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ABSTRACT

An analysis of data from 259 CS1 students is performed to
compare the performance of students who were paired by
demonstrated ability to that of students who were paired
randomly or worked alone. The results suggest that when
given individual programming tasks to complete, lowest-
quartile students who were paired by ability perform better
than those who were paired randomly and those who worked
alone.

Categories and Subject Descriptors

K.3.2 [Computer and Information Science Education]:
Computer science education; D.2.3 [Software Engineer-
ing]: Coding Tools and Techniques

General Terms

Experimentation, Human Factors

Keywords

Pair programming, pairing methodology, collaborative learn-
ing

1. INTRODUCTION

Controlled experiments on the effects of pair programming
have been reported from a variety of institutions and for a
wide range of different courses. These studies present con-
vincing evidence that students who pair program are more
likely to successfully complete the course [1, 8, 11], have in-
creased confidence in their solutions [2, 9], are more likely to
continue with computer science [9], and develop better in-
dividual programming skills [1]. Additionally, some studies
have shown that pair programming is particularly beneficial
for female and minority students [3, 16, 18], and also for
students with lower SAT scores [1].

Numerous studies have also investigated the factors that
affect pair compatibility when pair programming is used.
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The majority of these studies paired students randomly and
then used quantitative and/or qualitative methods to iden-
tify correlations between the students’ ratings of their pair-
ings and factors such as ability, perceived ability, confidence,
personality type, work ethic, gender and ethnicity. By far
the most common conclusion is that pairs are most likely
to be compatible when students are paired with a partner
who they perceive as being of equal or higher ability [4,

, 6, 10, 17]. The results are considerably less clear for
pairs with similar actual ability (as measured by some com-
bination of GPA, SAT/GRE and midterm exam scores) —
some studies report a positive correlation with pair com-
patibility [6], while others could not establish a consistent
correlation [7, 17]. Several of the studies included person-
ality tests such as the Myers-Brigs Type Indicator, Felder-
Silverman Learning Style or Keirsey Temperament Sorter
and concluded that pairs comprising students with different
personality traits were more likely to be compatible than
homogeneous pairs [7, 13, 17]. A number of the studies also
examined the effects of self-esteem or confidence on pair-
ing, producing mixed results. One study found that pairing
students with similar self-esteem did not influence the likeli-
hood of pair compatibility [7], another found that the most
confident students reported enjoying pairing more than less
confident students [5], while another found the opposite [14].
One study that considered gender and ethnicity found that
for female and minority students, being paired with another
female or minority student was positively correlated with
pair compatibility [6].

The factors affecting pair compatibility have been investi-
gated quite extensively, but surprisingly few studies have at-
tempted to directly measure the effects of the pairing method-
ology on student achievement. Thomas, Ratcliffe and Robert-
son [14] studied the effects of pairing students by their con-
fidence in their own coding skills. Pairs in which both stu-
dents had similar confidence (e.g. high/high or low/low)
received the highest scores on assignments, and further sig-
nificant differences were not found between the scores of
low/low pairs and high/high pairs. They also report that
high/low pairs received the lowest scores. Sfetsos et al. [13]
created pairs with similar and dissimilar temperaments, as
measured by the Keirsey Temperament Sorter. They found
that heterogeneous pairs communicated more often, pro-
duced better designs and wrote code that passed more ac-
ceptance tests than homogeneous pairs.

Both of the studies just described measure the impact
of the pairing methodology on the quality of the work pro-
duced by the pairs. One might also ask how different pairing



methodologies impact the individuals within the pairs. In
the remainder of this paper we present evidence suggest-
ing that when students are paired with a partner of similar
ability, the individuals within the pair each learn at least
as much as if they had either worked with a random part-
ner or worked alone. The evidence also suggests that for
the bottom quartile of students, pairing by similar ability
may result in increased learning for the individuals in the
pair. Some limitations of the dataset prevent us from draw-
ing firm conclusions, but we do believe our analysis provides
useful insights into the benefits of by-ability pairings and
will motivate more carefully controlled studies in the future.

2. DESCRIPTION OF THE DATASET

Our dataset consists of 13 sections of a one-semester, entry-
level Java programming class, taught by four different in-
structors between 2005 and 2008. The content and format
of the class, including homework and programming assign-
ments, was virtually identical in each section. Only students
who completed the course are included in the dataset (that
is, we eliminate students who withdrew, but not those who
failed). Enrollment in each section was capped at 24 stu-
dents. An average of 20 students completed each section,
resulting in a dataset of 259 students.

Students are graded on four different types of work: (i)
weekly written homework exercises; (ii) weekly program-
ming assignments; (iii) three written exams; (iv) two pro-
gramming exams. Because the programming exams are of
special importance in our analysis, we describe them in some
detail here. The required task in a programming exam is to
complete the fields and method bodies of the skeletons of one
or more Java classes, and also to write unit tests for each
method. The provided skeletons contain the method signa-
tures and detailed JavaDoc comments. During a program-
ming exam, students work individually in a proctored room,
receive essentially no assistance, and have a fixed amount
of time (two hours) to complete the exam. Grading of the
exam is mostly automatic (via Web-CAT [15]), although in-
structors can deduct a small number of points for poor pro-
gramming style. The automatic grading assesses formatting
and documentation, runs reference tests to verify correct-
ness, and checks for code coverage of unit tests. Although
the actual content of the programming exams changed each
semester, considerable efforts were made to keep the struc-
ture, length, difficulty, and grading of these exams as uni-
form as possible over the study period.

In contrast to the programming exams, which were admin-
istered uniformly over all sections, the weekly programming
assignments were administered quite differently in different
sections. In particular, three different approaches were used:
(i) ability pairs — students work on programming assign-
ments in pairs assigned by ability, with students of similar
ability (as measured by overall performance in the course to
date) working together; (ii) random pairs — students work
on programming assignments in pairs assigned randomly;
and (iii) no pairs — students work on programming assign-
ments individually. In the two pairing approaches, students
are required to rotate the “driver” (i.e. typist) role every
15 minutes during the 2-hour laboratory session. Students
were not aware of the criteria for assigning pairs. Of the
13 sections in the dataset, 7 paired students by ability (142
students), 2 paired students randomly (41 students), and 4
used no pairs (76 students).

We will refer to students as being “trained with” one of the
three approaches, and for additional brevity will use phrases
like “ability-pair students” to refer to students trained with
ability pairs. The main purpose of this paper is to assess the
effect of these three training strategies on student outcomes.

3. ANALYSIS

We are interested in the hypothesis that students trained
with ability pairs achieve better individual outcomes than
students trained with random pairs or no pairs — especially
for less able students. The “outcomes” will be the scores
achieved by students on the final programming exam of the
semester, given in the 14th week. It is important to note
that this outcome measures a student’s skill when program-
ming alone, regardless of which of the three training ap-
proaches was used by the student in previous assignments.
Previous work [1] has shown that ability pairing benefits the
lowest quartile of students, compared with using no pairs.
We would like to investigate whether the same is true for
random pairings. Therefore, our hypothesis tests will fo-
cus on the lowest quartile of students, as measured by their
programming exam scores. For concreteness, the hypoth-
esis test comparing random and ability pairs is described
in detail; the test comparing no pairs with ability pairs is
perfectly analogous. Specifically, the null hypothesis for ran-
dom pairs will be, “the 25th percentile of programming exam
scores for students trained with random pairs is the same as
for students trained with ability pairs.”

The test statistic used in this experiment, denoted nas, is
very simple: it is the number of students trained with ran-
dom pairs who scored less than the 25th percentile of the
scores for students trained with ability pairs. Figure 1 shows
the numerical results for our dataset. The 25th percentile
of scores for the 142 students trained with ability pairs is
82/100 (i.e. 25% of the 142 students scored less than 82
on the programming exam — this is the intersection of the
ability-pair line and the dashed horizontal line in the figure).
Of the 41 students trained with random pairs, 14 scored less
than 82 (i.e. are left of the vertical line) on the program-
ming exam. Therefore, the test statistic is nes = 14. The
conventional approach is to compute the p-value of the test
statistic, and reject the null hypothesis if the p-value is lower
than a given level of significance, such as 0.05 or 0.01.

How can we convert this test statistic into a p-value? In-
tuitively, if the null hypothesis were true and the 25th per-
centile for random-pair students was the same as for ability-
pair students, then approximately 10 (i.e. one quarter of 41)
of the random-pair students should have scored less than
82. The fact that considerably more than 10 students (actu-
ally 14) scored below 82 immediately raises suspicions that
the null hypothesis may not hold. To quantify this suspi-
cion and obtain a p-value, we compute the probability that
a value of ngs > 14 would have occurred if the null hypoth-
esis were true. This probability can be calculated as the tail
of a binomial distribution: p = ZkN:n% ()R — m)NF,
Here, N = 41 is the number of random-pair students and
m = 0.25 is the value of the percentile used in the null hy-
pothesis. Each term in the sum is the chance that k of NV
students would score less than 82 if, as stated by the null
hypothesis, the chance of doing so is 25%.

For this experiment p = 0.12, which means that there is a
12% probability that a discrepancy of at least this amount
(between the expected number of students scoring below 82,
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Figure 1: The method of pairing students for as-
signments has potentially significant effects on the
performance of the bottom quartile of students. Be-
low the 25th percentile (dotted line), the difference
between ability pairs and the other two methods
has mild statistical significance (p-values ranging be-
tween 0.02 and 0.12).

and the actual number doing so), would have arisen if the
null hypothesis were true. It is conventional in statistical
analyses to reject the null hypothesis only if the p-value is
considerably lower than this (say, 0.01 or 0.05). However,
given the small amount of data available for this study, we
regard the p-value of 0.12 as providing some evidence that
the null hypothesis may be false, and that more extensive
studies of such hypotheses would be worthwhile. On the
other hand, it should also be noted that p-values in post-
hoc studies such as this one are frequently more extreme
than they would have been in a controlled study, so some
care must be taken in assessing the significance of this result.

Some additional remarks on our choice of statistical tests
are in order. First, a more conventional way to test the
difference between two distributions (such as the distribu-
tions of scores for ability-pair students and for random-pair
students) would be to apply the Kolmogorov-Smirnov (KS)
test. But because we have a priori reasons to believe the
differences will be concentrated in the lower quartile [1], KS
is less than ideal for this application. Indeed, KS has lower
power than the hypothesis test described above, and yields
a p-value of 0.39 for the hypothesis that the two distribu-
tions coincide. A p-value this high provides no evidence for
rejecting the null hypothesis. Second, the above test based
on binomial probabilities assumes that the 25th percentile
of ability-pair scores (82/100 in this case) is the true 25th
percentile for the population of students trained by ability.
In fact, 82/100 is merely an estimate for this quantity based
on the 142 ability-pair students in our dataset. A more so-
phisticated test taking this uncertainty into account could
be applied. However, given the relatively high number of
ability-pair students we believe the simpler approach taken
here still yields useful results.

3.1 Tests related to the main hypothesis

The previous subsection described the concrete details of
one particular hypothesis test, comparing the lowest quartile

of students trained with ability pairs and students trained
with random pairs. Naturally, we can perform the same test
comparing ability-pair students with no-pair students, and
both tests can be done for any desired percentile instead
of the 25th percentile discussed so far. The following table
gives the p-values for some representative points in this space
of hypothesis tests, using the same data from Figure 1.

percentile random pairs no pairs

10% 0.11 0.02
15% 0.04 0.03
25% 0.12 0.12
50% 0.17 0.36

It should be clear that below the 25th percentile, there are
potentially significant differences between training with abil-
ity pairs and training with the other two approaches (ran-
dom pairs and no pairs). Any differences at the 50th per-
centile are much less clear. Hopefully it is also clear from
these results that we have not simply cherry-picked one par-
ticular percentile (in this case, the 25th percentile) for our
discussion because it happens to yield statistical significance.
In fact, we see much stronger significance at the 10th and
15th percentiles — but the very small number of students
in the tails of these distributions makes us reluctant to draw
conclusions about this.

3.2 Other hypotheses

The main thrust of our analysis has been to test the hy-
pothesis that pairing by ability improves the performance of
weaker students on solo programming tasks, but our dataset
is suitable for testing numerous other interesting hypothe-
ses. For example, given the extensive evidence in the lit-
erature on the educational benefits of pair programming,
one might expect to see a significant difference between stu-
dents trained with random pairs and students trained with
no pairs. However, a quick glance at Figure 1 should be
sufficient to demonstrate that our dataset cannot validate
this hypothesis. It may well be true that random pairings
generally produce better outcomes than no pairings at all,
but in our data the bottom quartile of random-pair students
and no-pair students have very similar performance on the
programming exam.

We are also interested in whether the choice of pairing
method affects student performance on all individual activ-
ities in the course. To investigate this, we re-ran the analy-
sis of Section 3, substituting the students’ score on all solo
assignments (homework, programming exams, and written
exams) for the final programming exam score. The results
using this “solo activity score” are shown in Figure 2. Based
on an informal visual assessment of the graph, there does ap-
pear to be a noticeable difference between ability pairs and
the other two approaches in the lowest quartile — though
perhaps not as striking as the difference for the program-
ming exam shown in Figure 1. In fact, if we compute the
p-value of the 25th percentile statistic nes defined above, we
find the difference is somewhat significant for no-pair stu-
dents (p-value 0.12), but insignificant for random-pair stu-
dents (p-value 0.45).

Finally, one might consider the effect of pairing method
on student performance in pair programming assignments
themselves. Again, a very similar analysis can be performed,
this time measuring student outcomes by their total score
on all pair programming assignments, termed a student’s
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Figure 2: Pairing method may have a mild effect
on the lowest quartile of students. In contrast to
Figure 1, which measured student performance on a
programming exam only, this figure shows their per-
formance on all individual activities including home-
work, programming exams, and written exams. In
the lowest quartile, there do appear to be noticeable
differences in performance.

“team” score. (Obviously, for students trained with no pairs,
there are no pair programming assignments. But we can still
collect the scores of the no-pair students on the assignments
that were done in pairs by students in other sections. This
results in a comparable number that is still referred to as
the “team” score for no-pairs students.) Figure 3 shows the
results. Here we see that outcomes for ability pairs and
random pairs are virtually indistinguishable (p-value 0.96),
whereas a highly significant difference does exist in the low-
est quartile between no-pair students and the other two ap-
proaches (p-value < 10~2 for no-pair vs random, and for
no-pair vs ability). In fact, there is high significance for dif-
ferences at the 50th percentile too (p-value =~ 0.014 in both
cases).

The stark difference in team scores for no-pair and paired
approaches is not at all surprising. The instructors in our
study have observed strong anecdotal evidence that students
are much less likely to give up on a challenging assignment
when working with someone else, and this tends to dramat-
ically improve the performance of the bottom quartile.

3.3 Confounding factors

We believe our dataset provides useful and novel insights,
but it possesses some limitations that should be acknowl-
edged clearly. First, this is a partially post-hoc study, in
the sense that the random pairing technique was not part of
the original design. The majority of the data was collected
from a carefully-controlled study that compared pair pro-
gramming using by-ability pairs with individual program-
ming [1]. The same course was subsequently taught twice
using random pairings, resulting in a dataset with poten-
tially useful information about different pairing strategies.
Second, the pairing strategies themselves were not applied
with perfect consistency: instructors used different combina-
tions of automatic grade-based scripts and their own subjec-
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Figure 3: In the lowest quartile, there is overwhelm-
ing statistical evidence that students working alone
achieve lower scores on a given set of assignments
than students working in pairs (whether random or
by ability) on the same set of assignments. In other
words, below the dotted line representing the low-
est quartile, the red and green lines are statistically
indistinguishable but the blue line exhibits a highly
significant difference.

tive impressions in assigning pairs. In any case, ability pairs
are not used early in the semester when the instructors have
no grades or impressions on which to base them. Therefore,
the first four or five weekly programming assignments are
always completed using random pairings.

A further potential weakness in the dataset is the fact that
the two sections that employed random pairings were also
exceptional in another respect: in both cases, these sections
were taught by instructors who had not taught the course be-
fore. Therefore, inferior performance by students in random-
pair sections might be due to the relative unfamiliarity of the
instructors with the course material. To investigate whether
this is indeed a serious problem, we analyzed the outcomes
of the first programming exam. This exam is given in week
7 of the semester, so students in the ability-pair sections
have worked on only one or two assignments in by-ability
pairs. If the effect of first-time instructors dominated the
effect of random pairings, we would expect a difference be-
tween the random-pair sections and ability-pair sections on
both programming exams. However, the 25th-percentile dif-
ference on the first exam is not significant (p-value 0.41),
which suggests the instructor effect is not dominant and adds
credibility to the previous analysis.

4. DISCUSSION

The evidence presented suggests that pairing students of
similar ability may improve the performance of less able stu-
dents on individual programming tasks as compared to ran-
dom pairings. Why might this be the case? We can envision
several reasons.

First, because our ability metric of performance in the
course to date includes some direct measures of the tasks
to be completed in pairs (actual programming), it seems
likely that students who are paired together will perceive



each other to be of similar ability, and thus are likely to
be compatible. Each of the studies cited earlier that did
not observe a correlation between actual ability and pair
compatibility used less specific measures of actual ability
such as GPA, SAT/GRE scores and midterm exam scores.
In fact, one of these studies alludes to exactly this, saying
that while pair compatibility did not correlate with metrics
such as GPA, SAT/GRE and midterm scores, more specific
metrics such as computer science GPA and total GPA are
predictors of perceived ability [17]. Thus, we suspect that
our mechanism for pairing by ability is in fact forming more
compatible pairs than pairing randomly.

Second, and of particular relevance to the performance
of the weaker students in the class, are the implications of
working with a partner of similar ability. One might be
tempted to pair a weaker student with a stronger student so
that the weaker student can learn from the stronger. But
in our experience, and in that of others [4, 10], the stronger
student instead takes over, and either does the work or sim-
ply gives direction. Thus, in random pairings that contain
a stronger and weaker student, the weaker student will not
actually experience the process of resolving whatever dif-
ficulties arise — instead simply observing how the stronger
student handles the problem. Even worse, when the stronger
student is the driver in the pair, the weaker student may
not even be exposed to problems that he/she would face if
working individually. When two students of similar ability
work on such a problem together, they are more likely to
resolve it in a collaborative way that seems likely to result
in deeper understanding and a better learning outcome for
both students.

S. CONCLUSIONS

If pairing by ability can improve outcomes for the students
who have demonstrated the least aptitude for the course ma-
terial, further investigation certainly seems warranted, par-
ticularly since this approach requires no extra class time
and little administrative overhead, and appears to have no
harmful effects on higher-ability students [1]. A more tightly
controlled study comparing the performance of students in
sections that are paired randomly to those that are paired
by ability would not be difficult to perform. If such an in-
vestigation were to be conducted it should also include self-
pairing, as at least one study found that when students are
allowed to self-pair they tend to choose partners that have
a similar ability level [12]. Thus, perhaps any benefits of
ability pairing could be obtained without the even minimal
administrative overhead of assigning pairs.
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