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ABSTRACT. The Summability by Primes formula is a variant of the Arithmetic
Fourier Transform. We prove that the formula converges when applied to a large

class of even periodic step functions. A special case is proved, using an interesting
connection to a formula of Euler.

1. INTRODUCTION

Let f be an even integrable function of period 27, normalised so that
r/”ﬂ@%:o.

Then if f satisfies certain conditions®, we can calculate its Fourier cosine coefficients
an using the Arithmetic Fourier Transform:

(AFT) Qp, = i wu(k)S(nk).

Here 1 is the Mobius function defined on the natural numbers by

1 ifn=1,
p(n) =<0 if n is not square-free,
(=1)* if n is square-free and has ¢ (distinct) prime factors

and S(n) is the average value of f sampled at n points given by
1 n—1
S(n)==>_ f(2mj/n).
n s

1For example, if f € Lip,[0,27] where 1/2 < a < 1, or if f is of bounded variation and in
Lip[0, 2] for any a. Walker’s proof of this will soon appear in [1].
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Walker [4] developed a variant of the AFT known as Summability by Primes, and
showed that it converges to the correct value in some cases for which the AFT does
not?. To state the Summability by Primes formula, we need the notation

51 =

0 if k has a prime factor larger than the gth prime,
1 otherwise.

Then for suitable f, we have
(SBP) an = lim 3~ 87 u(k)S(nk).
k=1

Schiff and Walker [3] showed that (AFT) holds when f is a step function, but it
was not previously known whether the same is true of the Summability by Primes
formula. In the next section we show that (SBP) does indeed hold for a large class
of step functions.

2. REARRANGING THE DAVENPORT FORMULA

Davenport [2] proved a result that Schiff and Walker later termed the Davenport
formula:

Z plk {kQ} = —l sin 26.

Here {-} is the first Bemoullzan functzon given by

() = if ¢ is an integer,
t—[t]— % otherwise.

The Davenport formula can be used to prove results on the Arithmetic Fourier Trans-
form, but to prove analagous results for the Summability by Primes formula, we need
something slightly different. Therefore the first objective of this section is to prove
that the rearranged Davenport formula holds for almost all 6:

(RDF) lim > 28 ey —1 sin 278
g—>00 = k

Another way of writing this will be more convenient. Reorder the square-free numbers

according to the greatest prime factor they contain: 1, 2, 3, 6, 5, 10, 15, 30, 7, 14,...

and call the kth number in this sequence s;. For each natural number IV, let £y denote

the greatest number such that s;, has no prime factor greater than N. Actually, ty

is always a power of 2 but we will not use this fact. A crucial property of the ¢, that

2Specifically, Walker showed that the Summability by Primes formula is valid whenever the
Fourier series of f is absolutely convergent; this is not the case for the standard Arithmetic Fourier
Transform
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we will use is that {1,2,... N} C {s1,82,...8ty}. With the new notation, we can
write (RDF) as

' K 'Sk:) _ ___1_
(RDF) N_m Z o {srf} = ——sin 276.
Define ,
N 1
Tn@) =>_ M{s;ﬁ} + — sin 276.
=1 Sk s

| (In words, Ty (6) is just the difference between the two sides of (RDF) if the sum on
the left is truncated once all s, with factors no greater than N have been included).

Lemma 1. Fizx e > 0. Then as N — o0,

/01 Ty (6)2d6 = O(N}_e) .

Proof. According to Davenport, it is well-known that

1 1 (m,n)?
/0 {mf}{nd} df = ===,
and
1 —L ifm=1
. — 2, ?
/0 {mB} sin 276 d {0 . Fm> 1
Thus
L orgg_ L g~ Alemda(sn)(smys)® 11
8 | mwoyao == > 5 552 7 o

mnlty

But from Davenport we also have that

5m28p2 w2

Z 1(Sm ) 1t sn)(5m>5n) _@

mn=1

So we can replace the 3., ncry in (%) with 5 — 3 , obtaining
MSUN mn>ty

— M(SM)N(Sn)(Sm; Sn) 1
/ (6 d9 12 (7r2 Z 25,2 ) © 2n2

mn>ty Sm

Z /«‘ Sm ﬂ(sn)(sm)sn) )

2
m N>ty Sm Sn

So ( )2
! 2 1 Sm, Sn
[ mera|<g 3 Sme

2
““mn>ty Sm”Sn
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But as remarked earlier, {1,2,... N} C {s1,8,...5ty}, so by including some extra
terms we conclude

‘/OlTN(a)z d&' < _112_ ) (m,n)®

2,12
m,n>N men

> (m,n)?

202
m>Nn1 mn

1
- 12 >N m2 dlzm n%th 2
(n',m)=1

SZZZ

m>N dlm n'=

_ 0(2 d(m)),

2
m>N m

n’ n?

where d(m) is the number of divisors of m. But a result proved on page 260 of
Hardy and Wright [5] tells us d(m) = O(m®) for any fixed € > 0. Applying this and
estimating the resulting sum with an integral gives

1 / T (6 d0’ <m>N ‘2)=O(N€‘1),

proving the lemma. O
Before going on we need to establish the following lemma.

Lemma 2. Let r be a positive integer,‘ and S the set

{n € N|n zs square-free, n has at least one przme}
factor > 72, and n has no prime factor > (r + 1)

Then the sum of reciprocals of the elements of S is O(l‘%ﬁ), as r — oo.

Proof. For a set A of positive integers, we will denote the sum of the reciprocals of the
elements of A by o(A). As usual, p, is the gth prime. Suppose the primes less than
r2 are p1, Dy, . .. Pr, and the primes between 72 and (r + 1)2 are Prsti,-- - Prar- Let U
be the set of square-free integers whose prime factors are a subset of {px+1, - - - Dr+i}-
Let U,, be the subset of U consisting of numbers with m (distinct) prime factors.
Then U is the disjoint union of the U,,, m = 1,2,...[. But every element of U,, is at
least as big as (pr+1)", and Uy, has precisely (7;) elements, so 0(Up,) < (751) [ (Dr+1™)-
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05 (st o478

Since at least every second natural number is composite, we have

Hence

l<—;—((r+1)2—r2)
<T.

Also, pr1 > 2 by definition. So we have

o(U) < (1+L)T—1

DPr+1
1 T
< <1+—2) —1
T
=o(l>.
r

Let V=5 —U = {n € N|n is square-free, and all prime factors of n are < r2}.
We claim o(V) is O(logr). To see this, choose a constant C greater than 3°

Then, with p denoting an arbitrary prime number, we have?

o= 1 (-3

p<r2

1 1
S
pgz ( p pgz p

=
~ pgz ( ) log 2

(Here v is Euler’s constant; the fact that I],<, (1 — i) ~ Fg‘i;' is proved in Hardy and
Wright [5], page 351.) Hence

g= lqz'

II (1 + %) = O(logr).

p<r?

But o(V) = [T« (1 + %), so the claim is proved.
Now from the definitions of S, U, and V, it is clear that S = UV. (That is,
S ={n|n=wv,u € U,v € V}.) And because each element of U is coprime to each

3Dr Wayne Walker suggested this approach.
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element of V, this means ¢(S) = o(U) o(V'). Thus

O (%) O(logr)

0 <log r) 7
r

proving the lemma. O

a(S)

The next theorem now follows almost verbatim from Davenport:
Theorem 3. (RDF) holds almost everywhere.

Proof. First we claim it will be enough to show T;2(6) — 0 as r — co for almost all
f. For if r2 < n < (r +1)?, we have

ITo(8) = T(6)| = | 3 %’“){ske}

k=t.2+1

tort1)2 1
< —.
B k:—tz: Sk
=tn2+1
This sum is precisely the sum of reciprocals of the set

{n € N|n is square-free, n has at least one prime}
factor > r2, and n has no prime factor > (r + 1) J’

which, by the previous lemma, is O(logr/r). So

IT.,(6) — T2(0)] = O(I‘W) ,

r

proving the claim.
Let B, denote the set of points where

1
|T,,.2 (9)' > E—é—?_’:

Fix € € (0, %) By Lemma 1, the Lebesgue measure of E, is bounded by

logr
)\(ET) <C m,
for some constant C. Let

E= E,..

8
s

1r=n

T
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Then
logr
/\(E S T}LIEQ;O?& 2e
= 0.

But any point 8 for which T,2(6) does not tend to zero belongs to infinitely many of
the E,, and is therefore in E. This completes the proof. 1

Finally we prove the promised result, that the Summability -by Primes formula
holds for a large class of step functions.

Let f(6) be the even step function given by

(So f5(8) is just the normalisation of the function equalling 1 when |0 < b, 1/2 when
|6| = b, and 0 elsewhere. The constant b/m has been subtracted so that [™_ f,(9) d6
is zero.) A quick calculation shows that the nth Fourier coefficient of f; is given by

2 .
Un = — sin(bn).

Theorem 4. The Summability by Primes fomula is walid for fy(0), for almost all
values of b € [0,7].

Proof. Let

7 - {b € [0, 27] such that (SBP) does not ca,lculate}
" |the nth Fourier cosine coefficient of f; correctly

We claim A\(E,) = 0. To see this, first suppose b is such that the rearranged Davenport
formula holds at 6 = ;—7’: That is,

o gl () 1
qlggokglék . {271- = 7rsm(bn).

Under this assumption, we want to show that for the function f3(6),

(%) an = }Lrgoli 6 (k) S(nk).
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As calculated by Schiff and Walker [3], we have S(nk) = —= {%} Thus

2 w(k) [ bnk
H =—— 7 —_—
RHS of () nli"x’;;:l& . {2’”}
2
— sin(bn)
= an
So (SBP) calculates a,, correctly provided the rearranged Davenport formula holds

at 0 = g—i By the previous theorem, this occurs at almost all values of b. Hence
A(E,) = 0, as claimed.

Now set
{b € [0, 27| such that (SBP) does not calculate}
some Fourier cosine coefficient of f; correctly
= U E,
Then we have A\(E) < 320°, A(E,) = 0, proving the theorem. ) O

3. A SPECIAL CASE, AND A FORMULA OF EULER

When b = § we can directly calculate the result of applying the Summability by
Primes formula to f,. Write

:  ifle] <%,
f0)=1fz(0) =40 i} =7,
“LoHI<lo <
Then a, = n2 sin &% in particular, a; = % To distinguish between these (true)

Fourier coeflicients and those calculated by (SBP), define
= llm Z& w(k)S(nk).

As remarked in the proof of the last theorem, a calculation in Schiff and Walker [3]

gives
w3

0 if k£ even,
=<{x ifk=1 mod4,
—+ ifk=-1 mod 4.
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For convenience define r(k) by

0 if k even,
rk)=<1 ifk=1 mod 4,
-1 ifk=-1 mod 4.

Then S(k) = 57 (k). So we can calculate d:

i = i S22, (E)
(%) al—qlggokglékp(k) T

But if £ is odd and square-free we have the following facts:

rk)= 1] ),

pa prime
factor of k&

k= II »

pa prime
factor of &

pwk)=TI (-1).

pa prime
factor of &

So we can rewrite () as

. 1 Z 6q H —T(p)
g—o0 k P~
odd and pa prime 2/

uare-free  factor of k

i TT (1- 722))

Pn

1

2

1 & 7(pn)
=§H 1——>.

n=2 pn

L -1 (1 - ’"(p”)>_l.

26, ;o5 Dn

8

Therefore

But we also have
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So a; = d1, and hence (SBP) calculates a; correctly for f(6), if and only if

(E) iiﬁ=ﬁ<1f—(’@—)>_1.

k=1 n=2 Pn

The first person to consider this formula was probably Leonhard Euler; it appears
on page 244 of his Introduction to Analysis of the Infinite [6] along with a plethora
of other formulas for infinite products involving prime numbers. However, Euler’s
method of proof cannot be patched up to meet modern standards of rigour, since his
approach involves rearranging a series that is not absolutely convergent*. Fortunately
for us, Euler’s intuition did not mislead him on this occasion: Edmund Landau gives
a correct proof using a more sophisticated technique in his Handbuch der Lehre von
der Verteilung der Primzahlen [7], pages 446-9°. So we conclude that 4; = a;.

But almost identical calculations show the same is true for @, when n is odd, and
it is very simple to see @, = a, = 0 for even n. So in fact, we have proved that the
Summability by Primes formula correctly calculates all Fourier coefficients of fz(6).

Many thanks must go to Dr Wayne Walker, who provided me with this problem,
his ideas, and a great deal of enthusiasm and encouragement.
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