontal paths

For concreteness and simplicity, the description so far
has focused on vertical paths. However, horizontal paths
can be defined in an analogous manner. Perhaps the most
concise way to do this is to think of horizontal paths as ver-
tical paths on the transpose of the original image. Let I
be the original image, I ′ its transpose, extend our earlier
notation with subscripts to indicate which image strongest
paths should be computed on, and use a prime to denote the
transpose of an entire path (i.e. swapping the coordinates of
each location in the path). Then HI(i, j) = VI′(j, i)′ is the
strongest horizontal path through location (i, j).

Incidentally, this technique of working with the trans-
posed image is also a good way of implementing horizon-
tal paths in practice, since it guarantees that horizontal and
vertical paths are computed using exactly the same criteria.
Furthermore, any optimizations for speed that take advan-
tage of the in-memory layout of an image (e.g. row-major)
will be automatically reused, at the expense of the single
fixed cost of transposing the original image.

3.4. Creating an over-segmentation

Our ultimate goal is to create an over-segmentation of an
image, or equivalently to generate superpixels — and we
would like to do so using the strongest path notions dis-
cussed above. Clearly, the basic strategy is to select some
subset of strongest horizontal and vertical paths, and let
these paths define the boundaries of the superpixels. The
key trade-off is between selecting enough paths that a high
proportion of perceptual boundaries are identified, and se-
lecting few enough paths that the resulting number of super-
pixels is manageable. Another way of stating this is that we
would like to choose paths that are strong (because strong
paths are more likely to follow perceptual boundaries) yet
sparse i.e. the paths are not too close to each other. Our

experiments showed that many simple strategies perform
moderately well. Here we describe one particular greedy
heuristic that works well in practice and has only one tun-
ing parameter, without making any claims for its optimality.

We first describe a simplified version of the strategy for
selecting a set of vertical paths, and later give some refine-
ments. The approach for selecting a set of horizontal paths
is perfectly analogous.

The approach picks a sequence of seed locations
(i1, j1), (i2, j2), . . . , (iM , jM); the set of chosen vertical
paths consists of paths seeded from these locations, i.e.
V (i1, j1), V (i2, j2), . . . , V (iM , jM). The single tunable
parameter of the approach is termed the seed gap. This is a
positive integer, denoted g, specifying the smallest permit-
ted horizontal distance between a new seed location and any
previously-selected vertical path. The algorithm is simple:
to choose a new seed location (i, j), we restrict attention to
locations that meet the seed gap requirement, and choose
among these the location with maximal strength P (i, j),
from equation (8).

The final result can be thought of as a deformed grid
structure on the image, in which the gridlines are deformed
up to a maximum of 45 degrees in order to follow the
strongest perceptual boundaries possible. Look ahead to
the results in Figure 5, in which the white lines represent
deformed horizontal “gridlines” and yellow lines represent
deformed vertical “gridlines”.

3.4.1 Heuristics for sparsity

Some useful refinements, which have been found empiri-
cally to improve the sparsity of the results without signifi-
cant sacrifice of perceptual boundaries, are:

1. Further restrict attention to seed locations (i, j) which
are a local maximum of P (i, j), with respect to i.

2. Further restrict attention to a coarse sub-sampling of
the rows of the image. That is, consider only locations
(i, j) for which j is a multiple of some integer G. To
keep vertical and horizontal sparsity on a similar scale,
we found G = 2g works well in practice.

3. When backtracking from a seed location (i, j) as de-
scribed in Section 3.2, terminate the backtracking early
when a location that already contains a previously-
chosen path is reached.

4. Results
In all experiments, the HPD strengths are computed us-

ing a simple horizontal edge detection technique. Each of
the three color channels is convolved with a 1 × 2R “step”
filter of the form [−1, . . . ,−1, 1, . . . , 1] consisting of R

Figure 1. Strongest paths can demarcate perceptually impor-
tant boundaries, but can also wander through perceptually
similar regions or “run away” to distant, strong edges. Two
vertical and two horizontal strongest paths are shown, with seed
locations as red crosses.

−1’s followed by R 1s — so R can be thought of as the “ra-
dius” of the filter, which is centered on the final−1 in order
to respect the definition of vertical boundary given earlier.
Experiments took R = 3, but the results were very similar
for R ∈ [1, 10]. The absolute values of the filter results are
summed over the three channels to produce the final HPD
strengths.

Figure 1 shows some typical results for constructing
strongest paths seeded from certain points. The test im-
age — an outdoor scene of trees, lawn and a paved path
— has resolution 480 by 360, and is used as a running ex-
ample in this paper. The four seed locations are marked
with red crosses, with strongest horizontal paths in white
and strongest vertical paths in yellow. Figure 1 shows us
three important properties of strongest vertical and horizon-
tal paths, which we call the “boundary-seeking”, “wander-
ing” and “runaway” properties.

First, strongest paths can demarcate large, important per-
ceptual boundaries: for example, the right-hand vertical
path was deliberately seeded on the left-hand side of a sig-
nificant tree trunk which it demarcates almost perfectly, and
the lower horizontal path captures most of the horizon de-
spite being deliberately seeded far from it. This “boundary-
seeking” property is, of course, beneficial and lies at the
heart of the PathFinder approach.

Second, because these paths are compelled to follow a
given direction (either horizontal or vertical) to within 45
degrees, they frequently wander through the interior of re-
gions that most humans would regard as perceptually sim-
ilar. For example, the left-hand vertical path captures a
small, perceptually-important piece of lamp post, but for
the most part wanders through seemingly similar pieces of
lawn and foliage. The upper horizontal path is qualitatively

Figure 2. Several heuristics improve sparsity of the results.
Heuristics 1, 2 and 3 are described in Section 3.4.1. Top left: no
heuristics; top right: with heuristic 1; bottom left: with heuristics
1 and 2; bottom right: with heuristics 1, 2, and 3.

similar, capturing some important branches but also divid-
ing some foliage fairly arbitrarily. This “wandering” prop-
erty is not necessarily a weakness of the approach, since we
are seeking an over-segmentation: paths through perceptu-
ally similar regions are permitted, although we would like
to avoid having too many of them.

Third, distant strong edges can overwhelm nearby weak
ones. For example, the lower horizontal path prefers to de-
tour up to the horizon from its seed location, rather than
splitting the lawn between its slightly brown and slightly
green portions. This “runaway” property can be a weakness
of the approach, since it is possible for perceptually impor-
tant but relatively weak edges to be ignored. The heuristics
for choosing seed locations are designed to ameliorate this
problem, but the reader will still see some evidence of it in
the results (e.g. Figure 5). Indeed, any long stretch of path
at a 45◦ angle is an example of a runaway path, deviating as
quickly as possible towards a distant but strong edge. The
45◦ maximum deviation arises from the fact that by defini-
tion, a strongest vertical path’s horizontal coordinate differs
by at most 1 pixel in consecutive vertical locations. Simple
variants of PathFinder’s dynamic programming algorithm
could permit maximum deviations other than 45◦, or penal-
ize deviations, but such experiments are left to future work.

Figure 2 shows the effects of the three sparsity heuris-
tics described in Section 3.4.1. Figure 3 demonstrates
PathFinder’s greedy selection of seed locations. The ac-
curacy and usefulness of the superpixels can be assessed
qualitatively by creating a new image from the original, in
which every pixel is assigned the average color of its con-
taining superpixel. Figure 4 shows some examples, and also
shows the effect of varying the seed gap g.

Figure 5 shows some results on the first few images from

1 path 5 paths

15 paths 30 paths
Figure 3. PathFinder greedily adds the best possible paths, sub-
ject to sparsity heuristics. PathFinder’s intermediate results are
shown, after greedily adding 1, 5, 15, and 30 strongest horizontal
and vertical paths (g = 30). Selected seed locations are shown as
red crosses.

g = 10 (4943 superpixels)

g = 20 (1258 superpixels) g = 30 (510 superpixels)
Figure 4. PathFinder’s single tuning parameter affects the av-
erage size of superpixels.

a publicly-available database of images for which ground
truth segmentations are available [8].

4.1. Quality of superpixels

Figure 6 compares the results of PathFinder with EGBIS
visually. Each algorithm was run on the same input, with
parameters adjusted to produce approximately 1200 super-
pixels. It is immediately clear that EGBIS produces super-
pixels that are more visually appealing to humans. For ex-
ample, in this case EGBIS correctly isolates more details of
the foreground tree branches and the trunks of more distant

Figure 5. PathFinder produces reasonable results on the first
few images of a public segmentation data set.

Figure 6. EGBIS produces superpixels that are more visually
appealing, but PathFinder superpixels are more regular in size
and simpler in geometry. Left: PathFinder with g = 20 (1258
superpixels). Right: EGBIS with k = 60 [5] (1216 superpixels).

trees on the horizon. In contrast, PathFinder accurately de-
tects the boundaries of major visual components (the fore-
ground tree, the paved path, and the horizon, for instance)
but misses many finer details. Because PathFinder produces
what is essentially a deformed grid structure, its superpix-
els are more regular in size, and simpler in geometry, than
those of EGBIS.

A quantitative comparison of the accuracy of the two ap-
proaches is perhaps more important than these qualitative
differences. For this, we use the “mean accuracy” as defined
by Moore et al. [9]. Mean accuracy of an over-segmentation

0 200 400 600 800 1000 1200
50

60

70

80

90

100

number of superpixels

m
e
a
n
 a

c
c
u
ra

c
y
 (

%
)

PathFinder

EGBIS

Figure 7. PathFinder’s accuracy is inferior to EGBIS’, but
achieves 94% accuracy at 1200 superpixels.

is computed with reference to a ground truth segmentation
(importantly, the ground truth is not an over-segmentation).
Each superpixel in the over-segmentation is assigned to a
“home” segment — the ground truth segment of maximum
overlap. The mean accuracy is the proportion of pixels that
lie in the home segment of their superpixel, averaged over
the images from a ground truth database. Our experiment’s
average is taken over 50 images from the database of Mar-
tin et al. [8]; results are also averaged over several ground
truth segmentations provided by different human subjects
for each image in this database. Obviously, mean accu-
racy tends to one as the number of superpixels approaches
the number of pixels, regardless of the quality of the over-
segmentation. Therefore, algorithms should be compared
using parameter settings that produce the same number of
superpixels.

Figure 7 shows the results of such a comparison. EGBIS
is clearly more accurate than PathFinder, but the margin de-
creases as the number of superpixels increases, and is less
than 3% for 1000 or more superpixels. We hope there are
at least some video analysis applications for which the 30-
fold speed-up of PathFinder over EGBIS is worth this 3%
sacrifice in accuracy.

4.2. Computational cost

The dominant computational cost for PathFinder is in-
curred in the computation of the upward and downward path
strengths U and D via equations (2)–(7). If the image con-
tains N pixels, it is easy to see these path strength compu-
tations cost O(N). The backtracking operations that con-
struct the actual superpixels cost in the worst case O(N3/2),
but in all experiments the backtracking expense was negli-
gible. For practical purposes, then, the cost of PathFinder is
O(N). EGBIS also has excellent theoretical complexity, of

10
3

10
4

10
5

10
6

10
−1

10
0

10
1

10
2

10
3

10
4

image size (pixels)

e
la

p
s
e
d
 t
im

e
 (

m
s
)

PathFinder

EGBIS

Figure 8. PathFinder is 30–40 times faster than EGBIS.

O(N log N).
Figure 8 shows the results of an experiment verifying

these theoretical claims and comparing the actual running
times. Java implementations of both algorithms were run
on the same collection of images, subsampled to produce
various image sizes. Both algorithms are in principle par-
allelizable, but we use single threaded implementations for
a fair comparison. EGBIS is run with the default parame-
ters recommended by its authors; PathFinder takes g = 20,
which results in a similar number of superpixels. Experi-
ments with other parameter settings produced very similar
results. All experiments were conducted on a 2 GHz Intel
Centrino processor. The slope of the lines in the log-log
graph of Figure 8 is approximately one, confirming the lin-
ear cost of both algorithms. More importantly, PathFinder
is consistently faster than EGBIS, by a factor of over 40 at
around 100,000 pixels. The absolute time required by this
Java implementation of PathFinder on a 480x320 image is
24ms, placing it easily within the realm of real-time analy-
sis.

4.3. PathFinder variants

In the above experiments, the notion of perceptual dis-
tance between pixels is extremely simplistic, being derived
from the elementary step filter described at the start of Sec-
tion 4. Can we achieve better results using more sophis-
ticated filtering techniques? To investigate, we re-ran the
accuracy experiments, substituting a state-of-the-art object
boundary detector — the Boosted Edge Learning (BEL) of
Dollár et al. [4] — for the step filter. This produced only a
modest improvement (about 1% accuracy at 1000 superpix-
els), but with a computational cost several orders of mag-
nitude higher. Hence, it appears that the choice of a very
simple fast filter is pragmatic and preferable for Pathfinder.

One interesting property of the step filter is that it is

anisotropic; vertical paths are computed using horizontal
edges, and vice versa. Experiments using an isotropic filter
(essentially a Sobel operator) for both horizontal and verti-
cal paths yielded negligible differences in accuracy.

5. A simple video application

To demonstrate the efficacy of fast superpixel algorithms
using dynamic programming, an elementary video analysis
tool was implemented. This tool matches each superpixel
in the first frame of a video with a superpixel in each subse-
quent frame, and can thus be thought of as a coarse motion
analysis. The matching is done recursively: if superpixel
i in frame 0 (denoted Si,0) is matched to superpixel j in
frame N (denoted Sj,N), then the potential matches con-
sidered are the superpixels in frame N + 1 whose bound-
ing boxes overlap the bounding box of Sj,N . The potential
match whose average RGB value is closest (in Euclidean
norm) to Si,0’s average RGB value is selected. Clearly, this
is not intended to be a state-of-the-art motion analysis tool;
it is presented merely as a proof of concept, demonstrating
the potential usefulness of Pathfinder-like algorithms.

Figure 9 shows several frames from the application of
this superpixel matching to a publicly-available video [6].
Video files accompanying this submission show the entire
sequence, and another sequence with a moving camera from
the Middlebury optic flow data set [2]. The first column
shows the original frame; the second shows superpixels ob-
tained by PathFinder with their average RGB values; the
third shows the superpixels of frame 0, but with RGB val-
ues taken from the matched superpixel in the current frame;
the fourth is the “matching error” — the absolute difference
between the second and third columns, multiplied by 2 in
this case to increase the visibility of the discrepancies.

A perfect matching of superpixels leads to zero match-
ing error, but the reverse is not true: an incorrect match-
ing can also lead to a small error. Therefore, the results
shown do not necessarily imply a high-quality motion anal-
ysis. But that is not our objective here. Instead, we wish to
investigate the computational cost of using the superpixel
approach on video. The application is written in Java, and
was run on a single core of a 2.4GHz Athlon 64 X2 4600+
processor. On QCIF resolution (176x144) video, the appli-
cation runs at 40ms per frame, with the computational cost
divided roughly equally between (i) PathFinder, (ii) com-
puting superpixel statistics such as mean RGB values and
locations, and (iii) the recursive matching process described
above. This demonstrates the real-time potential of the ap-
proach on low-resolution video, but further work is clearly
required to improve the quality of the scene analysis and to
achieve better performance at higher resolutions.

original segmented matched to frame 0 error in matching

frame 0

frame 20

frame 40

Figure 9. A simple superpixel-matching algorithm can find plausible tracks for each superpixel at 40ms per frame. See the text for
a detailed explanation.

6. Conclusion
We demonstrated that superpixel algorithms like

Pathfinder, based on least-cost paths computed via dynamic
programming, run comfortably at video frame rate and 30–
40 times faster than EGBIS, the next-fastest competing ap-
proach. The potential for real time video analysis using
such superpixels was demonstrated with a simple example
application. The superpixels obtained from Pathfinder are
about 3% less accurate than EGBIS. Hence, for some video
and motion applications, PathFinder-like algorithms may be
the most attractive approach for real-time processing.

References
[1] S. Avidan and A. Shamir. Seam carving for content-aware

image resizing. ACM Trans. Graph., 26(3):10, 2007.
[2] S. Baker, D. Scharstein, J. P. Lewis, S. Roth, M. J. Black,

and R. Szeliski. A database and evaluation methodology for
optical flow. In Proc. Int. Conf. on Computer Vision, 2007.

[3] D. Comaniciu and P. Meer. Mean shift: A robust approach
toward feature space analysis. IEEE Trans. Pattern Analysis
Machine Intell., 24(5):603–619, 2002.

[4] P. Dollár, Z. Tu, and S. Belongie. Supervised learning of
edges and object boundaries. In Proc. IEEE Conf. Computer
Vision and Pattern Recognition (CVPR), 2006.

[5] P. Felzenszwalb and D. Huttenlocher. Efficient belief propa-
gation for early vision. In Proc. IEEE Conf. Computer Vision
and Pattern Recognition (CVPR), 2004.

[6] L. Gorelick, M. Blank, E. Shechtman, M. Irani, and R. Basri.
Actions as space-time shapes. IEEE Trans. on Pattern Analy-
sis and Machine Intelligence, 29(12):2247–2253, December
2007.

[7] D. Hoiem, A. Efros, and M. Hebert. Automatic photo pop-
up. In ACM SIGGRAPH, 2005.

[8] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database
of human segmented natural images and its application to
evaluating segmentation algorithms and measuring ecologi-
cal statistics. In Proc. 8th Int’l Conf. Computer Vision, vol-
ume 2, pages 416–423, July 2001.

[9] A. P. Moore, S. J. D. Prince, J. Warrell, U. Mohammed, and
G. Jones. Superpixel lattices. In Proc. IEEE Conf. Computer
Vision and Pattern Recognition (CVPR), 2008.

[10] G. Mori. Guiding model search using segmentation. In Proc.
10th Int. Conf. Computer Vision, volume 2, pages 1417–
1423, 2005.

[11] I. Patras, E. Hendriks, and R. Lagendijk. Video segmenta-
tion by map labeling of watershed segments. IEEE Trans. on
Pattern Analysis and Machine Intelligence, 23(3):326–332,
2001.

[12] E. Sharon, M. Galun, D. Sharon, R. Basri1, and A. Brandt.
Hierarchy and adaptivity in segmenting visual scenes. Na-
ture, 442:810–813, 2006.

[13] J. Shi and J. Malik. Normalized cuts and image segmenta-
tion. IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI), 2000.

[14] L. Vincent and P. Soille. Watersheds in digital spaces:
an efficient algorithm based on immersion simulations.
IEEE Trans. on Pattern Analysis and Machine Intelligence,
13(6):583–598, 1991.

[15] D. Wang. A multiscale gradient algorithm for image segmen-
tation using watershelds. Pattern Recognition, 30(12):2043–
2052, 1997.

