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Abstract

Blob trackers have become increasingly powerful in recent
years largely due to the adoption of statistical appearance
models which allow effective background subtraction and
robust tracking of deforming foreground objects. It has been
standard, however, to treat background and foreground
modelling as separate processes — background subtraction
is followed by blob detection and tracking — which prevents
a principled computation of image likelihoods. This paper
presents two theoretical advances which address this limi-
tation and lead to a robust multiple-person tracking system
suitable for single-camera real-time surveillance applica-
tions.

The first innovation is a multi-blob likelihood function
which assigns directly comparable likelihoods to hypothe-
ses containing different numbers of objects. This likelihood
function has a rigorous mathematical basis: it is adapted
from the theory of Bayesian correlation, but uses the as-
sumption of a static camera to create a more specific back-
ground model while retaining a unified approach to back-
ground and foreground modelling. Second we introduce a
Bayesian filter for tracking multiple objects when the num-
ber of objects present is unknown and varies over time. We
show how a particle filter can be used to perform joint infer-
ence on both the number of objects present and their con-
figurations. Finally we demonstrate that our system runs
comfortably in real time on a modest workstation when the
number of blobs in the scene is small.

1. Introduction

This paper brings together two rapidly developing areas of
research in the field of visual tracking: blob tracking and
particle filtering. Blob trackers have been very successful
in following single objects through a scene [11, 19], partic-
ularly when stereo information is available [10]. Typically
the foreground object is modelled as an ellipse in the image
plane and the object is matched from frame to frame either
by correlation [4] or using some statistical properties of the
object; colour histograms [1] have been notably success-
ful in this respect. To improve robustness when the camera
is static, blob trackers typically make use of sophisticated

background subtraction. Statistical background subtraction
based on the output of filter banks has been found to be par-
ticularly effective [5]. However, the temporal filter used for
tracking blobs is generally a simple one—usually a constant
velocity predictor followed by matching to the closest fore-
ground patch in the neighbourhood of the prediction. This
can be very effective in simple scenes, especially when only
one object is present. There has been some work applying
blob tracking to multiple objects, particularly in the domain
of person tracking [3, 5, 6]; however, the lack of a sophisti-
cated filter typically means occlusion reasoning is rudimen-
tary and blobs corresponding to separate people are merged
when the people come close together in the image, split-
ting again when the people separate. This makes it difficult
to provide unique track labels for different people which
would be very useful in surveillance applications. The prob-
lem is reduced by using a camera mounted high enough that
the blobs are viewed from near vertical [3] but this is often
impossible for indoor surveillance.

Particle filtering [2, 7] has been successfully applied to
tracking objects in clutter, but has typically been used with
edge-based [8] or kinematic [9, 16] imaging models both
of which rely on an accurate model of the object shape for
robust tracking. Importance sampling [8] has been used to
combine blob detectors with an edge-based particle filter
but the blobs were used primarily for initialisation; the fil-
ter still relied on an accurate outline model of the object for
edge-based tracking. Sullivan et al. [17] proposed a region-
based imaging model, Bayesian correlation, which is suit-
able for particle filtering. By using information in the entire
region enclosed by a contour, Bayesian correlation allows
successful tracking despite an imprecise object model. Fur-
thermore, the flexibility of particle filtering permits a princi-
pled multiple-object tracker in which the number of objects
and their locations are simultaneously estimated from im-
age data. Multiple-object particle filtering was used in [18]
but the hierarchical method proposed there does not per-
mit the Bayesian interpretation central to the approach of
this paper. The Markov chain Monte Carlo jump-diffusion
methods of [14] are also related to multiple-object particle
filtering, but the approach developed here can be used in a
sequential filter and so is more suitable for online surveil-
lance applications.
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The Bayesian Multiple-BLob tracker (BraMBLe) pre-
sented here is, as far as we are aware, the first rigorous
implementation of a particle filter in which the number of
objects being tracked may vary during tracking. The key de-
velopment is the use of a fast and robust observation model
which accurately reflects the likelihood of differing num-
bers of objects being present; once such a model is avail-
able, it turns out that a standard particle filter can be applied
to yield a posterior distribution over the number and con-
figurations of objects. This is explained in section 3. The
observation model introduced here, termed the multi-blob
likelihood function, is based on the theory of Bayesian cor-
relation [17], extended to give much increased speed and
robustness in the context of a static, calibrated camera. The
new model uses individually learnt background patches,
pooled foreground patches, and geometric reasoning from
the camera calibration. Details are given in section 2.

The resulting system, BraMBLe, uses a single static
camera to robustly track several people as they enter, exit
and move about in a scene. When one or two people are
present, the system runs in real time on a modest single-
processor workstation, and with offline processing it tracks
complex scenes involving several people.

2. Observation likelihood
This section describes the multi-blob likelihood function
p(Z|X), which expresses the likelihood that a hypothesised
configuration X of objects gave rise to an observed image
Z. The configuration space for the blob tracking task is the
union of all possible configurations of 0, 1, 2, . . . objects; a
typical element is written

X = (m,x1, . . . , xm)

wherem is the number of objects, or blobs, present and xi is
a vector encoding the state of the ith object. It is often useful
to consider the position and shape of an object separately, so
we decompose the state further as xi = (X i,Si)T . In the
particular application of person-tracking described below,
X is a 2D floor position in world coordinates and S gives the
shape of a vertically-aligned generalised cylinder — details
are given in section 2.2.

The multi-blob likelihood function p(Z|X) is computed
using a variation on the Bayesian correlation scheme pre-
sented by Sullivan et al. [17]. As in [17], the image is
overlaid with a fixed grid of G locations {(ug, vg) : g =
1, . . . , G}. In the experiments described below a rectangu-
lar grid is used with locations spaced at 5-pixel intervals in
the horizontal and vertical image plane directions. At each
location g, a bank of filters is applied to the image patch
centred on (ug, vg) yielding a response vector zg . In our
experiments six filters are used: three radially symmetric
Gaussians, one each for the Y, Cr and Cb image channels,

and three radially symmetric Mexican hat functions (second
derivative of Gaussians), again one for each image channel.
All filters have standard deviation of 1.5 pixels and are trun-
cated at radius 5 pixels. The response values are assumed
conditionally independent given X , so

p(Z|X) =
G
∏

g=1

p(zg|X).

In [17] it is argued that while the Mexican hat filters can be
treated as independent at the grid resolution we use, non-
zero mean filters such as Gaussians are in fact correlated at
these spacings. However, these dependencies are substan-
tially mitigated in our model which adopts a different learnt
response likelihood function for every background patch.
Future work will quantify the reduction in correlation from
this effect.

To calculate the individual response likelihoods p(zg|X)
we assign each response g a label lg ∈ {0, 1, . . . ,m} ac-
cording to whether X hypothesises that image patch g is
centred in the background (lg = 0) or one of the m fore-
ground objects (lg = i for object i) and define p(zg|X) =
p(zg|lg). Note that this is a simplification of [17] in which
some patches were assigned a mixture of background and
foreground. The likelihood can now be rewritten as

p(Z|X) =
G
∏

g=1

p(zg|X) =
G
∏

g=1

p(zg|lg). (1)

Using a learned model of the background and foreground
(described below) the terms in the right hand product in
(1) can be computed directly. In fact, by pre-calculating
ylg = log(p(zg|l)) for g = 1, . . . , G and l ∈ {0, 1, . . . ,m}
we can efficiently compute the log likelihood of any hypoth-
esis X given the set of labels lg simply by performing table
lookups and additions. This can be further optimised by
noting that the particle filter described in section 3 requires
the likelihood at each time step only up to a multiplicative
constant. Hence we are free to define

ylg = log(p(zg|l))− log(p(zg|0)) (2)

so that y0g = 0 for all g and only foreground responses
contribute to the log likelihood. Note that ylg in (2) spec-
ifies the log-likelihood ratio comparing the hypothesis that
the response was generated by object l with the hypothesis
that it was generated by background. With the ylg computed
from (2), the algorithm for label assignment and computa-
tion of the log likelihood L of the hypothesis X is given
in figure 1. Step 1 is a simple way of enforcing an exclu-
sion principle [13, 15] by assigning zero likelihood to hy-
potheses in which distinct objects occupy the same physical
space in the world (‖ • ‖ denotes Euclidean distance in R

2)
but note that objects can still overlap or completely occlude
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1. if ‖X i − X j‖ < δe for any i 6= j, set L := −∞ and
halt; otherwise, set L := 0 and continue.

2. for g = 1 to G set lg := 0.
3. sort the objects in depth order where ψ(i), i =
1, . . . ,m enumerates the objects, closest first.

4. for i = 1 to m
(a) compute the set Gψ(i)obj of responses in the im-

age region occupied by object ψ(i). If Gψ(i)obj =
∅ set L := −∞ and halt.

(b) for all g ∈ Gψ(i)obj such that lg = 0:

i. set L := L+ y
ψ(i)
g

ii. set lg := ψ(i)

Figure 1: The multi-blob likelihood algorithm

each other in the image. Hypotheses in which an object lies
entirely off the visible image are rejected in step 4a. Sec-
tion 2.2 describes the key used for sorting in step 3 and an
efficient algorithm for computing Gψ(i)obj in step 4a.

2.1. Statistical appearance models
In [17], the foreground and background models were both
pooled from a broad training set, since the application was
primarily to locate objects in novel scenes. We can take
advantage of our static camera assumption to adopt a pre-
cisely tuned background model where each background re-
sponse likelihood is learned independently, much like the
background subtraction scheme in [5]. Note that assuming
a static camera is not the same as assuming a static back-
ground: motion and other variation (moving trees, twin-
kling surfaces) in the background are incorporated into
the response likelihoods automatically. We adopt a 4-
component mixture of Gaussians model for each response:

p(zg|lg = 0) =
4

∑

k=1

1

4
N (µkg ,Σ

k
g) (3)

learnt by performing k-means clustering with k = 4 on
training data and discarding any very small clusters. Then
µkg takes the mean of cluster k and Σkg is set to the diag-
onal approximation to the covariance of the cluster. We
add a small multiple of the identity matrix ∆B = δBI to
each learned covariance which is sufficient to suppress false
foreground responses to shadows. Finally, the mixture of
Gaussians is itself mixed with a lightly-weighted uniform
distribution to provide robustness against responses not ob-
served in the foreground or the background while training;
this is equivalent to adding a small constant τB to the like-
lihood (3):

p(zg|lg = 0) =
4

∑

k=1

1

4
N (µkg ,Σ

k
g +∆B) + τB .

We currently learn a separate static background model for
each test sequence using a few hundred empty background
images recorded at the same time as the test sequence; a
background model which updates online would be neces-
sary for extended sequences of many hours.

Our foreground model is pooled among all discs labelled
as foreground. The framework allows separate models for
distinct foreground objects but we have not yet exploited
this opportunity. We use a 16-component mixture of Gaus-
sians learned using k-means in the same way as the back-
ground model (but without the addition of a constant covari-
ance), so

p(zg|lg 6= 0) =
16
∑

k=1

1

16
N (µkfore,Σ

k
fore) + τF . (4)

Training foreground responses are generated using a train-
ing image sequence which contains foreground objects
moving against a static background. Each filter response
which is sufficiently unlikely to have been generated by a
learned model of the background is included as a training
response for the foreground clustering algorithm. Figure 2
shows the log-likelihood ratios ylg for a sample image.

The foreground model is pooled in the spirit of a colour
histogram model [1] but is less powerful since the zg are
assumed conditionally independent — we can only express
the notion that each response from a given foreground ob-
ject is drawn from the same histogram rather than being able
to specify a joint histogram of the responses. Future work is
necessary to determine a good way of incorporating depen-
dencies between foreground responses within the Bayesian
correlation framework.

2.2. A generalised-cylinder object model
In person-tracking experiments below we use a calibrated
camera to project from world coordinates to camera coor-
dinates and subsequently to the image plane. A person is
modelled as a generalised cylinder whose axis is vertical in
the world coordinate frame. The shape of the cylinder is
specified by the radius and height of four horizontal discs
(ri, yi), i = 1, . . . , 4 (figure 3). The object configuration
vector (X ,S) specifies a floor position X = (x, z)T and a
shape

S = (wf , ww, ws, wh, h, θ, αw, αs) (5)

from which the disc parameters (ri, yi) for the feet, waist,
shoulders and top of the head respectively are computed as

(wf , 0), (wwθ, αwh), (wsθ, αsh), (wh, h).

The parameter 0.5 ≤ θ ≤ 1 encodes how much the person
has turned away from the camera, so when θ = 0.5 the
person is viewed side on. The waist and shoulder heights
are modelled as a proportion (respectively αw and αs) of

3



Figure 2: Log-likelihood ratios ylg using learned fore-
ground and background models. Whiter values are more
likely to be drawn from the foreground model. Note the fore-
ground responses from the reflection in the glass wall on the
left — these cannot easily be suppressed, unlike shadows.

the total height h. This avoids introducing implausibly large
variances for the sizes of the head and torso.

The likelihood algorithm in figure 1 requires that objects
be sorted in depth order; we project the world-coordinate
centre (x, 0, z)T of each cylinder base to camera coordi-
nates and use the resulting depth as the sort key. Gobj in fig-
ure 1 is found by rendering the object into the image plane
at the resolution of the response grid (figure 4).

3. A Bayesian multiple-object filter
A key advantage of the multi-blob likelihood is that it can be
used as the observation model for a particle filter. In partic-
ular, the multi-blob likelihood assigns directly comparable
likelihoods to hypotheses containing different numbers of
objects. Thus the standard machinery of particle filters can
be used to produce a filter which tracks an unknown and
varying number of objects.

The output of a Bayesian time-series filter is the poste-
rior probability distribution p(Xt|X0, Z1:t), whereXt is the
system state at time t, X0 is a prior distribution and Z1:t is
a sequence of observations from times 1 to t. A particle fil-

yi

r i

(x,y,z)

Figure 3: Approximate projection of a generalised cylin-
der with base position (x, y, z) and k discs of radius and
height (r1, y1, . . . , rk, yk) (in experiments y = y1 = 0 and
k = 4). A ray is projected from the camera’s optical centre
to (x, y, z) and the horizontal line perpendicular to that ray
defines a vertical plane facing the camera. The approximate
projection is given by the polygon (red dotted line) found by
intersecting that plane with the cylinder.

ter approximates this posterior using a weighted particle set
{(Xn

t , π
n
t ) : n = 1, . . . , N}. We use here the simple parti-

cle filter referred to as CONDENSATION in [7], outlined in
figure 5. The notation of section 2 must be augmented be-
cause we now want to track distinctly identified objects as
they move over time: an object state becomes

x̃n,it = (φn,it , xn,it )

where φn,it is a unique identifier labelling which object is
being referred to and xn,it = (X n,i

t ,Vn,it ,Sn,it )T is the po-
sition and shape of the object as in section 2 now augmented
with a velocity Vn,it = (vx, vz)

T . The state of the system at
time t is Xt = (mt, x̃

1
t , . . . , x̃

mt

t ) and a particle is denoted

Xn
t = (m

n
t , x̃

n,1
t , . . . , x̃n,mt

t ). (6)

The prediction model p(Xt|Xt−1) states that each ob-
ject will remain in the scene with probability λr at each
time step, and additionally that there is probability λi that
a new object will enter the scene at each time step (this
is consistent with a Poisson distribution on object arrivals
and an exponential distribution on their survival times).
The algorithm for generating a new particle hypothesis
Xn
t = (mn

t , x̃
n,1
t , . . . ) from a previous particle Xn′

t−1 =

(mn′

t−1, x̃
n′,1
t−1, . . . ) is given in figure 6.

In our experiments the translational dynamics of X are
modelled as damped constant velocity plus Gaussian noise
and each shape parameter si ∈ S, i = 1, . . . , 8 obeys an
independent 1st order auto-regressive process model with
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Figure 4: Approximate rendering of a generalised cylin-
der. The red dots show the vertices of the polygon com-
puted in figure 3. Pairs of vertices projected from the same
disc have the same world height. We assume the camera is
mounted nearly horizontal and the lens is not too distort-
ing so these horizontal world lines are well-approximated
by horizontal image lines shown in green. The set Gobj of
responses in the region enclosed by the object (blue circles)
is found by interpolating between the horizontal lines at the
resolution of the grid G.

1. initialise {(Xn
0 , π

n
0 )}

N
n=1 from the prior distribution

X0.
2. for t > 0:

(a) resample {(Xn
t−1, π

n
t−1)} into {(X ′nt−1, 1/N)}.

(b) predict, generating Xn
t ∼ p(Xt|Xt−1 =

X ′
n
t−1) to give {(Xn

t , 1/N)}.
(c) weight, setting πnt ∝ p(Zt|Xt = Xn

t ) to give
{(Xn

t , π
n
t )} normalised so

∑N

n=1 π
n
t = 1.

(d) estimate X̂t for display.

Figure 5: The CONDENSATION algorithm

mean, steady-state standard deviation and process noise
µi, σi and ρi respectively [12]. The turn parameter θ is
additionally hard-limited to lie in the range 0.5 ≤ θ ≤ 1
(see section 2.2). The prediction function f preserves the
unique identifier of an object and generates a new position
and shape vector subject to the object dynamics described
above:

f(φ, (X ,V,S)T ) = (φ, (X ′,V ′,S ′)T )

X ′ = X + λvV + bXωX

V ′ = λvV + bXωX

S ′ = AS(S − S) +BSωS

S = (µ1, . . . , µ8)

BS = diag(ρ1, . . . , ρ8)

AS = diag(a1, . . . , a8) (7)

1. set mn
t := 0.

2. for i = 1 to mn′

t−1:
(a) generate r distributed as U [0, 1).
(b) if r < λr set mn

t := mn
t + 1 and x̃n,m

n

t :=

f(x̃n
′,i
t−1)

3. generate r distributed as U [0, 1).
4. if r < λi set mn

t := mn
t + 1 and set x̃n,m

n

t := g(t)

Figure 6: The multi-object prediction algorithm

where ωX and ωS are vectors of i.i.d. standard Gaussian-
distributed random variables and ai = 1−

√

ρ2i /σ
2
i . Values

for λv , bX and the ARP parameters µi, σi and ρi used in ex-
periments are given in section 4. The initialisation function
g assigns the unique identifier t and generates a position,
velocity and shape according to an object prior distribution:

g(t) = (t, ((x, z)T , (0, 0)T ,S)T )

where (x, z) is a random position drawn uniformly from a
rectangle corresponding to the visible floor area and S is
drawn from the steady-state distribution of the shape ARP.
For implementation reasons we limit the total number of
distinct objects which can be present in a particle set to
Mmax, so we keep track of Mt = {Φ1, . . . ,ΦMt

}, the set
of all unique identifiers present in any particle in the distri-
bution at time t. We only generate initialisation samples at
time t if Mt−1 = |Mt−1| < Mmax. When no performance
constraints are in effect Mmax is set sufficiently large that
initialisation samples are always generated. The initialisa-
tion at time t = 0 is particularly simple as each particle has
equal weight and consists of the hypothesis that there are
zero objects: Xn

0 = (0) in the notation of equation (6).

The algorithm to estimate X̂t is shown in figure 7, where
ΠΦi

t is the total probability that object Φi is present. This

for i = 1 to Mt

(a) computeMΦi

t = {(n, j) : φn,jt = Φi}.
(b) compute ΠΦi

t =
∑

(n,j)∈M
Φi

t

πnt .

(c) if ΠΦi

t > λd estimate
x̂Φi

t =
∑

(n,j)∈M
Φi

t

πnt s
(n,j)
t /ΠΦi

t .

Figure 7: The estimation algorithm

number is an asymptotically correct marginal probability, in
the sense that it tends to the true marginal probability as the
number of particles used tends to infinity. The parameter λd
determines whether or not an object is displayed, and has no
effect on the particle filter itself.

5



4 Results

Numerical values for the dynamical parameters used in all
experiments are given in figure 9. We describe two scenar-
ios: the first demonstrates the full power of the multiple-
blob tracking but runs somewhat slower than real-time on
a 667 MHz Alpha workstation. Secondly we demonstrate
real-time settings for the filter which allow it to run com-
fortably in real time on a 447 MHz Pentium II workstation.

We recorded a 53-second sequence at CIF image res-
olution (320 × 240 pixels, G = 63 × 47 = 2961) and
30 frames/second showing up to three people at a time per-
forming complex interactions. We set Mmax = 7 so ini-
tialisation samples were always generated, and tracked the
sequence using N = 10000 particles. Representative still
frames are shown in figure 4. Tracking was successful
throughout except when two people crossed in front of a
third, at which point the labels assigned to the front two
people were transposed, though at all times the filter re-
ported the presence of three objects. Figure 8 shows a
representation of the log-likelihood ratios ylg for an image
during the cross-over. It is clear that from this information
alone it is not possible to reliably determine the locations
of the three people, and correct tracking with this appear-
ance model could only be ensured by enforcing a very strict
dynamical model which would reduce robustness in other
cases. If a separate foreground model were learned for each
object then it might be possible to disambiguate the three
people and track through such sequences. An MPEG movie
of the entire tracked sequence is included in the electronic
paper submission. Table 1 shows the time taken by the
Alpha workstation to compute the ylg for a single frame,
and also to render a single object for likelihood evalua-
tion. Together with the overhead from the rest of the algo-
rithm, the sequence is tracked with a peak-load frame rate of
4 frames/second, though this increases to 40 frames/second
when the scene is empty.

We have performed real-time experiments using a
447 MHz Pentium II workstation with QCIF image res-
olution (160 × 120 pixels, G = 31 × 23 = 713) and
15 frames/second. Setting Mmax = 1 and N = 500 one
person can be reliably tracked using 33% of the CPU. By in-
creasing N to 1000 particles and setting Mmax = 7 at least
two people can be successfully tracked using about 85% of
the CPU, though severe occlusions often cause object la-
bels to be incorrectly reassigned or objects to disappear and
reinitialise with a new label. Table 1 shows the computation
speed of the filter operations for comparison with the Alpha
workstation.

Figure 8: The foreground model cannot distinguish be-
tween three people. Two people cross in front of a third
who is almost entirely obscured. A single pooled model is
used for all foreground objects, so it is impossible to dis-
tinguish between different people purely on the basis of the
log-likelihood ratios ylg shown here. Separate object models
learned online might help to disambiguate between people.

CPU Image fixed (msec) object (µsec)
667MHz Alpha CIF 13 5
447MHz PII CIF 42 27
447MHz PII QCIF 10 15

Table 1: Filter execution speed. Each time-step the algo-
rithm takes a fixed time to compute all the ylg (shown in col-
umn 3) and a time to evaluate the object likelihoods which
depends on the number of particles and the number of ob-
jects per particle. Column 4 shows τobj, the time to evaluate
one object, so the total evaluation time for the particle set
at time t is

∑

nm
n
t τobj. Note that the smaller QCIF image

requires approximately one quarter as many instructions to
compute the ylg and that a smaller image also reduces the
number of responses covered by an object and hence the
time to compute an object likelihood.
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symbol meaning value

λr object survival probability 0.99
λi new object arrival probability 0.02
λd object display threshold 0.8
δe minimum physical separation between distinct objects (m) 0.5
δB background likelihood additional covariance factor (grey-levels2) 100
τB background likelihood cutoff (grey-levels−6) 2.0× 10−14

τF foreground likelihood cutoff (grey-levels−6) 3.0× 10−13

bX translation process noise (m) 0.11

wf ww ws wh h θ αw αs
mean µi 0.20m 0.22m 0.25m 0.08m 1.80m 0.75 0.60 0.83
steady-state standard deviation σi 0.03m 0.04m 0.04m 0.02m 0.05m 0.25 0.02 0.02
process noise ρi 0.003m 0.002m 0.002m 0.002m 0.003m 0.05 0.001 0.001

Figure 9: Parameter values used for experiments.

5 Conclusion

This paper presents two innovations. The first is an obser-
vation likelihood for an entire image generated by a known
background occluded by an arbitrary number of foreground
objects (which may in turn occlude each other). This likeli-
hood is based on two sets of learned statistics: 1) for every
location on a fixed grid in the image an independent model
of the background near that location, and 2) for each fore-
ground object, an appearance model pooled over the entire
object. The second innovation is a particle filtering imple-
mentation of a Bayesian multiple-object tracker for which
the number of objects is unknown and time varying.

We show that the filter implementation can be made effi-
cient enough to allow robust tracking of a small number of
objects in real time using a fraction of the processing power
of a modern workstation. The Bayesian blob-tracker can
therefore be considered a practical alternative to traditional
blob trackers. Although only the single camera approach
was demonstrated in this paper, it would be particularly ap-
pealing in the case of stereo tracking since it is straightfor-
ward to adapt a particle filter to make joint inferences from
the inputs of multiple cameras [9].

The multiple-object filter is of general utility and could
be applied in domains other than that of visual tracking.
We have presented a simple particle filter implementation,
but many variants can be constructed using the same ba-
sic model. There is a growing literature on particle filter-
ing methods (see [2] for a survey), and in particular it may
be possible to use importance sampling [8] to aid initiali-
sation and techniques such as layered and partitioned sam-
pling [13] to improve efficiency.

One common failure mode of the filter is that it becomes
confused when one object passes in front of another, and
switches the labels assigning identities to the objects. It

should be possible to prevent these labelling failures by us-
ing separate foreground models for each object rather than
the single default model we adopted in section 4. Our early
attempts to use adaptive foreground models, however, have
suffered from the traditional problems associated with adap-
tive templates, especially a tendency to grow to include
patches of background. Further research is required to de-
sign distinct foreground models which do not suffer from
this drawback. For really challenging image sequences it
may be necessary to design more sophisticated foreground
appearance models which track the shape of the objects
more accurately, and perhaps use explicit edge information.

In summary, this paper advances the field of robust track-
ing of simple objects in two significant ways. First it de-
scribes a principled statistical treatment of the blob tracking
problem which can be implemented in a reasonable compu-
tational budget. Second it introduces a Bayesian filter for
an unknown, time-varying number of objects which is ap-
plicable to a wide variety of applications, including the most
common types of surveillance tasks.
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