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Abstract. We describe a method for computing a dense estimate of
motion and disparity, given a stereo video sequence containing moving
non-rigid objects. In contrast to previous approaches, motion and dis-
parity are estimated simultaneously from a single coherent probabilistic
model that correctly accounts for all occlusions, depth discontinuities,
and motion discontinuities. The results demonstrate that simultaneous
estimation of motion and disparity is superior to estimating either in
isolation, and show the promise of the technique for accurate, proba-
bilistically justified, scene analysis.

1 Motivation and previous work

The “temporal stereo + motion” problem of estimating the disparity and motion
fields in a video sequence of moving objects captured by a calibrated pair of
stereo cameras has been studied for at least two decades [1]. It is worthwhile to
distinguish between the standard temporal stereo + motion problem, and the
more restricted problem of estimating disparity and motion from two consecutive
frames in a stereo sequence; we refer to the latter as “two-frame stereo + motion”.
This paper first introduces a novel solution for two-frame stereo + motion, then
explains how to extend the solution to stereo sequences.

Our ultimate objective is to form a reliable, dense 2.5D representation of an
image sequence. Acquiring a rectified stereo sequence and running traditional
stereo algorithms fills in much of the necessary information, but dense disparity
estimation from a single stereo pair is challenging. Matches can be highly am-
biguous in non-textured regions; and background regions near foreground object
boundaries are only visible in a single camera, meaning their depth must be
estimated using only prior information about the shapes of objects in the world.

Exploiting temporal coherence in the stereo sequence can in principle alle-
viate both of these problems, however as previous work has noted [2], in the
absence of explicit motion estimates it is hard to do better than to average out
thermal imaging noise in stationary regions. We therefore propose to jointly es-
timate dense motion and disparity in a single coherent probabilistic framework.
We show that making use of two-frame motion estimation in conjunction with
traditional stereo greatly reduces the regions of the scene which are visible only
in a single image. In addition, by filtering over time we are able to propagate



information about the depth of scene patches during extended occlusions in the
non-reference image.

Work on temporal stereo+motion has generally been based on sparse image
features. This sparsity is not directly compatible with the dense reconstruction
of the disparity and motion fields, which is the goal of this paper. Examples of
the feature-based approach include [3], which uses line correspondences, and [4].

One significant example that uses optical flow rather than features is [5].
However, this approach employs an iterative segmentation of the scene: an ini-
tial estimate is obtained assuming a single rigid motion of the entire scene, then
objects with distinct motions are segmented in later iterations by detecting out-
liers. In contrast, the approach of this paper employs a single probabilistic model
from which the motions of all objects are inferred coherently.

Our work is closer in spirit to the large literature on dense stereo reconstruc-
tion, including those methods that use belief propagation [6], graph cuts [7], or
dynamic programming [8, 9]. However, none of these approaches attempt motion
estimation.

Other notable temporal stereo + motion contributions include [10], which
achieves excellent accuracy using structured light, and [11, 12], both of which
describe interesting algorithms which cannot conveniently be placed in a prob-
abilistic framework.

Our approach to two-frame stereo + motion defines a single Markov random
field (MRF) whose nodes are the pixels of the reference image, and whose la-
bels incorporate all possible disparity, motion, and occlusion values. Inference is
performed by approximating the MAP estimate for this MRF using loopy belief
propagation. As far as we are aware, this is the first work to attempt simul-
taneous disparity and motion estimation using MRFs. In more abstract terms,
however, our approach is distinguished from previous approaches to temporal
stereo + motion in three important respects: (i) our estimates are dense, in con-
trast to feature-based approaches such as [3]; (ii) we employ a single coherent

probabilistic model, in contrast to iterative segmentation approaches such as [5];
and (iii) the likelihoods correctly account for occlusions and discontinuities. We
believe this paper presents the first stereo + motion work satisfying all of (i)-(iii).

Item (iii), the modeling of occlusions and discontinuities, can be viewed as a
generalization of the occlusion modeling in much previous work on stereo (e.g. [13,
8]). The essential idea is that the likelihood of a particular disparity hypothe-
sis for a particular world point cannot be computed without also specifying
whether that point is visible or occluded in each of the images. This “occlusion
status” varies in a deterministic fashion near object boundaries. Figure 1 gives
a schematic example of this for the stereo + motion problem. One key contribu-
tion of this work is that the data likelihoods in the MRF are computed in the
following way. The MRF label at a reference image pixel includes an occlusion
status (corresponding to the color rendered in figure 1), and this is used in turn
to determine which of the non-reference image patches should contribute to the
data likelihood. In contrast to much previous work on stereo and motion, patches
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Fig. 1. Motion and disparity determine visibility in non-reference images.

Two foreground objects with positive disparities are shown moving against a zero-
disparity stationary background. Each pixel in the reference image is colored according
to which non-reference images it is visible in. For example, a pixel visible in the left and
right previous images but not the left current image is colored blue + green = cyan,
pixels visible in all three non-reference images are white, and pixels visible nowhere
except the reference image are black.

corresponding to occluded world points are explicitly excluded when they should
be.

Our solution to the multi-frame temporal stereo + motion problem amounts
to a simple extension of the two-frame MRF. By treating the problem in the
context of filtering (as opposed to smoothing), the outputs from previous frames
can be incorporated by adding an extra term to the MRF data cost.

Section 2 describes the MRF employed for two-frame stereo + motion, and
Section 3 explains the extension to the multi-frame case. Section 4 discusses the
use of loopy belief propagation to approximate MAP estimates in these MRFs,
and Section 5 describes the results.

2 The MRF for two-frame stereo + motion

The input to the two-frame stereo + motion algorithm consists of four images:
Left0, Right0, Left1, Right1 (which are, respectively, the left and right stereo
views of the previous and current frames of a stereo video sequence). The stereo
pairs are assumed to be rectified, so that epipolar lines are horizontal, with
corresponding pairs occurring on the same scanline.

The output consists, informally, of a complete reconstruction of the disparity
and motion fields implied by these four images. To formalize this, we define a



graphical model and compute an approximation to the MAP estimate of the
disparity and motion fields. The unknowns in the graphical model form a stan-
dard four-connected rectangular lattice of the same size as the input images.
The nodes are denoted gx,y, x ∈ {0, 1, . . . , X − 1}, y ∈ {0, 1, . . . , Y − 1}, where
X,Y are the width and height, respectively, of the input images. We select the
current right-hand image Right1 to be the reference image, so the state at node
gx,y, denoted sx,y, represents the motion and disparity estimated at pixel (x, y)
in Right1.

The state sx,y at node gx,y models a particular point (or, more realistically,
a patch) P on a particular object in the world. P is found by back-projecting a
ray from the pixel (x, y) in the reference camera until the ray intersects a scene
object. Note that P is fixed on the object, but the object itself may have moved
between the previous and current frames. Note also that P may or may not be
visible in each of the three non-reference images. The state sx,y is specified by
five components. Omitting the x, y suffices, we write s = (o, d, u, v, w), where:

– o is an “occlusion status”, described below

– d is P ’s disparity in the current frame

– u and v are respectively the horizontal and vertical components of P ’s motion

– w is the difference between P ’s disparity in the previous frame and the
current frame; w can also be thought of as the “depth” component of the
motion.

The occlusion status o comprises three binary flags o = (oL1, oL0, oR0) specify-
ing whether or not P is visible in the non-reference images. A formal definition
of the remaining state variables — d, u, v, w — consists of describing where P
projects to in each non-reference image, assuming that it is visible. The defini-
tions adopted are that P projects to

(x+ d, y) in Left1

(x− u+ d− w, y − v) in Left0 (1)

(x− u, y − v) in Right0.

The posterior probability of the graphical model with states {sx,y} is (by
definition) the product of some one- and two-node potentials:

L =
∏

(x,y)

Φ(sx,y)
∏

(x,y)∼(x′,y′)

Ψ(sx,y, sx′,y′), (2)

where the second product is over pairs of neighboring nodes.

Maximizing L is the same as minimizing its negative log, so writing φ =
− logΦ,ψ = − logΨ we can cast the final objective as minimizing the log poste-
rior: L =

∑

(x,y) φ(sx,y) +
∑

(x,y)∼(x′,y′) ψ(sx,y, sx′,y′). The first term here is the
data cost, discussed next in section 2.1. The second term is the continuity cost,
discussed in section 2.2.



2.1 Data cost

The normalized sum of squares difference (NSSD) [14] between patches centered
at (x, y) in image I and (x′, y′) in image I ′ is defined as

NSSD(I, x, y; I ′, x′, y′) =
∑

dx,dy ‖(Ix+dx,y+dy − Ix,y) − (I ′x′+dx,y′+dy − I
′

x′,y′)‖2

2
∑

dx,dy

(

‖Ix+dx,y+dy − Ix,y‖2 + ‖I ′x′+dx,y′+dy − I
′

x′,y′‖2
) (3)

Here, (dx, dy) ranges over an origin-centered K ×K patch of integers in Z
2; ‖ · ‖

is the Euclidean norm in RGB space (i.e. R
3); Ix,y is the RGB value (in R

3) of
the image I at pixel location (x, y); Ix,y is the average RGB value of the image
I over a K ×K patch centered on (x, y).

Experience has shown that the discriminatory power of the NSSD (3) is im-
proved by changing it in two ways. First, the means Ix,y are computed with a
Gaussian weighting centered on the relevant patch, with a relatively small stan-
dard deviation of 0.75 pixels. Second, the NSSD is redefined to be the minimum
of (3) over all 2-D sub-pixel shifts of the patch centered at (x, y). The sub-pixel
shift can be computed analytically from the image and gradient values within
the patch, using the Lucas-Kanade formulas [15].

Obviously, the NSSD is expected to be small for patches derived from dif-
ferent views of the same world point, and arbitrary otherwise. This intuition is
captured here by assuming the NSSD is distributed according to some probabil-
ity law Π(·) when the patches correspond, and a distinct probability law Π̃(·)
otherwise. The negative log probabilities for these distributions will be written
π = − logΠ , π̃ = − log Π̃ . Numerical values for Π, Π̃ can be learned from train-
ing data or derived from physical assumptions, as described in our technical
report [16].

The data cost associated with graph node gx,y in state s = (o, d, u, v, w) can
now be defined. First, let

NSSDL1 = NSSD(Right1, x, y; Left1, x+ d, y)

NSSDL0 = NSSD(Right1, x, y; Left0, x+ d− u− w, y − v)

NSSDR0 = NSSD(Right1, x, y; Right0, x− u, y − v) (4)

These definitions have a simple intuitive interpretation. The node gx,y models a
world point P . Each of the NSSDs in (4) computes the similarity of two patches
that are projections of P : one in the reference image, centered at (x, y), and one
in a non-reference image, centered at the location implied by d, u, v, w, as defined
by equation (1). However, there is no guarantee that P is actually visible in the
non-reference images. In the cases when P is visible, the NSSD will be distributed
according to Π(·); but when it is occluded, the NSSD is distributed according
to Π̃(·). Recalling the definitions of π, π̃ above, this motivates the definition
CostL1 = π(NSSDL1) if oL1 = Visible or π̃(NSSDL1) otherwise, and similarly for
CostL0 and CostR0. These costs are genuine log probabilities, based on the distri-
bution of NSSDs for matched and unmatched patches. Assuming independence



between the different NSSD outcomes is equivalent to summing these log proba-
bilities, leading to a total data cost given by φx,y(s) = CostL1 +CostL0 +CostR0.
Previous work [17] using a similar data cost has shown empirically that the log
likelihood ratio of NSSDs, π/π̃, is well-approximated by a linear function in the
region of interest. We take advantage of this here by noting that the above data
cost can be expressed in terms of this log likelihood ratio, and adopt a learnt
linear function for π/π̃.

2.2 Continuity cost

Consider two neighboring nodes g, g′ in the graphical model. They are in states
s = (o, d, u, v, w) and s′ = (o′, d′, u′, v′, w′) respectively. We would like to derive
the continuity cost ψ(s, s′). We assume the five components of the state are prob-
abilistically independent, given the image data. Neglecting these dependencies
is equivalent to adopting the following functional form for the continuity cost:
ψ(s, s′) = ψm(o, o′) + ψd(d, d

′) + ψu(u, u′) + ψv(v, v′) + ψw(w,w′). Reasonable
choices for each of these terms can be determined based on expected scene char-
acteristics and the physics of image formation in a calibrated stereo camera rig.
For ψm, we choose a Potts model with temperature T :

ψm =

{

0 if o = o′,

1/T if o 6= o′
(5)

where an appropriate value for T can be determined by simulating the Potts
model.

For each of the remaining terms in the continuity cost, we assume the absolute
difference is distributed such that the negative log of its distribution function
has a truncated linear form, for example: ψd(d, d

′) = min (a, b |d− d′|) . Our
technical report [16] describes how to choose sensible values for a, b based on
physical reasoning.

In fact, a need not be constant over the graphical model. Observe that dispar-
ity and motion fields are often discontinuous at object boundaries, and object
boundaries often occur at locations with high image gradients. This intuition
can be incorporated by setting a = a0 exp(−‖∇I‖/α), where ‖∇I‖ is the gradi-
ent of the reference image at the location corresponding to the nodes g, g′. We
follow [17] in setting α to be the average value of the image gradient over the
whole reference image. However, note that the authors of [17] switch on this so-
called “contrast model” only between nodes whose occlusion status differs: this
is because [17] deals with 1-D horizontal MRFs, in which a change of occlusion
status is guaranteed to correspond to an object boundary. When using 2-D or
3-D MRFs, object boundaries can occur between two neighboring MRF nodes
with the same occlusion status. (The simplest example is two vertical neighbors
straddling a horizontal object boundary—in this case, both relevant world points
are visible in all images.) Hence, our contrast model is switched on for all pairs
of neighboring nodes.



3 Temporal filtering of stereo + motion

The previous section described a model for computing disparity and motion fields
from two consecutive frames of a stereo video sequence. Clearly, this model could
be applied separately to each pair of consecutive frames in a sequence, to obtain
disparity and motion fields for the entire sequence. However, we would like to do
better: it should be possible to obtain improved estimates by exploiting temporal
coherence. This can be achieved with very little extra computational cost, by
adopting a filtering model in which inferences at time t are influenced by the
past — specifically, the output at time t− 1.

To explain the details of this, some more general notation is needed. Let

G(t) be the MRF for time t, with nodes g
(t)
x,y and labels s

(t)
x,y. The output of the

filtering algorithm at time t is a set of estimated labels ŝ(t) = {ŝ
(t)
x,y}.

It can be shown [16] that this filtering model is equivalent to adding an
extra term to the data cost of Section 2.1, consisting of a temporal compatibility

function γ(s
(t)
x,y; ŝ(t−1)). A plausible form of this temporal compatibility function

can be derived as follows. As usual, write the label in terms of its occlusion

status, disparity, and motion as s
(t)
x,y = (o, d, u, v, w), with the occlusion status

further broken out into three bits expressing the visibility in the non-reference
images: o = (oL,t, oL,t−1, oR,t−1). Let P be the world point visible at location
(x, y) in the reference image. Then sx,y expresses certain physical facts about P ,
including the following: if oR,t−1 = Visible, then P is visible in image Rightt−1 at
location x′ = x− u, y′ = y − v, with disparity d′ = d − w. Adopting a constant
velocity motion model, we may also assume that P ’s velocity at time t − 1 is
given by u′ = u, v′ = v, w′ = w.

However, note that the image Rightt−1 is the reference image for the stereo

+ motion computation on G(t−1). Thus (still assuming that oR,t−1 = Visible),
the MAP estimate for G(t−1) also has an opinion about P ’s state: specifically, its

opinion is equal to ŝ
(t−1)
x′,y′ , which we write more explicitly as ŝ

(t−1)
x′,y′ = (ô, d̂, û, v̂, ŵ).

The temporal compatibility function γ expresses the fact that P ’s disparity
and motion is expected to vary slowly, so this cost should be small when sx,y

is close to ŝx′,y′ . A standard choice is to interpret γ as the negative log of a
robust distribution function whose components are independent. This is equiv-
alent to taking γ(sx,y; ŝ

(t)) = γd(sx,y, ŝx′,y′) + γu(sx,y, ŝx′,y′) + γv(sx,y, ŝx′,y′) +
γw(sx,y, ŝx′,y′), with a robust cost function such as the truncated linear for each

component e.g. γd(sx,y, ŝx′,y′) = min(a, b |d′ − d̂|) for constants a, b.
However, the previous discussion assumed that point P was visible in Rightt−1

(i.e. oR,t−1 = Visible). If P is not visible, the temporal compatibility function
should be uniform. Therefore, the final form adopted for the components of γ is:

γd(sx,y, ŝx′,y′) =

{

min(a, b |d′ − d̂|) if oR,t−1 = Visible,

a otherwise,

and similarly for γu, γv, γw. Our technical report [16] explains how to make
sensible choices for a, b.



4 Inference for stereo + motion

We estimate the MAP of the MRF described in the previous section using the
min-sum formulation of loopy belief propagation (BP) [18]. The form of our
model allows the use of distance transform techniques [19] which greatly reduce
the computational cost, however belief propagation on large images with large
disparities and motions remains expensive. It is clear that a multi-resolution
approach would help to ameliorate the expense. But note that approaches such
as [19], which employ coarser resolutions of the pixel (or graph node) space,
while retaining the full state space resolution, are insufficient: the multiscale al-
gorithm must reduce the number of states considered at each node. We believe
it is possible to do this, but the design of such a multiscale algorithm is not at all
trivial, and must be postponed to a future paper. Hence, the results presented in
the next section employ small, coarsely-subsampled images in order to demon-
strate the effect of our stereo + motion algorithm while keeping computational
requirements within acceptable limits.

5 Results

We tested our algorithm on several stereo sequences obtained from the public
database at http://www.research.microsoft.com/vision/cambridge/i2i/DSWeb.-

htm. The examples shown here are taken from the “Geoff” sequence, focusing on
a 100×80 pixel region in the top corner of the sequence, subsampled by a factor
of 2 to give 50×40 pixels per frame. For the full stereo + motion computation we
use a label space with maximum values of |o| = 8, |d| = 8, |u| = 8, |v| = 3, |w| = 1,
giving 1536 labels per node. The small image size and restricted range of disparity
and motion are chosen for computational convenience, however the power of the
approach is demonstrated even on this limited example.

Figure 2 demonstrates resistance to fast-moving occluders. When a nearby
foreground object moves in from the left the stereo computation alone is unable
to accurately estimate the foreground disparity in the newly-occluded region.
The filtered stereo + motion algorithm correctly uses information from previous
timesteps to recover a reasonable disparity estimate. The 2-frame stereo+motion
algorithm, not shown, has a slightly noisier output but avoids the gross artifact.

Figure 3 shows an additional benefit of temporal filtering. The right hand
edge of the image is textureless and the foreground person is almost stationary,
hence neither the disparity alone nor two-frame stereo + motion can accurately
estimate the disparity where the wall is occluded in the left image. Since the
foreground person was previously further to the left, there was a reliable dis-
parity estimate on the wall at an earlier frame, and the filtering algorithm has
propagated this estimate in the absence of new information.

The full filtering algorithm for the examples shown takes around 5 s per
frame in a C++ implementation running on a 2.2GHz Intel Xeon workstation.
For comparison, the disparity-only computation on this small image patch takes
330ms per frame; comparing with the state of the art suggests there is substantial
room for improvement if performance were critical.
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Fig. 2. stereo+motion estimates disparity through transient occlusions. An
occluder has appeared in the bottom corner of the left current image (c) but not yet in
the right (d). The stereo computation alone (e) does not have enough information to
estimate the disparity in this region, but the filtered stereo+motion algorithm (f) uses
information from previous timesteps to improve the result.
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Fig. 3. stereo+motion propagates disparity estimates through multiple

frames. The foreground person has stopped moving, and there is a large left occlu-
sion in the textureless area on the right hand side of the image. The two-frame stereo
computation (e) has no information about the disparities in this occluded region and
the lack of texture causes a large artifact. The filtered stereo+motion estimate (f) prop-
agates disparity estimates from previous frames to stabilise the difficult region.

6 Conclusions

An algorithm was presented to solve the temporal stereo + motion problem.
We believe this is the first such algorithm to obtain dense disparity and motion
estimates using a coherent probabilistic framework with physically correct oc-
clusion labels. The approach models a two-frame stereo + motion problem as a
single MRF, and extends to the multi-frame case by using temporal filtering in
the same MRF framework.

The results confirm that dense stereo + motion produces superior results to
stereo alone. The estimates for both stationary and moving objects are stabilized,
exhibiting less flicker. Additionally, there are certain image regions in which
stereo alone has no information, but stereo + motion does have information in



(the majority of) those regions, and can therefore infer correct disparity and
motion fields there.

The clearest opportunity for future work is in decreasing the computational
expense of the algorithm, and the most obvious avenue for this is a multi-scale
approach. This is presently an object of active research.
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