
Constellation: automated discovery of service and host
dependencies in networked systems

Paul Barham, Richard Black, Moises Goldszmidt, Rebecca Isaacs,
John MacCormick, Richard Mortier, Aleksandr Simma∗

Microsoft Research

ABSTRACT
In a modern enterprise network of any scale, dependencies
between hosts, protocols and network services are surpris-
ingly complex, typically undocumented, and rarely static.
Even though network management and troubleshooting rely
on this information, automated discovery and monitoring of
these dependencies remains an unsolved problem. The ap-
proach we describe in this paper attempts to close this gap by
proactively inferring a network-wide map of these complex
relationships using innovative machine learning techniques.

Constellation takes a black-box approach to learn explicit
models of time dependencies using little more than the tim-
ings of packet transmission and reception. The parameters
of these models are automatically fitted, enabling Constella-
tion to be robust to a variety of real-world traffic behaviours.
Statistical hypothesis testing on the models provides a guar-
anteed confidence level for the accuracy of the result. We
present promising results from a prototype implementation
using substantial packet traces from Microsoft’s corporate
network. We also discuss our experience in applying simpler
statistical tests and machine learning approaches, including
why they failed to perform.

1. INTRODUCTION
Shared network services enable great functional richness

and flexibility for distributed applications. As a result ap-
parently simple facilities, such as remote file sharing and
email, invariably rely on multiple network services rang-
ing from directory functions to authentication. In a large-
scale deployment the appealing modularity and component
reuse of shared network services leads to a highly complex
system that is extremely difficult for a network operator or
a user to fully understand. As well as rendering effective
management problematic, the size and sophistication of net-
worked systems often leads to security vulnerabilities, ineffi-
cient troubleshooting and anomaly detection, and ultimately
user frustration. This effect was noted by Lamport in his fa-
mous quote ‘a distributed system is one in which the failure
∗John is now with Dickinson College, PA. Work done while a Re-
searcher with Microsoft Research. Aleks is with the University
of California, Berkeley, CA. Work done while an intern with Mi-
crosoft Research.

of a computer you didn’t even know existed can render your
own computer unusable’ [13].

Current debugging capabilities for deployed networked
systems are unsatisfactory. Individual applications may pro-
vide the ability to understand their own behaviour; a few
simple general-purpose tools like traceroute, tcpdump and
ping exist, while some systems make a variety of data avail-
able through SNMP. Analysis tools have been proposed to
address this problem using operating system logging mech-
anisms or using intrusive instrumentation to explicitly track
the causal paths of individual requests [3, 6]. However, there
is still a dearth of tools that enable users, operators and de-
velopers to understand the interactions between the systems
they come into direct contact with and those not within their
immediate view that are part of the infrastructure.

In addition, the nature of the dependencies in these net-
works can vary greatly: there may be many servers for each
service or many services provided by a single server. A host
can assume the roles of both server and client for different
instances of the same service. A client might invoke a single
service variously on different servers. A computer may un-
wittingly have a transitive dependence upon other comput-
ers, and so on. Furthermore, these relationships are volatile,
changing as applications adapt to runtime conditions such as
machine load variations or link failure.

This paper presents Constellation, a tool that automates
discovery of dependencies between hosts, protocols and net-
work services, and proactively infers a network-wide map of
these complex relationships. Figure 1 presents a small por-
tion of such a graph, which we term a constellation. The
machine “desktop” (doubly-circled in the figure) is the root
of the constellation. The other nodes represent servers on
which the root depends (either directly or indirectly), while
the edges reflect the corresponding services that cause de-
pendency. Constellation builds these dependency graphs us-
ing innovative machine learning techniques. Its lightweight,
black-box approach allows deployment in a network regard-
less of the heterogeneity of host operating systems and ap-
plications.

Constellation has some similarities to Project5 [1], Sher-
lock [2], and WAP5 [17]. While those systems focus on fault
localization or performance debugging of the network as a

1

desktop

webisaa01

crbc6m01-v140

tknsmmom11

corp-dc-05

maditgddsa01

corp-dns-01

anti-virus2

euro-dc-07

prxy-07

prxy-01

file-srv-02

file-srv-01

dubitgspm01

tvpitgdca03

anti-virus1

dca01

corp-dc-07

prxy-03

prxy-04

prxy-02

prxy-05

prxy-06

prxy-09

prxy-08

tkmomdb10

cor p- dc- 03

corp-dc-02

winserel3

euro-dns-01

corp-dc-04

HTTP

1.00

SMB

1.00

SMB

1.00

KERBEROS

1.00

RPC1.00
DNS1.00

LDAP
1.00

SMB

1.00

NBSS

0.88

SMB
0.40HTTP 0.64

HTTP

0.76

DNS

0.19

LDAP

0.43

SMB

0.38

HTTP

0.66

HTTP

0.74
HTTP

0.75

HTTP

0.74

HTTP

0.75

HTTP

0.76

HTTP

0.75

SQL_PROBE

0.21

SMB 0.35

NBSS

0.74

NBSS

0.74

KERBEROS

0.43

LDAP

0.47

SMB

0.47

NBSS

0.42

NBSS
0.56

NBSS

0.52

SMB

0.42

Netlogon

0.49

DHCP

0.16
MOM0.09

DNS

0.97

DNS

0.97

KERBEROS

0.74

LDAP

0.24
HTTP

0.40

SMB

0.05

LDAP

0.33

MOM

0.04

DNS

0.68

DNS

0.21

DNS0.14

DNS

0.19

Figure 1: Small fragment of a constellation depicting the tran-
sitive dependencies of a single computer in an enterprise net-
work.

whole, Constellation’s goal is to build the map of network
dependencies for an individual host.

One of the important contributions of this work is that
Constellation relies on statistical hypothesis testing and false
discovery rates [4, 21] to provide guarantees on the confi-
dence of the dependencies induced from the data. This is es-
pecially critical in this domain where ground-truth is next to
impossible to obtain, and indeed the provision of confidence
guarantees has been posed as a challenge for the application
of machine learning techniques to (distributed) systems [9].

We believe Constellation to be invaluable for a variety of
higher-level activities. These include troubleshooting and
diagnosis tasks, such as to search for a reported problem of
unspecified provenance, as well as maintenance—providing
valuable usage data for network reconfiguration planning (for
example to identify those users likely to be impacted by a
reconfiguration), and for detecting unexpected changes by
spotting deviations from “last known good” constellations.
Our current and future work is directed to building on Con-
stellation in order to realize this vision in its entirety.

1.1 Paper outline
The Constellation system comprises two parts, a per-host

model that captures the local interactions between the dif-
ferent services, and a recursive algorithm that uses the local
models to build a network-wide constellation of dependent
computers and services.

The model contains a list of the dependencies between
output packet streams and input packet streams of different
services, and is generated by means of a dependency test. In
Section 2 we describe the probabilistic model that we devel-
oped for Constellation, called Continuous Time NoisyOR, as
well as the hypothesis test that is used to decide dependency.
We also present a formalization of the intuitively attractive
statistical approaches that are commonly adopted, for exam-

ple by the Sherlock system [2], and explain the benefits of
the more complex approach used in Constellation.

To ensure that Constellation works well under real net-
work conditions, which include packet burstiness, connec-
tion multiplexing, and variable timescales of interest for dif-
ferent applications, we have developed the system against a
substantial packet trace from the Microsoft corporate net-
work. In Section 3 we demonstrate good results for the
Constellation test in a comparative evaluation against other
techniques using “ground-truth” extracted from the network
trace.

In Section 4 we describe the recursive algorithm for build-
ing constellations, as well as discussing aggregation, which
is a particularly important, yet subtle, aspect of a practical
system.

Constellation is a tool for learning information about net-
work behaviour that is otherwise hard to extract. It provides
the underlying functionality for higher-level tools that might
use this dependency information in a myriad of ways. We
explore what kind of information is revealed in a qualitative
evaluation in Section 5, which includes an examination what
is shown about our network by Constellation for three com-
mon tasks: browsing, email and printing.

Implementation and deployment issues are covered in Sec-
tion 6, and we review related work in Section 7.

2. DEPENDENCY TESTS
Constellation is intended to be a lightweight, non-intrusive

and generic tool and so must not rely on deep packet in-
spection or understanding of application-level semantics (in-
deed this is increasingly becoming a necessity with increas-
ing proportions of encrypted traffic). Given this black-box
requirement, the service associated with a channel must be
identified using just standard fields in the packet headers and
the correlation test must uncover evidence for interdepen-
dency between channels using only packet timestamps.

A natural approach to discovering dependent channels is
to use probabilistic models to represent the inherent uncer-
tainty and statistical tests to estimate the confidence on our
inferences. The probabilistic model we developed for Con-
stellation is known as Continuous Time NoisyOR (CT-NOR),
and is described more fully in Section 2.3. CT-NOR is a
non-trivial extension of the Noisy-Or model [16] to deal first
with continuous time, second with the fact that activity in
channels is relatively rare, and third to incorporate functions
representing the expected timing relations between input and
output.

Previous work on the identification of correlated network
traffic [2, 17] has used various approaches based on “co-
occurrence” tests. The key difference between co-occurrence
tests and those based on probabilistic models, is that co-
occurrence conducts a pairwise test for dependence on each
input/output channel pair, while the probabilistic approach
considers all input channels at once to choose the best can-
didates for dependence with the output channel.

2

Direction Service Peer Description
OUT HTTP WebServer1 HTTP requests
OUT DNS DNSServer DNS requests
IN SMB MyLaptop Desktop file browsing
IN HTTP WebServer1 HTTP responses
...

Table 1: Examples of channels on a host.

2.1 What is a dependency?
To establish a common vocabulary we first introduce a

specific notion of a channel that we will use throughout the
paper. A channel at a given host is a unidirectional flow of
network packets sent or received by that host, identified by a
direction (IN or OUT), the remote peer, and a service. Here,
a service could be a protocol, application or network ser-
vice, frequently determined in practice from the well-known
TCP/UDP port number, or other information in the packet
header. See Table 1 for examples.

The next definition we need is that of a dependency be-
tween channels or services. This definition is tied up to a
period of time T of observation:

DEFINITION 1. Let channel A be an input channel to some
host, and channel B an output channel from the same host.
Channel B is dependent on channel A in period T if packets
in A caused packets in B during the period T.

A few comments are in order. A rigorous definition of causal-
ity lies in the realm of philosophy and we do not attempt one
here. Rather, we assert that the vast majority of experienced
computer systems practitioners can almost always agree on
whether a given packet “caused” another packet. For exam-
ple, a packet sent in response to some request is “caused”
by that request; the evaluation section gives numerous addi-
tional examples.

Also note that most systems administrators will have a
different, and much stronger notion of dependency, namely
that if A depends on B then A won’t work if B is broken.
Although this would be extremely desirable information to
have, it is impossible to determine from passive analysis of
a working system—we cannot hope to identify hot standbys
and fault-tolerant services unless we observe them in use.

Finally it is worth mentioning the difference between cor-
relation and causation. If two services are co-located on a
busy server it is quite possible that scheduling behaviour
will introduce timing correlations between their responses
to clients. It is not correct to say that service one depends on
service two, but an outside observer, such as the Constella-
tion system, may not be able to tell the difference between
the two scenarios.

2.2 Co-occurrence tests
An extremely simple test for whether channels are depen-

dent can be performed by counting the number of times a
packet of the input channel is observed within a small time
window prior to a packet on the output channel. We can
estimate the number of times such a co-occurrence might

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.1 1 10 100 1000 10000 100000

P
er

ce
nt

ag
e

Time (ms)

DNS req delay
HTTP res delay
HTTP req delay

DNS res delay
HTTP think times
DNS think times

Figure 2: CDFs of forwarding delays and think times

be expected to happen by chance on channels that are inde-
pendent, and if the observed value is significantly above this
threshold then the channels are assumed to be dependent

Simple co-occurrence
A naı̈ve way to compute the threshold is to assume that Ni
input packets are uniformly distributed over interval T with
mean inter-arrival time IATi = T/Ni. For a given window
size of W , the probability of an accidental collision is ap-
proximately Pcoll = W/IATi, (where W is much less than
IATi), and hence the expected number of co-occurrences is:

E(Co
i) =

No×W
IATi

(1)

where No is the number of output packets.
Sherlock[2] uses this simple pairwise co-occurrence test

with a fixed window size of 10ms, and defines dependent
channels as those where the fraction of co-occurrences is
“much greater than the likelihood of chance co-occurrence”.

Window sizes
It is immediately apparent that choosing the fixed window
size parameter W of the above test is extremely important.
This parameter is related to the service time distribution be-
tween an input and a subsequent output. In general we would
expect this to be in the millisecond range, and analysis of our
traces to extract service time distributions of an HTTP proxy
server and a DNS server show this to be the case (Figure 2).
However, there are also situations, such as submitting a job
to a print spooler, where service times can be several sec-
onds. A simple co-occurrence test with a fixed size window
is unlikely to do well in both regimes. WAP5[17] uses a
variant of co-occurrence without a window and attempts to
fit causal delays using an exponential or gamma distribution.

3

The effects of burstiness
Of course, real network traffic is often bursty and in our
traces the assumption of uniformity has proven to be ex-
tremely unreliable, especially on busy servers where the mean
inter-arrival time can be much less than 10ms due to long
bursts of back-to-back packets.

One heuristic which can mitigate the problems with sim-
ple co-occurrence testing is to low-pass filter the packet trace,
i.e. to discard packets which occur within a short time win-
dow of the previous packet on the same channel. This will
tend to discard packets from the middle of bursts and keep
those at the front of bursts. This effectiveness of this heuris-
tic is evaluated in Section 6.3.

We can explicitly take bursts into account when estimat-
ing the probability of an accidental collision using the fol-
lowing:

Pcoll = ∑N
i=1 min(Ii− Ii−1,W)

T
(2)

Intuitively, this computes the fraction of the trace where a
randomly chosen instant would lie within W of the nearest
input packet, where Ii represents the time of input packet i.

Binomial confidence limit
Given an observed number of co-occurrences Co

i we would
like to compute whether the observed value is significantly
above the expected number of chance collisions. If we as-
sume that each output packet has an independent probability
Pcoll of lying within W of an input packet, and let the num-
ber of output packets be No, then the observed number of
accidental collisions of two independent channels would be
drawn from a Binomial distribution B(Pcoll ,No) with mean
No×Pcoll and variance No×Pcoll × (1−Pcoll).

The significance of the observation can be estimated by
summing the tail of the Binomial distribution using the in-
complete beta function:

P = betai(1−Pcoll ,No−Co
i ,No +1) (3)

We can now use a threshold of P > 0.95 to accept a false
positive rate of 5%. For sufficient samples, the binomial can
be approximated by a Normal distribution and we can use a
decision based on the number of standard deviations above
the mean.

Unambiguous co-occurrence
On busy servers it is common that more than one input chan-
nel is active within a short time window of any given output
packet. This makes it difficult to disambiguate the potential
causes of the output packet. However, due to the bursty na-
ture of most network traffic, there are invariably brief quiet
periods where it is easier to observe genuine co-occurrences
(i.e., those indicative of dependent channels).

The unambiguous co-occurrence test counts how often a
given input channel is the only input active during the win-
dow W prior to each output packet. Although the num-

ber of such events is much smaller than with standard co-
occurrence, each of these observations provides greater evi-
dence of dependence between the channels. Indeed the un-
ambiguous co-occurrence test can be thought of as a cheap
version of the hypothesis test we describe in Section 2.3,
where we compare a full model to a model without a spe-
cific input channel.1

In our ground-truth experiments, this technique proved to
have very few false positives, but does have the drawback
that is is difficult to derive an analytic confidence threshold,
necessary for when we don’t have ground truth, and it fails
in cases such as the printer when we must take into account
interactions over a 2 second window.

2.3 The Continuous Time Noisy-OR model
CT-NOR is based on the Noisy-Or model for represent-

ing causality under uncertain conditions [16] and general-
izes this standard model in three ways: i) it models events
in continuous time, ii) it models the fact that there are rela-
tively long periods of inactivity, and iii) it incorporates ex-
plicit functions of time, modelling the time delays between
inputs and outputs.

CT-NOR considers a single output channel on a given
host, and simultaneously analyzes all of this host’s input
channels to determine which channel(s) best help to explain
the output packets. It assumes there is some fixed but un-
known delay function f (t), specifying the probability dis-
tribution of the delay between an input and the output(s) it
causes. For example, if f (t) happened to be the uniform
distribution UW (t) on the window [0,W], then the delay be-
tween an input packet and the resulting output(s) is equally
likely to be any quantity in [0,W]. This is exactly how the
co-occurrence test models the delay between input and out-
put. CT-NOR further assumes that the inputs from channel j
produce, on average, some fixed but unknown number p j of
output packets. Readers familiar with stochastic processes
will recognize the resulting model is a non-homogeneous
Poisson process [10]: if the kth input packet in channel j
occurs at time t j

k , the density of output packets generated by
this input is given by

p j
k(t) = p j f (t− t j

k). (4)

Our experiments determined two particularly useful mod-
els for the delay function f : one, fG, is a mixture of the
uniform “spike” distribution UW and a Gaussian distribu-
tion Gµ ,σ with mean µ and standard deviation σ ; the other,
fE , is a mixture of the uniform and the exponential distribu-
tion Eλ with parameter λ . As shown visually in Figure 3,
the Gaussian delay distribution extends the intuitions of co-
occurrence within a window to also capture dependencies
that can be relatively far away in time (such as with the
printer in Section 5.4). The exponential distribution captures
1It is also possible to justify the unambiguous co-occurrence ap-
proach from a Bayesian perspective, but we do not pursue this fur-
ther in this paper.

4

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

P
ro

ba
bi

lit
y

D
en

si
ty

Time/s

Uniform Spike
Gaussian

Exponential

Figure 3: Example CT-NOR parametric delay distributions

the intuition that the possibility of dependence decays as the
packets are further away in time. The equations for these
functions are:

fG(t) = αUW (t)+(1−α)Gµ ,σ (t) (5)
fE(t) = αUW (t)+(1−α)Eλ (t) (6)

A key feature of the CT-NOR model is that it simultane-
ously estimates the p j in (4) and the delay function param-
eters (α,W,µ,σ or α,W,λ) in (5) or (6). This is done by
the standard statistical technique of “maximum likelihood
estimation”, and results in a likelihood value L. The likeli-
hood is essentially the probability that a given model (com-
plete with instantiated parameter values) would generate the
specific data (input/output packets) observed. Similarly, by
comparing likelihoods we are able to choose the delay func-
tion which best fits the data.

Note that CT-NOR has to overcome a chicken and egg
problem: if we knew the delay function parameters, we could
easily determine the probability that each input caused each
output, and hence the p j values in (4); whereas if we knew
the p j it would be easy to estimate the delay function pa-
rameters. CT-NOR solves this problem by employing an it-
erative algorithm similar to Expectation Maximization, an
algorithm well known in statistics and machine learning [5,
19]. Full technical details of the CT-NOR model will be de-
scribed in a separate publication.

Hypothesis Test
To transform the CT-NOR probabilistic model into a test, we
need a decision procedure for determining whether an output
channel is dependent on an input channel. In this work we
take a hypothesis testing approach from classical statistics.
To decide whether output channel B, is dependent on input
channel A, we compare the likelihood of a CT-NOR model
of B to one in which we purposefully remove the input chan-
nel A. The null hypothesis, H0, is that the two have the same
power in explaining the output packets. If we are able to
reject H0, then the channels are labeled as dependent, since
the absence of the input channel A renders the second model
less powerful (in explaining the output packets observed in
channel B). It turns out that twice the difference in the log-
likelihood in these two models behaves as a χ2 distribution
with one degree of freedom (the missing channel). From the
resulting χ2-value, as in any standard statistical test, one ob-

tains a “p-value” which gives (roughly speaking) the proba-
bility that a more extreme result would have occurred if the
null hypothesis were true. To decide whether two channels
are dependent, this p-value is thresholded, and the thresh-
old used depends on the confidence required for the task at
hand. There is, however, a subtlety with applying these p-
values directly in our domain because we perform multiple
hypothesis tests (see [21, 4]). This is discussed further in
Section 3.3, where an appropriate procedure is presented.

2.4 Other approaches investigated
We explored several other approaches to dependency test-

ing with mixed results, but do not have space in this paper to
describe these in detail.

One promising technique was based on a pairwise statis-
tical test between an incoming channel A and an outgoing
channel B. The intuition was that if channel B is directly de-
pendent on channel A, then the timing relationship between
the input packets in A and the output packets in B should dif-
fer significantly from the time relationship between A and a
synthetic channel containing randomly distributed packets.

We explored the use of various standard hypothesis tests
such as Kolmogorov-Smirnov and χ2 to establish the differ-
ence between the distributions, and also formulated the prob-
lem as a Bayesian log-odds model selection [5]. We faced
numerous problems due to inadequate representation accu-
racy of the distributions, but the main reason for the lack
of performance is the myopic nature of the pairwise com-
parison which gets easily confused when ignoring the other
channels.

A second method rejected relatively early in the project
was to divide the trace into small time slots and use Bayesian
classifiers [8] to capture patterns of simultaneous input and
output activity. Our experiments showed the patterns were
hard to capture for a classifier since most channels are active
in only a small number of slots and therefore the classifier
learns that predicticing inactivity is almost always correct.

3. EXPERIMENTAL VALIDATION
All the experimental results for Constellation are obtained

using a trace comprising headers and partial payloads of
around 13 billion packets collected over a 3.5 week period in
2005 at Microsoft Research in Cambridge. Although the lab-
oratory, which has approximately 500 networked machines,
is physically distant from company headquarters, it is fully
within Microsoft’s global corporate network and so runs the
same services and applications under the same global policy
as the rest of the company. The trace covers every packet
sent or received by the 500+ nodes on site and captures con-
versations with over 28000 off-site IP addresses.

3.1 Ground-truth datasets
In the field of machine learning, “ground-truth” is used

to refer to those situations where we know the “correct” an-
swers. The ground-truth for dependencies in a real network

5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Unambiguous Binomial CT-NOR

 0.8

 0.85

 0.9

 0.95

 1

 0.7 0.8 0.9 1

(a) Precision-recall curves for dependency tests on DNS data.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Unambiguous Binomial CT-NOR

 0.8

 0.85

 0.9

 0.95

 1

 0.7 0.8 0.9 1

(b) Precision-recall curves for dependency tests on HTTP data.

Figure 4: Ground-truth experimental results.

Dataset Tot pkts Proto% Clnts Svrs Cache Fwd Rate
DNS 377,767 3.5% 600 148 91% 113 0.03/s
HTTP 473,291 26% 93 9 29% 4246 1.18/s

Table 2: Characteristics of the two ground-truth datasets

is, in general, quite hard to extract. Relationships are often
hidden inside the configuration files or source code of indi-
vidual applications, and caching and load balancing can fur-
ther obscure the actual underlying dependency. Fortunately,
forwarding servers for a well-understood protocol can pro-
vide an exception to this situation, because received packets
can be matched with transmitted packets by simple inspec-
tion of the payload. In this section we present an evaluation
of the dependency tests using two contrasting traffic types
that we have been able to label: forwarded DNS traffic at the
lowest level of a DNS server hierarchy, and forwarded HTTP
traffic at a caching proxy server. We apply three dependency
tests—CT-NOR, binomial co-occurrence and unambiguous
co-occurrence—to the two ground-truth data sets.

For this experimental evaluation we use the same one hour
period of the trace (10-11am on a Tuesday) throughout. DNS
ground-truth was extracted by deep inspection of DNS pack-
ets forwarded by the on-site Domain Controller (DC), which
is the first-hop DNS server for local machines. When the
DC receives a DNS query from a client, it either forwards
the request to an upstream DNS server, or else responds
directly to the client if the result is cached locally. Simi-
larly HTTP ground-truth was extracted from the on-site web
proxy server, which can either respond from its own cache or
forward the request to one of an array of 9 upstream proxies.

Because the web proxy performs load-balancing across all
machines in the proxy bank, to avoid the uninteresting situa-
tion where every client is dependent on each of the upstream
proxies (i.e. it would be impossible to make a mistake), we
filtered the HTTP traffic by selectively dropping packets so

each client uses no more than 4 or 5 of the proxies. The DNS
ground-truth data set remained unchanged from the original
trace. Table 2 contains summary statistics of the resulting
ground-truth data sets, including total traffic volume at the
server, percentage of traffic contributed by this protocol, the
number of client and server peers, the percentage of requests
that are served from the cache or forwarded upstream, and
the resulting rate of forwarded requests.

It can be seen that the two datasets have significantly dif-
ferent characteristics—compared with the HTTP traffic, for-
warded DNS traffic is infrequent and a small fraction of
the total workload. This is also visible in the earlier Fig-
ure 2 which showed their processing delay, burstiness and
inter-arrival time distributions. DNS queries tend to be sin-
gle packets, whilst HTTP responses can frequently generate
thousands of packets. It is important that a dependency test
works well in both these regimes.

3.2 Precision-recall
The majority of the dependency tests described in Sec-

tion 2 generate a p-value, or confidence that a particular in-
put and output are related. Comparing this score against a
fixed threshold allows the user to arbitrarily trade off the
accuracy of decisions against the number of dependencies
identified. To compare the effectiveness of the various tests
we borrow a technique from the field of information retrieval.
For each of the tests we plot their precision (the fraction of
answers returned which are correct) against their recall (the
fraction of all correct answers which were returned) as we
vary the threshold from zero to infinity.

It is clear that DNS traffic, with low volume and large re-
quest inter-arrival-times, is well-suited to the co-occurrence
tests, particularly for requests where almost 100% have a
servicing delay on the DC of less than 10ms. The HTTP
traffic is more challenging for any dependency test, with a
higher request rate, more packet burstiness and greater vari-

6

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 100 200 300 400 500 600 700

Rank Order

Sorted HTTP p-Values
alpha * i / M

Figure 5: FDR threshold for HTTP dataset

ability in the delays due to servicing times on the proxy.
For the two co-occurrence tests we configured a window

size of 10ms,2 as used in previous systems, whilst CT-NOR
was allowed to fit appropriate an delay distribution for the
observed traffic. Results are shown using the precision-recall
curves in Figure 4. For DNS the CT-NOR test has a lower
max(precision + recall) than the two co-occurrence tests,
but it is notable that binomial co-occurrence suffers from a
lower precision throughout. For the HTTP dataset, CT-NOR
exhibits both better precision and recall, handling the higher
volume of traffic and response burstiness much better.

3.3 False discovery rates
When deployed for real, Constellation does not have the

luxury of data labelled with accurate ground-truth, thus we
need to be able to compute the confidence on the decisions
made by the algorithms proposed. In traditional statistics,
it is customary to treat the decision as a hypothesis test and
threshold the p-value with a significance level: this is the
probability, under the conditions of H0, that a case will be
falsely rejected [21].

Unfortunately, while the p-value tells us something about
the probability that a specific case will be falsely rejected,
when we are performing a large number of tests this number
becomes less relevant. The reason for this is best understood
through a concrete example. In analyzing the HTTP dataset
we must perform 1692 hypothesis tests of which we know
that 646 are dependent and 1046 are non-dependent. Sup-
pose that our hypothesis test rejects a number equal to the
number of genuinely dependent cases, namely 646. With
a p-value threshold of 5%, on average 52 of these (5% of
1046) will be incorrect decisions—i.e. around 10% of our
decisions are incorrect. In reality, what we care about is the
following: amongst the cases that my tests say are depen-
dent, what is the proportion of incorrect decisions? This is
known as the False Discovery Rate (FDR).

Fortunately, statisticians have been confronting this prob-
lem recently in the domain of genomics and have come up
with various procedures for dealing with large numbers of
hypothesis tests [4, 18]. In this paper we follow the method
described in [4] which works as follows: given a desired
FDR rate α and the total number of tests M, sort the array

2This value was determined experimentally to be optimal for this
data, and agrees with the value predicted by Figure 2.

Target %false p-value actual
FDR +ves cutoff FDR
5% 3.3% 2.3% 1.34%
10% 5.21% 4.2% 2.03%

Table 3: Estimated p-values and FDRs versus actuals for
HTTP dataset.

of p-values in increasing order, find the largest index i such
that p[i] ≤ α× i/M, and use p[i] as the threshold. This cor-
responds to finding the intersection of the two lines shown in
Figure 5. For the case of HTTP where we have ground-truth,
and we can compute the actual values of FDR and p-values,
we can see in Table 3 that the model fitted with CT-NOR is
quite good. Both the actual rate of false positives and the
actual rate from the pool of independent channels flagged as
being dependent are below the estimated ones.

Using the p-values from the CT-NOR test in combina-
tion with the FDR procedure, we can now compute suitable
thresholds on each host for rendering constellations, with
guarantees (in expectation) on the number of false depen-
dencies that will be included.

4. BUILDING CONSTELLATIONS
Section 2 presented several techniques for discovering de-

pendencies between the requests made of one machine and
the requests it makes of others. While such per-machine in-
formation alone is often useful, Constellation also provides
a recursive algorithm that connects these local models, tran-
sitively following selected dependencies from machine to
machine. In this section we describe this algorithm, which
has two forms: the basic version to build constellations that
show what is caused by an activity, and a variant for building
constellations that show what caused an activity.

Constellations can be constructed over various timescales
and with different degrees of channel aggregation. The choices
for these parameters are dictated by how a particular constel-
lation is intended to be used. For example, a host’s constella-
tion for a 15 minute period will act as a record of specific de-
pendencies that existed in that quarter hour, which might be
useful information for troubleshooting. On the other hand,
the appropriate timescale over which to build constellations
when planning a network reconfiguration may well be a full
day or even a week. Similarly, channel aggregation has a
significant effect on the information captured by a constel-
lation, as well as implications for runtime performance of
the algorithm. We discuss aggregation in some detail in Sec-
tion 4.3.

4.1 Algorithm
Building a constellation involves a breadth-first transitive-

closure across the local models of each machine to construct
the dependency graph. The core step considers every output
request of interest from the current machine M to a target
machine T. This output request from M is transformed to the
corresponding input request at T, and the local model at T

7

used to add the list of its correlated output requests to the
work-set of requests to evaluate. Additionally, the output
request from M is also inverted at M to determine any corre-
lated input responses, and M’s local model then consulted to
discover any additional dependencies arising from consider-
ing these input responses.

The work-set is seeded with a set of output requests from
M, and the algorithm is applied breadth-first to the work-set
until it is empty, or some pre-defined maximum depth or size
is reached. The output of the algorithm is the set of input-
to-output dependencies traversed, representing the constel-
lation of the original seed requests. Such a constellation can
then be presented in graphical form, for example as seen in
Figure 6.

4.2 Causal constellations
The algorithm above builds a constellation that describes

what was caused by a set of requests originating from a par-
ticular host. It is also useful to be able to run the core step
of the algorithm backward on a single machine model to de-
termine what caused a request, and thus those services on
which a particular request depended.

To do so, the core step takes an output channel at a ma-
chine and examines the local model for input channels cor-
related to that output. These input channels are plausible
causes of the output: input requests indicate that activity on
some other machine caused the output at this machine, while
input responses indicate that the output is actually the result
of earlier activity at this machine. Using the machine’s local
dependency map, input responses can be mapped to the local
output request that caused them, resulting in a constellation
which represents all possible transitive causes for the initial
seed output.

Causal constellating is most useful for seeding the work-
set of the standard constellation algorithm. For example,
suppose we wish to find the constellation for HTTP requests
from some client computer C. We first start by computing
the causal constellation locally at C to find the other out-
put channels which are causally required by C before it can
send HTTP requests (such as DNS). Then we use these as
the seed work-set to determine the transitive dependencies
at other machines. If we simply looked at the transitive de-
pendencies arising from the HTTP output request alone, we
would not discover the many other services and servers ac-
tually required to browse the web.

4.3 Aggregation
Aggregation is an important and subtle part of the sys-

tem, which is best introduced by comparing two scenarios,
the first in which aggregation is desirable and the second in
which it is not.

First, suppose a large set of clients send HTTP requests
to a caching web proxy which in turn spreads cache misses
over an array of upstream proxies. It is possible to track de-
pendencies for individual clients through the proxy, show-

ing, for example, that client C1 was dependent on servers S2
and S4, whereas C2 was dependent on S1 and S7. However
in many likely uses of a constellation the important informa-
tion would be that clients were dependent on all the upstream
servers, since a request from any client might be sent to any
server. That is, we wish to see that, in aggregate, clients de-
pendent on the proxy have a dependency on all the upstream
servers.

In contrast, imagine a mail hub that sends IDENT[12]
callbacks to clients submitting mail.3 Aggregating as sug-
gested above would show the mail hub’s SMTP service to
be dependent on the IDENT services of very many client
computers. However, the only information relevant for the
constellation of a particular client computer is the depen-
dence of SMTP on its own IDENT service: the aggregation
of clients here is misleading.

Constellation supports three different types of aggregation
that can be carried out on packet events at a single machine.
Port aggregation aggregates into single channels those pack-
ets with identical IP addresses and service port numbers but
distinct client port numbers. This unifies, for example, the
several HTTP connections opened by a browser to a single
server when downloading the multiple components of a sin-
gle page. We apply port aggregation throughout our results
as we have always found it useful to do so (very little useful
information is incorporated into the constellation by distin-
guishing client port numbers).

Client aggregation aggregates into a single channel those
packets representing input requests and output responses with
identical service ports across multiple clients. This is help-
ful for addressing questions such as “on what does a typical
client depend for web browsing?”. Service aggregation ag-
gregates all packets with the same service port, and this ad-
dresses questions such as “what are the dependencies among
services in my large datacenter?”, where each service may be
provided by hundreds of servers, some of which may provide
more than a single service.

Note that the implementation of the constellation building
algorithm handles aggregated channels slightly differently.
For example, it must deal with cases such as the output re-
quest channel of one client transforming to the input request
channel from an aggregated set of clients at the server.

One interesting line of future work is to develop auto-
mated aggregation strategies by clustering channels using
characteristics such as the expected number of packets that
each input channel causes on the output channel. This would
avoid the situation of inadvertently aggregating channels in-
correctly, as described above, and enable different views of
constellations that are customisable depending on the moni-
toring or diagnostic task being pursued. Another is that ag-
gregation may also be carried out on the scores that are out-
put from dependency testing at a single machine, and also

3The precise protocols described here are not present in our Win-
dows environment but they provide a simple and realistic example
of the issue we observed.

8

red-pfs-03
157.54.5.216

me-dc-04
157.54.59.205

tvpitgddsa01
157.58.40.56

camitgdca01
157.58.63.8

eur-msg-20
65.53.210.21

65.53.210.157
65.53.210.157

camresisaa01
157.58.63.16

segroup-dc-03
157.54.63.31

Broadcast
157.58.56.255

corp-dc-01
157.54.55.96

red-dc-32
157.54.63.19

tkmomdb10
157.54.58.179

red-dc-28
157.54.51.145

euro-dc-07
157.54.51.60

cam-02-srv
157.58.63.29

cam-01-srv
157.58.63.28

desktop-36
157.58.56.36

9 HTTP proxies

21 DNS servers

Exchange

LDAP

HTTP

LDAP

EPM

LDAP

MOM

LDAP

LSA

KRB5 LDAP

KRB5
EPM

KRB5
EPM

LDAPLSA

DNS

KRB5EPM

LDAP
SMB
LSA

DNS

Exchange

HTTP

HTTP

HTTP

EPM

LDAP
KRB5

LDAP

MOM

LDAP
LSA

KRB5
LDAP

KRB5EPM

SMB

KRB5EPMLDAPLSA

SMB

Exchange

HTTP

KRB5
EPM
DNS
LDAPSMBLSA

Exchange

HTTP

HTTP

NBNS

KRB5

LDAP

SMB

SMB

HTTP

DNS

Figure 6: A constellation rooted at the host desktop-36 highlights the large number of services invoked on the Domain Controller
(camitgdca01) by the client, both by direct connection and also indirectly with transitive dependencies via the two on-site file servers
(cam-01-srv and cam-02-srv). Note that all the leaf nodes represent uninstrumented, off-site servers, and therefore do not show any
further onward transitive dependencies.

across the scores computed by multiple machines. Doing so
requires a metric-specific way to aggregate scores, and we
are currently investigating how to do this and the impact it
has.

5. QUALITATIVE EVALUATION
In this section we describe a qualitative investigation into

how a higher-level tool might make use of constellations. In
Section 5.1 we show the entire constellation for a desktop
computer and discuss the information that it reveals. Next,
drawing on our domain knowledge about likely relationships
between hosts and services in the network, we look whether
Constellation exposes any such relationships in three scenar-
ios:

1. Web browsing (HTTP), for which we would expect
to find a dependency on name resolution (DNS and
WINS).

2. Running an email client (Outlook). Here there are var-
ious ill-understood network dependencies on services
such as authentication and Active Directory.

3. Printing. We know that there is a transitive dependency
from a client to a printer via the print server, how-
ever the situation otherwise is not clear-cut because
of the way printer status changes are communicated
to multiple clients. In addition, we believe that ar-
bitrary spooling delays make detection of this depen-

dency very challenging for any statistical or probabilis-
tic test.

We examine each of these in Sections 5.2, 5.3 and 5.4 re-
spectively. In Section 5.5 we explore the degree to which
Constellation would reduce the search space of computers
in our network for a hypothetical network management tool
that identifies the source of a failure.

Unless stated otherwise, all the constellations in this sec-
tion were generated using CT-NOR with an exponential de-
lay function and FDR of 5% at each host.

5.1 The constellation of a desktop computer
A constellation covering a one hour period rooted at an ar-

bitrarily selected desktop computer is shown in Figure 6. It
was generated with client aggregation enabled, and therefore
shows the expected dependencies for any client responsible
for traffic on the same channels within that hour. For ex-
ample, the client’s outgoing HTTP request to the web proxy
(camresisaa01) correlates with forwarded HTTP requests to
all 9 upstream HTTP proxies, even though in reality that
client’s requests may actually only have been forwarded to a
subset of the proxies (of course, in the ground-truth valida-
tion of Section 3 client aggregation was not used).

For comparison, we also generated this constellation over
a period of 1 day with CT-NOR using an FDR of 5%, and
with binomial co-occurrence using a threshold of 0.95 (i.e. a
p-value rate of 5%). The CT-NOR full day constellation

9

eoc-wins-01
65.53.192.23

camitgdca01
157.58.63.8

desktop-198
192.168.187.198

eur-prxy-03
65.53.196.29

eur-prxy-04
65.53.196.28

camresisaa01
157.58.63.16

eur-prxy-05
65.53.196.31

eur-prxy-06
65.53.196.32

16 offsite DNS servers

eur-prxy-08
65.53.196.9

eur-prxy-07
65.53.196.41

eur-prxy-02
65.53.196.56

eur-prxy-01
65.53.196.57

eur-prxy-09
65.53.196.44

NBNS

DNS

DNS

NBNS

DNS

HTTP

HTTP

HTTP

HTTP

HTTP

HTTP

HTTP

HTTPHTTP

HTTP

HTTP

HTTP

HTTP

HTTP

HTTP

DNS

HTTP

HTTP

HTTP

HTTP

HTTP

Figure 7: HTTP dependency constellation for one hour.

contains 171 additional servers over the one hour constel-
lation, of which the vast majority—150—are upstream DNS
servers. For binomial co-occurrence, the single hour con-
stellation is almost identical to that generated by CT-NOR,
but the full day graph includes 105 new nodes plus 108 ad-
ditional upstream DNS servers. Out of these 105, two thirds
turn out to be client (desktop) computers, which strongly im-
plies that almost all of these dependencies are unlikely to be
correct. Clearly over a longer time period the likelihood of
chance co-occurrence between channels is problematic for
the pairwise test.

5.2 Name resolution and web browsing
The relationship between HTTP and DNS is well-known

and does not need further elaboration here. We expect to
find evidence of this in our traces, as well as a less univer-
sally common dependency between Netbios Name Service
(NBNS) and HTTP. This is because the Microsoft enterprise
intranet contains a large number of different disjoint DNS
domains, all of which have development and test DNS sub-
domains present on the intranet, in addition to the obvious
subdomains belonging to corp.microsoft.com itself.
The use of multiple federated Active Directory forests, each
with many AD, domains also leads to non-trivial use of non-
local NBNS naming within the network.

To investigate the relationship between HTTP and name
resolution we first examine the CT-NOR dependency mod-
els of all hosts in the network. Over a time period of one
hour we find DNS response-to-HTTP request correlations
for 47% of clients sending HTTP requests, while over 24
hours this proportion rises to 83%. The increase is explained
by the effects of client-side caching of DNS name lookups
(typically 15 minutes). The relationship between the Netbios
name resolution protocol and HTTP requests is also signifi-
cant: we find that 11% of clients issuing HTTP requests have
the NBNS response-to-HTTP request correlation in their sin-
gle hour constellation and 33% in their constellation for one

day.
Secondly, we use the causal mode of the constellation

building algorithm, described in Section 4, to see how Con-
stellation would answer the question “what hosts and ser-
vices are required in order to browse the web?” We gener-
ate causal constellations from a seed edge that is the outgo-
ing HTTP request channel to the proxy server, and find that
the resulting graphs fall into 3 main groups, depending on
whether just HTTP is involved, or if name resolution using
DNS or WINS is also used.

It is apparent from this that the essential infrastructure for
web browsing from our site comprises the 10 proxy servers
and the local domain controller. A large number of other
DNS servers (168 over the course of the day) also appear
in over 60% of these constellations, while 25 constellations
contain the WINS servers used for Netbios Name Resolu-
tion. Figure 7 shows a typical “HTTP dependency” con-
stellation containing DNS and WINS servers as well as the
HTTP proxies.

These findings reassure us that Constellation observes the
dependencies we expect to see in this network, as well as
shedding light on interesting aspects such as the volume of
NBNS name lookup that took place for web browsing.

5.3 Email
The dependencies for email are complex and highly vari-

able over time. The email client used on all desktops in the
network is Outlook, which maintains numerous, long-lived
connections to a number of Exchange servers situated in an
offsite data centre (and therefore uninstrumented, unfortu-
nately). The nature of the computers and services used by an
Outlook client at any given time depends upon many things.
For example, services such as the RPC endpoint mapper and
DNS will be required when a new email session starts up.
The global Active Directory catalog stores mailbox config-
uration and the global address book—the frequency of AD
updates will impact communication by clients with domain
controllers. Contact with a domain controller also occurs to
invoke authentication services and protocols such as Netlo-
gon and Kerberos. In our network, Exchange servers play
dedicated roles, either supporting personal mailboxes or else
shared email folders (public folders), and so the constellation
for many clients includes not just their primary exchange
server, but possibly one or more public folder servers also.

In contrast to the DNS/HTTP scenario we explored above,
email TCP connections tend to be long-lived (on the order of
hours or even days). Therefore we constructed causal con-
stellations for email over a period of one day rather than one
hour. We found the vast majority of constellations to be very
small, with an average of 4 nodes and 6 edges. However, as
expected, the structure of these dependency graphs is a lot
less consistent across the set of hosts than for HTTP. Nev-
ertheless, it is notable that 90% of the constellations contain
the DC, usually via Kerberos and DNS, in addition to their
Exchange server, and one third also contain a Public Folder

10

desktop-41
157.58.60.41

camitgdca01
157.58.63.8

eur-msg-10
65.53.193.172

red-pfs-02
157.54.5.90

AD

3338

19072
AD

Exchange

Exchange

(a) Typical 24-hour email constellation.

camitgdca01
157.58.63.8

euro-dc-09
65.53.192.38

eur-msg-02
65.53.192.51

eur-msg-10
65.53.193.172

eu-dub-dce-01
65.53.192.17

desktop-63
157.58.56.63

spa-dcf-02
157.57.240.15

KRB5

DNS

Netlogon

Exchange

Exchange

LSA

KRB5

Netlogon

Exchange

Exchange

LSA

DNS

(b) Complex email dependency constellation.

Figure 8: 24-hour Email dependency constellations

server. Other hosts found in the email constellations include
file servers, web servers, non-local domain controllers and
various security nodes. One of the common configurations
for email dependency is depicted in Figure 8(a), and one of
the more complex constellations that we found is shown in
Figure 8(b).

5.4 Printing
Printing proves to be an interesting application to con-

sider. A simple operation of the Constellation system some-
times results in a selection of client computers appearing in
the constellation, as seen in Figure 9, and not always the ac-
tual printer. This comes about because of the way spooling
is handled. Print jobs are spooled no less than three times:
first on the client computer, second on a central print server,
and finally on the printer itself. In addition, the print server
makes callbacks to any client with an open job or status win-
dow on the printer when the printer changes status, and this
callback is in the form of an RPC delivered to a named pipe
over the remote filesystem protocol (SMB). Thus it appears
that the print server acts as a filesystem client to a selection
of desktop computers before and after submitting every job

desktop-64
157.58.53.64

desktop-76
157.58.56.76

desktop-65
157.58.60.65

camitgdca01
157.58.63.8

camitguspa01
157.58.63.19

desktop-159
157.58.56.159

desktop-199
157.58.56.199

Broadcast
157.58.56.255

8 offsite DNS servers

printer-1
157.58.60.13

desktop-30
157.58.53.30

desktop-25
157.58.53.25

SMB

DNS

SMB

NBNS

SMB
NBSS

DNS

DNS

DNS

SMB

SMB
NBSSSMB

DNS

SMBNBSS

SMB

LPD

SMB

NBSS

SMB

NBSSSMB

SMB

DNS

LPD

NBSS
SMB

SMB

Figure 9: A printing dependency constellation containing 6
clients whose interactions with the print server camitguspa01
occur during the same time period as those of the root node,
desktop-76.

to a printer.
It is hard to even determine what is a correct or useful

constellation here; in some ways these clients, which might
have jobs ahead in the queue, might reasonably be consid-
ered real dependencies since the print job of the constellation
of interest may be dependent on the other jobs completing
successfully. From another point of view these additional
clients should not be entangled in a general constellation;
we may not find useful a constellation in which every client
that prints is dependent on every other client that prints.

One of the most important issues here is the length of time
between the initial print job being spooled to the server and
from the server to the physical printer which can often be
several seconds. This is an example of a situation in which
a co-occurrence based test will never generate useful results,
but the CT-NOR method manages to correctly identify de-
pendencies on each of the printers, learning delay distribut-
ions of Gauss(µ u 2.0,σ u 1.2) or Exp(λ u 0.6) with the
Gaussian model showing a marginally higher log likelihood.

5.5 Pruning the search space
Consider a naı̈ve diagnostic tool that, when prompted by

a user, attempts to discover the reason for the failure of an
activity. The tool first pings all the hosts to which the user’s
host has made a request in the preceding hour, and requests
all those which are available to do the same. In this way the
tool builds a picture of all hosts on which the user’s activity
could have depended. We simulate the behaviour of such a
tool by running Constellation with a zero confidence thresh-
old.

Figure 10 shows the number of new nodes searched at
each depth level, together with the same numbers for Con-
stellation using a confidence threshold of 95% and Constel-
lation with a zero confidence threshold. It can readily be

11

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 1 2 3 4 5 6 7 8

M
ea

n

of
 n

od
es

Search Depth

Naive Flooding
Constellation, p=0%

Constellation, p=95%

Figure 10: Pruning the search space using Constellation

seen that using Constellation to constrain the search to rele-
vant hosts dramatically prunes the search space. Note that,
due to the nature of our trace collection, a large fraction of
the nodes found early in the search process will be offsite,
preventing us from continuing the search. With full network
visibility we would expect the difference to be much more
marked.

6. DEPLOYMENT ISSUES
Constellation was designed to be deployed as a distributed

system with each host building its own local traffic model,
and a distributed algorithm for contruction of constellations.
However, as our experimental evaluation demonstrates, it is
equally possible to centralise traffic collection, processing
and analysis. In this section we discuss the design tradeoffs
of various deployment alternatives.

6.1 System architecture
The processing pipeline used by Constellation is shown

graphically in Figure 11. This modular structure has the ad-
vantage of much flexibility. Packet timestamps on channels
can be captured locally on the machines or centrally with a
router tap. Filtering and pre-aggregation can be performed at
the capture site, or the data can be moved remotely for pro-
cessing, and so on. A deployment could choose to centralise
for a (possibly complete) subset of machines at any stage of
the pipeline shown above, or to operate the steps fully dis-
tributed, in any combination. We conceive of several likely
deployment configurations from the flexibility available, de-
pending on the domain of interest:

In a large hosting environment Constellation would be de-
ployed on individual machines, either as a daemon running
tcpdump or as a kernel-mode driver. In this mode each ma-
chine learns its own network dependencies and may be able
to take advantage of operating-system specific knowledge
(e.g. from ps or netstat) to identify services and chan-
nels.

A network operator using Constellation for management
or auditing purposes may choose to centralise traffic moni-
toring at a router tap, giving a Constellation deployment that
does not rely on the participation of individual computers.

In many situations it would make sense to monitor traf-

Packets
?

Extract 5-tuples

?
Low-pass filter

?
Identify service & channels

?
Aggregate packets

?
Dependency test

?
Aggregate scores

?
Dependency scores

Figure 11: Constellation processing pipeline.

fic and perform the dependency tests at the level of virtual
machine hypervisor thus obtaining the efficiencies of dis-
tributed deployment without changing the running machine
images. The results could be useful for datacenter manage-
ment, e.g., to optimise the placement of VMs and shared
services.

Likewise the algorithm to construct constellations from
dependency scores could be centralised or distributed. A dis-
tributed implementation would remotely invoke a machine
to query its local model returning the dependencies. In a
manner similar to DNS queries, the recursion could be car-
ried out either by that machine or the initiator.

Centralised constellation construction (at one or a small
number of machines) is likely if centralised traffic monitor-
ing has already been chosen. Indeed this is exactly what we
do for the experimental evaluation in this paper that studies
previously captured packet traces. Our experiments showed
that a single machine is quite capable of performing this
computation in real time for a site possessing hundreds of
machines. A centralised (or logically centralised) system
makes it much simpler to apply consistent access control to
potentially sensitive information.

An intermediate design is to monitor traffic and learn pair-
wise correlations locally, which are then combined at a sin-
gle location to generate constellations as required. This is
the design employed by the Sherlock system [2]. Varia-
tions on this scheme include replication of correlation data
amongst nodes in a peer-to-peer system. A peer-to-peer de-
sign would make the Constellation service more resilient
to machine failures whilst retaining scalability: when some
machines have failed it would still be possible to recover
their most recent dependency information.

Security requirements, privacy concerns, and trust levels
within the network will also influence these design choices.
These same issues mean that Constellation, like netstat
and other tools revealing potentially sensitive information, is
unlikely to be deployed over the public Internet.

12

 0

 20

 40

 60

 80

 100

 1e-006 1e-005 0.0001 0.001 0.01 0.1 1 10 100

P
er

ce
nt

ag
e

Threshold (seconds)

HTTP, %remaining packets
SMB, %remaining packets

HTTP, signal-to-noise
SMB, signal-to-noise

Figure 12: Impact of low-pass filter on extracted signal-to-
noise and percentage of total packets processed for HTTP and
SMB datasets. As LPF threshold increases so does the SNR
while the percentage of packets processed decreases.

6.2 Performance
The CT-NOR dependency test has a computational com-

plexity bounded above by O(coboci(ci + logbi)) where ci
and co are the number of input and output channels respec-
tively, and bi and bo are the number of packets on the bus-
iest input and output respectively. Fortunately realistic data
avoids this bound in the common case. For a sample hour
of data 92% of hosts required less than one second of CPU
with our prototype, and only four hosts required more than
one minute. In a fully-distributed deployment, this corre-
sponds to a typical CPU overhead of less than 1%. For those
machines with high traffic volumes, or with a large number
of input and output channels, it is easy to periodically sample
the traffic to reduce the processing overhead. Another useful
way to speed up performance is to low-pass-filter the traffic
to reduce the number of samples that the test must consider.
In the next section we discuss this technique.

6.3 Low pass filter
Although Constellation uses packet timing relationships

as inputs, we actually expect causation to be exhibited be-
tween message timing relationships, i.e., between communi-
cations at layers above the network stack. Transport proto-
cols like TCP often impose a burst structure on traffic, where
each burst consists of several packets with very small inter-
arrival times. Compounding this, service protocols like SMB
and HTTP have massive variance in message sizes, e.g., an
SMB message might be a simple read request, or it might
be a response comprised of the entire file. Correlating tim-
ings between individual packets on IN and OUT channels
thus becomes influenced by other features such as the size of
higher-layer messages. It therefore seems natural to apply a
low-pass filter (LPF) to remove packets on a channel which
are “too close” to their predecessors, on the basis that such
packets are likely part of a burst and actually correspond to

a single prior service activity.
To examine the impact of applying an LPF we analysed

the signal-to-noise ratio (SNR) for two protocols, where the
the signal is the number of service-layer messages over all
channels present, and the noise is the number of packets re-
maining. Figure 12 presents the SNR for HTTP and SMB
as the LPF threshold increases from 1 µsec. For SMB we
see that an LPF threshold of 1 ms significantly increases the
SNR, so that around 90% of remaining packets represent
real service-layer messages; increasing the threshold above
1 ms has little further impact. For HTTP the progression
is smoother for threshold values between 1 ms and about
1 minute.

Applying an LPF has a second effect: dropping packets
from channels substantially decreases the processing costs
for the dependency metrics, but with the potential disadvan-
tage that the presence of fewer signal packets might increase
the real time over which adequate data must be observed to
form a constellation. The pair of decreasing lines in Fig-
ure 12 show the proportion of packets remaining as the LPF
threshold increases for the SMB and HTTP data. As ex-
pected, at the threshold value where the SNR dramatically
increases (around 0.1–1 ms for both HTTP and SMB), the
percentage of remaining packets on the channels dramat-
ically decreases. This supports the claim that the packets
dropped by the LPF are largely message continuation pack-
ets, serving no useful purpose for service correlation.

We repeated the ground-truth experiments of Section 3 ap-
plying an LPF of 200ms, and found insignificant differences
in the precision-recall curves for all 3 dependency tests. Ap-
plying a 200ms LPF to the sample hour we found that 98%
of hosts complete processing within one second of CPU, and
the worst case host is reduced to under 8 seconds.

7. RELATED WORK
Constellation is a general-purpose, black-box tool for in-

ferring dependencies, which leads necessarily to a statistical
approach and hence some degree of uncertainty in the re-
sults. This contrasts with approaches that monitor system
and network activity to explicitly track causal paths, for ex-
ample Pinpoint [6] and Magpie [3]. The latter techniques are
highly accurate, but require supporting mechanisms such as
request identifier propagation or event logging on all partic-
ipating systems.

Project5 [1] and WAP5 [17] make use of packet times-
tamps for correlation in a similar fashion to Constellation.
Those systems aim to expose delays and bottlenecks in lo-
cal and wide area networks respectively, by recording the
application-level messages sent and received by a process
(which may comprise multiple network packets). Various
linking algorithms are then applied to determine the most
likely “causal path”, with estimated delays at each hop. In
contrast, Constellation makes no attempt to infer a single
causal path. Rather, the dependency test of Section 2 identi-
fies all pairs of correlated channels at each host, enabling a

13

complete picture of the inter-dependence of all services in a
network.

The Sherlock project [2] can be viewed as complementary
to Constellation. While Sherlock adopts similar definitions
for services and channels, it uses a different algorithm for
detecting dependencies: perhaps the CT-NOR test and other
statistical ideas of Section 2 could be plugged into Sher-
lock’s infrastructure. Comparing the outputs of different de-
pendency detection algorithms is a challenging problem in
its own right. Once detailed results from Sherlock become
available, this will become a fruitful area for ongoing work.

Given the local nature of channel correlations, it is straight-
forward to run the constellation building algorithm in a dis-
tributed fashion, initiated on-demand by the root host and
recursively querying other nodes. This has the benefit of lim-
ited traffic overhead across the participating nodes, and be-
cause correlations are maintained by each host locally, Con-
stellation does not require sophisticated information man-
agement schemes such as Astrolabe [20] or SDIMS [23]. A
drawback of this approach is that all machines in the Con-
stellation system must be functional at the time when the
constellation is constructed. This could be problematic when
using the system for reactive network troubleshooting.

The need for efficient network diagnosis tools and archi-
tectures that enable network management has been stressed
before [7, 11, 22]. These papers propose augmenting the net-
work with “a knowledge plane”, separate and alongside the
existing network, reporting on its current status. In contrast,
Constellation provides a basic service for inferring network
dependencies over which more sophisticated network man-
agement utilities can be built, and it has the advantage of
being very easy to deploy over existing infrastructure.

Constellation aims at providing the user or network oper-
ator with the capability of comprehending and troubleshoot-
ing complex network behaviours. While end-user diagnosis
tools have been proposed in the past [14, 15], these solu-
tions identify problems of specific applications or protocols
(e.g., TCP reordering, queuing and loss events) and cannot
identify network-wide dependencies of host or services.

8. CONCLUSION AND FUTURE WORK
Constellation is a new approach for inferring service de-

pendencies in a computer network, deployable on existing
infrastructure and using only lightweight monitoring. It au-
tomatically discovers the network-wide map of dependen-
cies from a particular computer, removing the drudgery and
guesswork of combing through tcpdump and Ethereal out-
puts to glean an understanding of how network services are
related. In this paper we have presented results against a
real network trace that are both accurate with respect to a
ground-truth dataset, and that we have shown to be useful
for end-users and network administrators alike.

The sound probabilistic models and statistical test that we
have developed provide a solid basis on which to build, and
open new possibilities that we are planning to explore in

the near future. For example, we can use the local mod-
els to compute probability scores and confidence measures
on whole paths (in addition to local dependencies). This,
coupled with strategies for maintaining and comparing con-
stellations over time, will enable administrators to quickly
identify change, localise problems, and discard alarms that
are consequences of root causes along these paths. It is to-
wards this vision that we will continue this research path.

9. REFERENCES
[1] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, and

A. Muthitacharoen. Performance debugging for distributed systems
of black boxes. In SOSP’03, pages 74–89, Oct. 2003.

[2] V. Bahl, R. Chandra, A. Greenberg, S. Kandula, D. Maltz, and
M. Zhang. Towards highly reliable enterprise network services via
inference of multi-level dependencies. In SIGCOMM’07, Aug. 2007.

[3] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using Magpie for
request extraction and workload modelling. In OSDI’04, Dec. 2004.

[4] Y. Benhamini and Y. Hochberg. Controlling the false discovery rate:
a practical and powerful approach to multiple testing. Journal of the
Royal Statistical Society, 57(2-3):125–133, 1995.

[5] C. M. Bishop. Pattern Recognition and Machine Learning. Springer,
2006.

[6] M. Y. Chen, A. Accardi, E. Kıcıman, J. Lloyd, D. Patterson, A. Fox,
and E. Brewer. Path-based failure and evolution management. In
NSDI’04, pages 309–322, Mar. 2004.

[7] D. Clark, C. Partridge, J. C. Ramming, and J. T. Wroclawski. A
knowledge plane for the Internet. In SIGCOMM’03, Aug. 2003.

[8] N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian Network
Classifiers. Machine Learning, 29(2-3):131–163, 1997.

[9] M. Goldszmidt, I. Cohen, A. Fox, and S. Zhang. Three research
challenges at the intersection of machine learning, statistical
induction, and system. In HotOS’05, 2005.

[10] G. R. Grimmett and D. R. Stirzaker. Probability and Random
Processes. Oxford University Press, 2001.

[11] J. M. Hellerstein, V. Paxson, L. Peterson, T. Roscoe, S. Shenker, and
D. Wetherall. The Network Oracle. In Bulletin of the IEEE Computer
Society Technical Committee on Data Engineering, 2005.

[12] M. S. Johns. Identification Protocol. RFC 1413, IETF, Feb. 1993.
[13] L. Lamport. Quarterly quote. ACM SIGACT News, 34, Mar. 2003.
[14] R. Mahajan, N. Spring, D. Wetherall, and T. Anderson. User-level

Internet path diagnosis. In SOSP’03, pages 106–119, Oct. 2003.
[15] V. N. Padmanabhan, S. Ramabhadran, and J. Padhye. NetProfiler:

Profiling wide-area networks using peer cooperation. In IPTPS’05,
Feb. 2005.

[16] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufmann, 1988.

[17] P. Reynolds, J. L. Wiener, J. C. Mogul, M. K. Aguilera, and
A. Vahdat. WAP5: Black-box performance debugging for wide-area
systems. In WWW’06, May 2006.

[18] J. Storey. A direct approach to false discovery rates. Journal of the
Royal Statistical Society, 64:479–498, 2002.

[19] M. Tanner. Tools for statistical inference. Springer, 1993.
[20] R. van Renesse, K. P. Birman, and W. Vogels. Astrolabe: A robust

and scalable technology for distributed system monitoring,
management, and data mining. ACM Transactions on Computer
Systems, 21(2):164–206, May 2003.

[21] L. Wasserman. All of Statistics. Springer, 2004.
[22] M. Wawrzoniak, L. Peterson, and T. Roscoe. Sophia: An information

plane for networked systems. In HotNets-II, 2003.
[23] P. Yalagandula and M. Dahlin. A scalable distributed information

management system. In SIGCOMM’04, Aug. 2004.

14

