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Abstract

The dominant paradigm for video chat employs a single camera at each end of the con-
versation, but some conversations can be greatly enhanced by using multiple cameras at one
or both ends. This paper provides the first rigorous investigation of multi-camera video chat,
concentrating especially on the ability of users to switch between views at either end of the
conversation. A user study of 23 individuals analyzes the advantages and disadvantages of
permitting a user to switch between views at a remote location. Benchmark experiments em-
ploying up to four webcams simultaneously demonstrate that multi-camera video chat is feasible
on consumer hardware. The paper also presents the design of MultiCam, a software package
permitting multi-camera video chat. Some important trade-offs in the design of MultiCam are
discussed, and typical usage scenarios are analyzed.
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1 Introduction

Video chat is now commonplace for a significant proportion of Internet users, via popular, user-
friendly software such as Skype, Windows Live Messenger, Yahoo! Messenger, AOL Instant Messen-
ger (AIM), and Google Chat. Skype alone reported an average of over 120 million connected users
every month in their 2010 IPO filing, and 40% of Skype-to-Skype chat minutes employ video [21].
Video chat is likely to undergo a further substantial leap in popularity with the increasing availabil-
ity of video calls on cell phones and tablets. This report advocates and analyzes another dimension
for the expansion of video chat: the use of multiple cameras. Figure 1 demonstrates some of the
possibilities enabled by the MultiCam software package described later. In each case, a laptop
running Skype has two or more USB webcams connected, and the chat participants at both ends of
the conversation are able to switch at will between individual views of each camera or a tiled view
of all simultaneously. The primary goals of this report are to analyze the utility and feasibility
of such multi-camera video chats, and to discuss some important trade-offs inherent in designing
multi-camera software.

1.1 Limitations of the single-camera paradigm

The predominant paradigm for video chat employs a single webcam at each end of the conversa-
tion.1 For many purposes, this is perfectly adequate. In some cases, the communication taking
place is equivalent to a traditional audio telephone call enhanced by the exchange of facial expres-
sions and hand gestures. But the single-camera scenario also offers the opportunity for forms of
communication much further removed from a traditional phone call. For example, small objects
can be displayed and demonstrated by holding them up to the camera (“How do you like this water
bottle I bought yesterday?”). An accurate impression of larger objects can be conveyed by carrying
the camera — typically, while it is attached to a laptop, which is also carried — around the objects
of interest (“This is what the outdoor furniture looks like when it’s on the back patio”). The same
method of carrying camera and laptop can be used to convey an impression of an indoor or outdoor
space (“The apartment we’re staying in has this small kitchen, but as you walk into the living room
you can see this great view of the downtown through those windows”). Another usage pattern is
to follow a moving object such as a pet or child, again by physically moving the camera (“Watch
this — if I walk towards her, the cat will run up the stairs and jump into the cupboard . . . there”).
It is important to note that in many of these usage patterns, a participant in the chat makes use of
a local view window on the screen, which shows the video being sent from the local camera. This
is how a participant verifies that the remote participant can see the objects or activities currently
being discussed. The local view window is typically provided as a small subwindow in the main
video chat window.

Despite the wide range of possible usage patterns, the single-camera paradigm for video chat
is unnecessarily restrictive and burdensome. It is restrictive because only a single view is available
from the single camera at any one time. It is burdensome because the the onus is on the person
with the camera to point it at the part of the scene that is currently of interest.

An underlying reason for these problems with the single-camera paradigm is that the paradigm
inverts one of the basic relationships in human communication. Some new terminology will help
explain this. At any particular instant in a conversation between two individuals, the person who

1Evidence for this claim is purely anecdotal, but nevertheless seems very strong.
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(a) two forward-facing cameras (b) forward- and rear-facing cameras

(c) wide shot, headshot, and close-up (d) two cameras for whiteboard discussion

(e) remote tiled view of (c) (f) remote tiled view of (d)

Figure 1: Typical MultiCam usage scenarios. Webcams are highlighted by green circles.
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is speaking, explaining, or demonstrating an activity or object will be referred to as the speaker ;
the person listening and watching the speaker will be referred to as the listener2. In a face-to-face
conversation, the speaker is free to interact with the environment in whatever manner provides
the most effective communication. Meanwhile, the listener is free to determine which part of the
scene will command his or her attention. The conventional video chat, on the other hand, reverses
these two freedoms. The speaker loses the freedom to interact with the environment, and is instead
required either to move objects into the view of the camera, or move the camera. And in both
cases, the speaker it is often required to constantly monitor the local view window and adjust the
listener’s view by moving camera or object. The listener also loses freedom in conventional video
chat: specifically, the freedom to choose which part of the scene is being watched. The listener is
restricted to see only what is available from the speaker’s single camera. Of course, the freedoms
described here are not absolute. For example, even in a face-to-face conversation, the speaker
encounters plenty of constraints, such as the social convention to face the listener most of the time,
and the necessity of holding any objects where they can be seen. And on the other hand, even in a
standard video chat, the listener does have some freedom to choose which part of the transmitted
image will be watched most closely. But in both cases, there is a substantial difference between the
amounts of freedom in a face-to-face conversation and a video chat.

As a concrete example of these restrictions, consider the following scenario, which the author
has experienced frequently. A parent and young child are attempting a video chat with a friend
or relative using a webcam mounted on a laptop. For concreteness, let’s say the chat is with a
grandparent. The parent would like to converse with the grandparent while also demonstrating
the child’s activities, which may include crawling, climbing, running, and determined attempts to
interfere with the laptop. This typically degenerates into 100% of the parent’s attention being
devoted to moving the laptop and camera around, constantly checking the local view window to
ensure that the child can be seen by the grandparent. It is very difficult to have a satisfactory
conversation under these circumstances. Indeed, in the author’s own experience, the only viable
solution for the parent is to recruit a third person to act as full-time cameraman. This liberates the
speaker (i.e. parent), but does not really free the listener (i.e. grandparent) much. For example, we
can imagine that the grandparent might wish to view the parent at certain times in this conversation,
and the child at other times. An ideal solution would give the grandparent freedom to switch
between these views with ease.

1.2 Scope of the report

It may prove impossible for technology to completely restore these face-to-face freedoms under the
constraint of video chats. But there are three obvious avenues to explore in seeking to partially
restore these freedoms:

1. Employ multiple cameras simultaneously, each showing a different view of the scene (thus
reducing—but probably not eliminating—the need for the speaker to move cameras or objects,
and monitor the local view window).

2Of course, most conversations are two-way, so the identities of the speaker and listener are frequently switched.
But except for rare moments of misunderstanding, a typical conversation has only one speaker and one listener at
any one instant.
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2. Permit listener control : allow the listener to adjust and choose between the views offered by
the speaker. This includes switching between cameras, viewing all cameras simultaneously,
and could also incorporate more fine-grained control such as (digital or actual) pan/tilt/zoom.

3. Use heterogeneous devices to provide the listener with maximum choice. This could include
standard webcams, wide-angle cameras, 3D cameras, wireless cameras, and panoramic cam-
eras.

This report investigates some aspects of items 1 and 2 (multiple cameras and listener control), but
does not address item 3, except for a brief discussion in Section 3. And even within items 1 and 2,
the report examines only a small subset of the possible approaches. The primary objective is to
demonstrate the utility and the feasibility of multi-camera video chat in general, and especially the
utility of listener control. It is not the objective of the report to exhaustively assess the possibilities
for multiple cameras or listener control, nor to recommend an optimum set of features. In fact, the
report is limited to considering standard webcams only, with listener control limited to switching
between a small fixed number (2–4) of views from these webcams. Although this barely scratches
the surface of the potential for multi-camera chat, we will see that the report nevertheless provides
several important contributions (see Section 3.3).

Another restriction of the scope of the report is that it specifically addresses consumer video
chat. Possibilities for commercial-grade videoconferencing and professional webcasts are not di-
rectly considered, although some of the conclusions may transfer to those arenas. The emphasis
on consumer video chat means we seek solutions that are widely applicable and easily used by
nonexperts. Therefore, the emphasis will be on solutions that: (i) involve inexpensive, standard
hardware; (ii) have moderate computational costs (i.e. the software runs on a modest device without
adversely affecting a video chat); and (iii) require only extremely simple inputs from the user.

A final caveat is that the report does not seek to quantify the benefits of multi-camera video
chat, when compared to the single-camera approach. As already stated above, it seems clear
that the single-camera paradigm is perfectly adequate for many video chats. On the other hand,
it is equally obvious that some scenarios can benefit from multiple cameras. Any attempt to
quantify these benefits suffers from a severe chicken-and-egg problem. To see this, suppose that
a hypothetical experiment reached the following conclusion: “5% of single-camera video chats
would be significantly enhanced by using multiple cameras, where ‘significantly enhanced’ means
an increase in measured user satisfaction of at least 30%.” This hypothetical conclusion might seem
disappointing, since only 5% of chats benefit significantly. But of course, the experiment would
be conducted within the present ecosystem of single-camera chats. So the population of chats
sampled by the experiment would be heavily biased towards setups constructed with the single-
camera paradigm in mind. It is possible that if multi-camera tools were widely available and easily
used, the video chat ecosystem would be altered significantly and a much larger proportion of video
chats could benefit. Hence, the approach of the present report is to demonstrate that compelling
multi-camera scenarios exist (see next paragraph), without addressing the question of whether such
scenarios comprise a substantial fraction of video chats—according to the chicken-and-egg argument
above, this question is irrelevant.

Let us immediately discuss the existence of compelling multi-camera scenarios for consumer
video chat. There are four types of evidence here. First, the report explicitly describes two scenarios
that are difficult or impossible without multiple cameras: the “children in the background” scenario
of Section 5, and the “whiteboard lecture” scenario of Section 6. Second, there are several existing
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systems that offer multi-camera consumer video chat (see Section 3 for details). I am not aware of
any published statistics on the usage of such systems, but the mere existence of these systems does
suggest there is demand for them. Third, I do have download statistics for the MultiCam software
package introduced in this report: despite being a relatively immature research prototype with no
publicity beyond a posting to some Skype forums, MultiCam is being downloaded dozens of times
per month at the time of writing. Fourth, some commercial videoconferencing systems offer certain
multi-camera capabilities (see Section 3 for examples), although not in the chat-friendly format
suggested here, as far as I am aware. Presumably, consumers would also like these capabilities if
they were available at little or no cost.

2 Overview of MultiCam usage

The experiments described later employ a software package, called MultiCam, written by the author
specifically for this research. The MultiCam software itself is not a primary contribution of the
report, although it does have some limited novelty, as described in Section 3. Nevertheless, it will
be useful to understand MultiCam’s functionality before discussing related work (Section 3) and the
new results of this report (Sections 6 and 7). Therefore, this section gives an overview of MultiCam
from the point of view of a user. The design of MultiCam, from the point of view of a programmer,
is discussed separately, in Section 4.

MultiCam is free and open source, and is available for Microsoft Windows only (more precisely,
Windows 7 and later). The local camera-switching functionality of MultiCam works, in principle,
with any video chat software.3 Remote camera-switching, on the other hand, works only with
Skype, since it relies on Skype’s so-called desktop API. For concreteness, the remainder of the
report focuses on running MultiCam with Skype only.

MultiCam consists of two components: the MultiCam application, and the MultiCam virtual
camera. The MultiCam application, shown in Figure 2, is a stand-alone GUI application that
allows the user to adjust settings and to perform camera-switching functions during a video chat.
The MultiCam virtual camera appears, to the operating system, to be a standard video camera
device. Video chat software such as Skype therefore offers “MultiCam” as one of the options when
a user selects a video input device, as shown in Figure 3. In reality, of course, the MultiCam virtual
camera is not a physical camera. Instead, it multiplexes the machine’s physical cameras: it passes
video data from one or more of the physical cameras to the video chat software, possibly after
transforming the data in some way.

To be more specific, MultiCam has two high-level modes: tiled, and non-tiled—these are shown
in Figure 4. The tiled mode places subsampled versions of the input from each physical camera
into a single output image. When in non-tiled mode, one of the physical cameras is designated by
the user as the primary camera. The input from the primary camera is transferred unaltered to the
output image, but some small subsampled versions of the other (non-primary) physical cameras
are overlaid at the bottom left of this output. The identity of the primary camera is not fixed.
Indeed, the MultiCam application permits users to switch the identity of the primary, and to switch
between tiled and non-tiled modes, with a single keystroke or mouse click (see Figure 2).

This brings us to the most important design decision for the MultiCam UI: how should the

3In practice, MultiCam has certain technical problems with some video chat software. The present implementation
works well on Skype, Yahoo! Messenger and ooVoo, for example, but not on Google Chat.
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Figure 2: Screenshot of the MultiCam application.

Figure 3: Screenshot demonstrating selection of the MultiCam virtual camera as the
video input for Skype.

Figure 4: MultiCam’s two modes. Left: In the tiled mode, the virtual camera shot contains
subsampled versions of frames from each physical camera. Right: In the non-tiled mode, the virtual
camera fills the frame with the output from one physical camera, then adds small overlays from
the other cameras.
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user switch cameras? Clearly, it is desirable that the user can switch cameras quickly and easily,
preferably with a single keystroke or mouse click. On the other hand, some early experimentation
demonstrated that control of multi-camera chats can be bewildering. Recall that there may several
(say, up to four) cameras at each end of the conversation, and each user can control the camera-
switching at both ends. So a user may be faced with as many as eight possibilities when switching
views. To reduce the possible confusion to an absolute minimum, MultiCam adopts an extremely
limited interface. There are only two actions a user can perform: advance the local camera, or
advance the remote camera.

The word “advance” here has a specific technical meaning, defined as follows. The N cameras
connected to any one machine have a natural ordering, determined by the order in which the
operating system enumerates them. So they can be the assigned numerical IDs 1,2, . . .N . If the
system is in non-tiled mode when the user advances the camera, the ID of the primary camera is
incremented by one—so we literally “advance” to the next camera’s view. Of course, there is an
exception if the primary camera ID is already equal to N : in this case, the system switches into
tiled mode. Finally, if the system is currently in tiled mode, it switches to non-tiled with primary
camera ID equal to 1.

Thus, the user cycles through the N + 1 possible views in a fixed order. There is no way to
jump directly to a particular desired view. The advantage of this is that control by keystroke
remains feasible—and this is especially important when we consider that the user may want to
maximize the video chat window, leaving the MultiCam application window invisible. In the
current implementation, for example, the user hits the Enter key to advance the local camera, and
the spacebar to advance the remote camera. Even for unpracticed users, memorizing these two
keystrokes is easily achievable. On the other hand, there is some evidence from the user study
(Section 6) that users would prefer to have a method of jumping directly to the desired view.
Investigation of this is left for future work, primarily because of the difficulty of integrating any
sensible solution with existing video chat software. For example, one plausible possibility would be
for a user to switch views by clicking on the thumbnail of the desired new primary camera (or a
suitable overlaid icon for tiled mode). But this would require MultiCam to capture mouse clicks
from the video chat window, which is not directly supported by existing video chat software. In
any case, this solution is still unsatisfactory for chats with multiple cameras at both ends, since
the number of thumbnails on the screen may be overwhelming for the user. There are some very
interesting possibilities for future work here, discussed in Section 9.

Naturally, the keystroke-switching feature can be disabled, so the user can employ the keyboard
for some other purpose while chatting, if desired. When not using keystrokes, a user can still
switch cameras by clicking on the “Switch local camera” or “Switch remote camera” buttons in the
MultiCam application window.

MultiCam permits one additional method of switching cameras. When the MultiCam applica-
tion is running, any Skype instant message received advances the local camera setting. Clearly, this
is an abuse of the intended functionality for Skype instant messages, but there is a good reason for
incorporating this instant message (IM) hack. To understand this reason, suppose user A is video
Skyping with user B. Suppose further that A has multiple cameras and is running the MultiCam
application, whereas B is not running MultiCam. Without the IM hack, B would have no method
of advancing A’s camera in this situation.

The key point is that IM is an integral part of all Skype clients and is guaranteed to be
available to any user, whereas an application such as MultiCam (or even a more tightly-bound
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plugin) requires a separate installation procedure before a user can enjoy the benefits of remote
camera switching. The ability to switch cameras via IM is especially crucial for Mac and Linux
users, since the MultiCam application is Windows-only at the time of writing. As with switch-
by-keystroke, the switch-by-IM feature can be disabled, which is obviously necessary if the chat
participants wish to use IM for its intended purpose.

Finally, note that MultiCam offers a small thumbnail of all non-primary views when in non-tiled
mode. An example of this can be seen in the right-hand panel of Figure 4: in the bottom left of
the panel, we see thumbnails of three other views. Early experience with MultiCam suggested
these thumbnails are helpful, but they also add clutter. These thumbnails might even overload
the user with information. This is especially true given that typical video chat software also
displays yet another thumbnail, showing the remote participant’s view of the local scene. To make
this concrete, consider a specific example, in which users A and B are chatting via Skype and
MultiCam. Suppose user A has two cameras, denoted A1,A2, and user B has three cameras,
denoted B1,B2,B3. Suppose further that A has selected non-tiled mode with B1 as primary, and B
has selected non-tiled mode with A1 as primary. Then with default Skype and MultiCam settings,
A’s view consists of a large view of B1, overlaid with small thumbnails of B2 and B3 in the bottom
left, and a medium-sized thumbnail (showing B’s view) of A1 in the bottom right, but this latter
thumbnail has an additional sub-thumbnail of A2 overlaid in its own bottom left. Clearly, this
could be a case of too much information for the user, and future work should investigate cleaner
ways of conveying it.

3 Related work

In this section, we survey two strands of related work: (i) multi-camera video chat, and (ii) more
immersive telepresence projects. It is claimed that this report occupies a vacant niche in the
literature, because academic projects and publications have focused on (ii), whereas this report
focuses on the simpler ideas in (i). More specifically, software for (i) has been available for at least
a decade,4 but the utility and feasibility of such software—especially the possibility of listener-
controlled camera-switching—has not been rigorously analyzed. This report provides that analysis.

3.1 Related multi-camera video chat software and hardware

Several existing software products offer convenient ways for the speaker to switch between cameras
during video chat. These include ManyCam5 and WebcamMax.6 In addition to easy switching,
both these products permit a picture-in-picture mode, in which one camera’s output can be overlaid
on the other’s—this is a similar to MultiCam’s tiled mode. Neither offers simultaneous viewing
of more than two cameras, nor do they permit listener-controlled switching. To the best of my
knowledge, the design of these tools is not discussed in any publicly-disclosed documents. But
both are marketed primarily as webcam effects software: that is, as a tool for altering the output
of a single, primary camera. ManyCam is also prominently marketed for simultaneously using a
single webcam in multiple applications, in contrast to MultiCam’s primary goal of using multiple

4In a 2011 Skype forum posting about switching between multiple cameras (http://tinyurl.com/skypeforum),
a user stated “i’ve been using manycam (and a predecessor) for a decade!”

5http://www.manycam.com
6http://www.webcammax.com
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webcams in a single application. The differing emphases of MultiCam and these existing software
products will be important during the discussion of MultiCam’s design in Section 4.1.

Another existing alternative is VH MultiCam Studio7 (VHMS). VHMS permits tiling of an arbi-
trary number of cameras, and even allows listener-controlled switching in Skype via a variant of the
IM hack described in Section 2, but the interface relies on saving a number of preset configurations
and would be challenging for novice users. The three products just mentioned are closed-source.

It is worth noting that even with the present version of Skype (5.5), it is possible to use multiple
cameras without resorting to virtual camera software such as ManyCam. One approach is to launch
separate instances of Skype on the same machine,8 log in with different identifiers on these instances,
assign different cameras to the instances, and start a multiparty chat. Obviously, this involves some
inconvenience, and consumes more bandwidth than necessary. Alternatively, one can use a single
instance of Skype and use the existing UI to switch between cameras during a chat. This method
requires several clicks, and generally involves several seconds of latency after the new camera has
been selected, but is by no means unusable.

A relatively recent development is the emergence of mobile devices and tablets with two cameras
(e.g. Apple’s iPad 2, HTC’s Droid Incredible 2). These devices have one camera on the front,
intended primarily for video chat; and one on the back, intended primarily for capturing photos
and video. But of course it is possible to use both cameras during video chat, and some chat clients
already support this at the time of writing (e.g. Google Talk, Skype Mobile). These clients support
convenient, intuitive speaker-controlled switching between the two cameras. However, they do not
support simultaneous views of both cameras, nor do they support listener-controlled switching.

Although this report focuses on two-way video chat, some of the multi-camera discussion also
applies to the scenario of webcasting—a type of one-way communication in which the speaker
broadcasts to multiple listeners, who may or may not be watching in real time. Webcasting involves
two separate tasks: content creation (typically done using specialized webcasting software such
as CamTwist Studio, Webcam Studio, or WebCaster), and content delivery (typically via online
platforms such as Ustream or Livestream). Only the former concerns us here. Webcasting software
focuses on fusing multiple types of media such as screenshots, webcams, presentation slides, and
prerecorded video clips—but the software often also permits multiple webcams as inputs. And
because webcasting software is typically implemented via the same virtual camera technique used
in multi-camera video chat software, one can therefore use it for a multi-camera video chat. This
may even be the most effective choice for a well-practiced user who wishes to use the sophisticated
features of webcasting software. But this is less than ideal for the simple camera-switching envisaged
in the current report. Moreover, to the best of my knowledge, no webcasting software permits
listener-controlled switching between cameras.

An obvious alternative to switching between multiple cameras is to arrange for a single camera
to move via pan/tilt/zoom (PTZ). There are many interesting possibilities here, including the use
of motion detection (e.g. [10]) or a physical sensor located on the target of interest (e.g. Swivl9).
These approaches are complementary to the focus of this report. Of more direct relevance are the
possibilities for remote (i.e. listener) control of PTZ cameras. At the time of writing, IP cameras
with remote control functionality are available for under $100, which comes close to our goal of
being usable for consumer video chat. Unfortunately, present IP cameras are typically designed

7Discontinued, but still available from http://www.mediafire.com/?nxzvrhzzzkz at the time of writing.
8This can be done with the secondary commandline argument.
9http://www.swivl.com
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for surveillance applications; their image quality tends to be inadequate for enjoyable video chat,
and the remote control interfaces can be clunky. In any case, such cameras can still be regarded
as complementary to this report’s proposals. Even if low-cost, high-quality, remote-controlled PTZ
cameras with slick interfaces were available, we can still imagine enhancing the video chat further by
using several such cameras simultaneously with a MultiCam-like camera-switching interface layered
on top.

Although outside the scope of this report, it’s important to realize that multi-camera video chat
could be enhanced by non-standard cameras. One simple but liberating possibility is the use of
wireless cameras. Surprisingly, at the time of writing (March 2012), there is no Bluetooth camera
suitable for consumer video chat available for Windows systems, and only one such camera for
Apple systems (Ecamm’s BT-1). Wireless IP cameras are another option, in principle, but appear
to be designed primarily for surveillance purposes and the consumer-grade versions typically have
poor image quality. Smartphone cameras can be converted into wireless webcams via apps such as
DroidCam10 and SmartCam.11 This is a very promising approach; the only disadvantage is that the
user must either own an adjustable smartphone tripod, or manually hold the smartphone in position.
Presumably, the ecosystem of consumer-friendly wireless webcams will expand significantly in the
near future.

Panoramic cameras represent another alternative for enhancing video chat. These have been
previously explored in academic research projects such as FlyCam [9], and are now available as
relatively inexpensive consumer products such as the GoPano micro.12 It would be very interesting
to combine this product with listener control and multi-camera switching.

In contrast to all the above alternatives, the MultiCam software presented in this report offers
single-keystroke (or mouse-click) switching by both speaker and listener, between an arbitrary
number of cameras, and including a tiled mode. Hence, there is a small amount of novelty in the
software itself, especially given that MultiCam is open source. But the minutiae of features offered
by such software are fairly unimportant, given that these features are all easy to add. Video chat
software makers such as Skype, for instance, could easily incorporate all of MultiCam’s functionality
directly into their products with an insignificant investment of perhaps one or two programmer-
months. Indeed, I hope that after reading this report, video chat software makers will include these
features, taking account of the findings described in later sections.

3.2 Related immersive telepresence projects

The goal of this report is related to, but separate from, the goal of immersive telepresence. In this
report, we seek to enhance the listener’s experience by providing multiple views of the speaker’s
location, and by giving the listener control over switching between those views. In contrast, im-
mersive telepresence seeks to enhance the listener’s experience by creating the impression that the
listener is immersed in the speaker’s location (or perhaps a virtual location instead). For example,
the goal of the BiReality system [11] is “to recreate to the greatest extent practical, . . . the sensory
experience relevant for face-to-face interactions,” by immersing a physical robot in a remote loca-
tion. The 3DPresence project [8] recreates some of the important 3D and perspective effects in a
physical conference-room setting, surpassing the immersiveness of existing commercial telepresence

10http://www.dev47apps.com/droidcam
11http://smartcam.sourceforge.net
12http://www.gopano.com
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systems such as Cisco Telepresence and HP Halo. Numerous other projects, such as ViewCast [25]
and Coliseum [1], place all participants into a virtual environment. A survey by Otto et al. [16]
gives further examples focused on collaboration by geographically dispersed users.

Implicit in all these projects is the assumption that the quality of the listener’s experience
will increase with the extent and fidelity of the immersiveness. This assumption may be true
in general—and is particularly apt for certain facets of communication such as gaze and gesture
awareness [12]—but it does not preclude improving the listener’s experience through other, simpler
means. The goal of this report is to do just that: without seeking immersiveness, we can give the
listener more options and more control via the much simpler strategy of employing multiple views.

3.3 Contribution

The two primary contributions of the report are:

� It demonstrates the utility and feasibility of multi-camera video chat for certain applications.

� It analyzes the desirability of remote control over the camera view.

To the best of the author’s knowledge, no previous publication has addressed these points in detail.
The secondary contributions of the report are:

� It describes the design trade-offs inherent in building virtual camera software to multiplex
several cameras simultaneously, and offers an open-source solution to this problem.

� It makes recommendations for a standardized protocol that could be used by future multi-
camera software modules to interact with video chat software.

� It identifies several areas in which webcam manufacturers and video chat software developers
could enhance their support of multi-camera use.

Again, to the best of the author’s knowledge, the existing literature does not address any of these
contributions in detail.

4 Design of MultiCam

Section 2 described the design of MultiCam from the point of view of a user. In this section, we
look under the hood, discussing design decisions taken by the programmer. We will concentrate
on design issues with direct relevance to the user study (Section 6) and benchmark experiments
(Section 7), relegating other details to Appendix A.

4.1 Design overview

As already discussed, the MultiCam software consists of two largely independent modules: the
MultiCam application (MultiCam.exe) and the MultiCam virtual camera (MultiCamFilter.dll).
For reasons that will become clear shortly, the MultiCam virtual camera is more accurately termed
the MultiCam filter, and we use the latter term for the remainder of this section. Figure 5 gives an
overview of how the two components communicate with each other and with Skype. As we see in
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Figure 5: Communication between MultiCam components. The red arrow shows the route
taken by an “Advance remote camera” request issued by a local MultiCam instance. The MultiCam
application communicates with the Skype application via the publicly-documented Skype desktop
API, and with the MultiCam filter via standard IPC. Skype issues standard DirectShow camera
commands to the MultiCam filter by making function calls, just as with a physical camera. Two
instances of Skype communicate over the Internet via Skype’s proprietary protocol. Two instances
of the MultiCam application also communicate with each other via the Skype desktop API, which
transparently employs the proprietary link between Skype instances. The question marks indicate
components that may be absent.

the Figure, four different types of communication are used: standard Windows interprocess com-
munication (IPC), API calls from the Windows DirectShow framework [17], the publicly-available
Skype desktop API [22], and the proprietary Skype protocol. Each of these is described in more
detail below. As a concrete example, the red arrow in Figure 5 shows the chain of communication
that occurs when a user clicks on “Advance remote camera” in the MultiCam application; this too
is discussed in more detail below.

We previously saw, in Section 2, that the MultiCam application is a stand-alone GUI application
that allows the user to adjust settings and to perform camera-switching functions during a video
chat (see Figure 2). But the MultiCam application has a second crucial role: it monitors the state
of other components in the system and takes actions based on its observations. More specifically,
the components monitored by the MultiCam application are: the local instance of Skype, the local
MultiCam filter, and the remote MultiCam filter. Each of these components may be present or
absent, active or inactive, and has certain additional state.

The MultiCam filter is a dynamic link library (DLL), and we have already seen that it acts as a
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virtual camera, multiplexing the machine’s physical cameras. The MultiCam filter is implemented
in the Windows DirectShow framework [17], which is a Microsoft framework for multimedia pro-
gramming.13 In this framework, modules that create, consume, or transform multimedia data are
known as filters; hence the choice of the terminology “MultiCam filter.”

The chief abstraction in DirectShow is a directed graph known as a filter graph. The edges on the
graph represent paths along which video and audio data can flow, and vertices of the graph represent
filters. In DirectShow, filters are implemented as C++ classes derived from a base filter class. The
standard DirectShow library provides numerous more specialized filter types; of particular interest
to us are the source filter and the transform filter. A source filter has no inputs: it creates and
outputs its own multimedia data. A webcam (or, more accurately, its device driver) is one example
of a source filter. In contrast, a transform filter ingests multimedia data from one or more inputs,
combines or alters those inputs in some way, then outputs the result. Common transform filters
include those that convert between color spaces or alter the aspect ratio of a video stream. Of
course, implementors can write their own filters, and they are free to blur the boundaries between
filters in the standard library.

This is exactly what the MultiCam filter does. Specifically, the MultiCam filter is implemented
so that it appears, from the point of view of any video chat software, to be a source filter. The video
chat software can insert the MultiCam filter into a DirectShow filter graph, and begin extracting
video frames from the filter when it is ready to do so. In reality, the MultiCam filter is not a
source filter but a transform filter. When the MultiCam filter detects that it has been added to
a DirectShow filter graph, it immediately creates some new vertices in the graph—one for each
physical camera in the system—and creates connections from the new vertices to itself.

Thus, the MultiCam filter has access to the latest image frame from each physical camera. It is
a simple matter to reassemble these into the desired output. Recall from Section 2 that the current
filter state is specified by the ID of the primary camera, and value of the tiled/non-tiled flag. Thus,
the output is assembled by subsampling and shifting the inputs if necessary, then placing them in
the filter’s output buffer, producing frames such as those shown in Figure 4.

4.2 Communication between local and remote MultiCam modules

MultiCam instances on different machines communicate with each other via the so-called Skype
Desktop API [22]. This is a publicly-documented protocol which third-party applications can use
to communicate with Skype instances. The protocol features dozens of message types. To give
just two simple examples, the protocol enables an application to determine the user name of the
currently logged in Skype user, and to be notified whenever a Skype call begins or ends.

Of particular interest for MultiCam is the set of message types designated as “application to
application” (AP2AP) messages. These message types enable a third-party application commu-
nicating with one instance of Skype to exchange arbitrary strings of bytes with an application
communicating with another instance of Skype on a remote computer. We employ this AP2AP
feature to enable two instances of MultiCam to communicate. In particular, a local instance of
MultiCam can instruct a remote instance to advance its camera setting, during a Skype call. As
Figure 5 shows, the path taken by such a request is rather circuitous, requiring four hops between
the various local and remote modules, and employing three different protocols en route. The precise

13DirectShow is being phased out in favor of Microsoft Media Foundation [18]. At the time of writing, however,
Media Foundation is not sufficiently well-supported to form the basis for MultiCam.

16



set of AP2AP message types employed for communication between MultiCam instances is described
in Appendix C.

4.3 Implementation of camera-switching

The choice of mechanism for switching cameras is perhaps the chief design decision for a multi-
camera virtual camera. Let us initially ignore the possibility of tiled mode and concentrate on
switching the current primary camera between two or more physical cameras. There are at least
two obvious alternatives, which we will call one-at-a-time and all-at-once.

The one-at-a-time approach uses exactly one camera at any instant: the DirectShow graph
consists of the current primary camera as a source filter, connecting to the virtual camera filter,
which probably does nothing but pass the physical camera’s frames untouched to the downstream
filter. In this approach, the software needs to perform surgery on the DirectShow graph whenever
the input camera is switched. Specifically, the software performs a stop operation on the graph,
replaces the source filter with a filter whose source is the newly-requested camera, then performs
a start operation on the graph. As we will see in Section 7.4, there is evidence this can impose
additional latency of 400–700 ms, compared with the all-at-once approach described next.

The all-at-once approach connects source filters from all desired physical cameras to the virtual
camera filter when the DirectShow graph is first created. Video data is continuously streamed from
all cameras simultaneously, and the job of the virtual camera filter is to pass on the frames of the
current primary camera while dropping data from the other cameras on the floor. Clearly, this is
extremely wasteful in terms of computational resources. However, it has the benefit of rapid camera
switching, as the costly graph surgery operation is eliminated (see Figure 12 in Section 7.4). Note
that the all-at-once approach also permits arbitrary combinations of the input images, such as a
tiled view of all cameras, or small overlay views of the other cameras placed on top of the primary
camera view.

Perhaps it is possible to implement a hybrid approach that retains most of the benefits of all-at-
once and one-at-a-time. For example, it may be possible to construct a graph in which source filters
for all cameras are present and connected, and the cameras are activated and ready to transmit
data. But we arrange for data to be transmitted only on request, so that only one camera is
streaming data to the virtual camera filter at any one time. It is conceivable that such an approach
would consume little or no more resources than the one-at-a-time approach, while requiring only
a small additional latency for switching. Investigation of this possibility is left for future work.
Do cameras even support the notion of being ready to transmit, without actually transmitting? If
not, this is a feature that camera manufacturers and developers of frameworks such as DirectShow
might consider implementing in future. Yet another possibility is for the non-primary cameras to
continuously transmit, but at a very low resolution suitable for thumbnail images. This would
consume fewer resources while still providing everything the MultiCam filter needs while in non-
tiled mode. But switching might be slow with this approach, since multiple cameras would need to
change resolution on every switch.

Note that, in principle, both the all-at-once and one-at-a-time approaches permit the virtual
camera filter to be a so-called in-place transform. This means that the video data is not copied:
it remains in a buffer and a pointer to this buffer is passed to the downstream filter. Obviously,
the advantage of an in-place transform, compared to a more general transform that copies the
data into a separate buffer, is that it avoids the computational expense of copying. The filter
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could even add overlay windows (e.g. small views from other cameras) without sacrificing the in-
place property. However, the MultiCam design does not use an in-place transform. There are two
reasons for this. First, in-place transforms are not appropriate for tiled mode (discussed next).
Second, if we are using the all-at-once approach, and the cameras do not all support exactly the
same resolution, it is impossible to switch between cameras without performing DirectShow graph
surgery (see Section 4.4).

The design choices become murkier when we wish to support tiled mode, or other similar notions
such as picture-in-picture. If we are displaying video data from all cameras simultaneously, we must
take the all-at-once approach. Moreover, as mentioned above, tiling the frames requires that they
are subsampled and moved to the correct subrectangle in the downstream image, which removes the
possibility of using an in-place transform. One can imagine designs in which the system switches
between all-at-once (or at least some-at-once) when multiple inputs are required, but falls back to
one-at-a-time at other times. It is not clear that the complexity of the solution would be justified
by its benefits.

Motivated chiefly by the goal of low-latency camera-switching, but also the desire for a tiled
mode, MultiCam uses the all-at-once approach. Indirect evidence (especially the switching latency
measured in Section 7.4) suggests that the other virtual camera tools analyzed in this report all
use the one-at-a-time approach. This is not surprising: as discussed in Section 3, low-latency
camera-switching is not a primary goal of these tools.

Thus, we now understand the reasoning behind the following two important design decisions:
(i) MultiCam copies data rather than using an in-place transform, and (ii) MultiCam uses the
all-at-once approach for switching between cameras.

4.4 Managing heterogeneous resolutions, formats and frame rates

What is the resolution of a virtual camera filter? A simple answer is: the same resolution as the
physical camera currently being used as input. This makes good sense in the one-at-a-time model,
but is problematic for the all-at-once approach, where the set of cameras may be heterogeneous
and offer different resolutions and aspect ratios.

A brief discussion of webcam capabilities is needed before we continue. For our purposes,
a capability of a webcam is a tuple expressing a resolution and aspect ratio (e.g. 640 × 480), a
compression scheme (e.g. none, or H.264), a color format (e.g. RGB or YUV), and a frame rate
(e.g. 30 fps). Webcams typically offer many capabilities (one or two dozen is not uncommon).
Software employing a webcam can designate which of the available capabilities should be used
before any video data is obtained. Only one capability at a time is active.

Hence, in the one-at-a-time model, the virtual camera software can enumerate the capabilities of
the (unique) primary camera, select a capability whose resolution is closest to some target resolution
(possibly using additional criteria such as the compression scheme), and plug the resulting source
filter directly into the DirectShow graph. Because the graph is stopped before changing source
filters, any change in resolution—or the remaining capability dimensions—is handled gracefully.

The all-at-once model does not have this luxury. The graph is not stopped during a camera-
switch, so it is preferable that the virtual camera filter maintains a fixed output resolution, even
when its input resolution changes. MultiCam uses a simple approach to deal with these problems. It
has a fixed (but configurable) target image height, which is 640 pixels in all experiments reported in
this report. At startup, each camera’s capabilities are enumerated and a capability with the largest
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height that fits within the target height is selected. MultiCam requests uncompressed RGB data at
30 fps if it is available. The motivation for this is that we need to choose some fixed output format
for the MultiCam filter, and uncompressed, 30-fps RGB is a simple, uncontroversial choice likely
to be supported by many webcams. If this format is not available, MultiCam requests the first
available alternative at the previously-selected resolution. In this case, DirectShow automatically
inserts a suitable transform filter between the source and MultiCam filter, which increases overhead
but is not otherwise problematic. When preparing a camera frame for output, if the frame does
not fill the target resolution, MultiCam shifts it appropriately so the output is centered and has a
black border. A similar process occurs for creating a tiled view, but images are also subsampled to
fit within a designated tile.

MultiCam takes no explicit steps to address issues of timing and frame rate. It relies on default
DirectShow behavior to manage the flow of data within the graph, which may include dropping
frames if a given filter is operating faster than a downstream filter.

4.5 Other design and implementation details

MultiCam incorporates or adapts several modules of code not written by the author. First and
foremost, MultiCam relies heavily on the Microsoft example code that ships with DirectShow.
Of particular note here are the generic source filter, transform filter, and transform-in-place filter
examples. Techniques specific to virtual cameras were adapted from the publicly-available sample
code known as “vcam.”14 MultiCam’s techniques for capturing global mouse and keyboard events
rely on an online article and code by George Mamaladze [13]15. Finally, MultiCam interacts with
the Skype Desktop API via an altered version of a library written by Gabriel Szabo [24].

The MultiCam filter is implemented in approximately 9000 lines of C++; the MultiCam ap-
plication is implemented in approximately 4000 lines of C#; the grand total is therefore about
13,000 lines of code for the entire package. (Lines of code are measured by the UNIX utility wc,
which includes comments and blank lines in the count.) As remarked above, much of the MultiCam
code consists of imported libraries or example code, some of which was substantially altered. A
rough estimate suggests that just under half of the MultiCam code was imported with little or no
alteration. This implies the total amount of code written, or substantially edited, for MultiCam is
approximately 6500 lines of code.

Additional design details are discussed in Appendix A.

5 Experience with MultiCam

At the time of writing, MultiCam has been employed for a genuine Skype chat approximately
once per week by the author, over a period of five months. Here, “genuine” means that the chat
was not part of a deliberate experiment, and its primary purpose was communication with friends
or family. In every case, the reason for using multiple cameras was that one or more additional
family members were present and I wanted to include them in the video stream. Obviously, the
impressions gained from this experience have little scientific rigor: there was no methodical data
collection, and my subjective impressions are probably biased by a desire for MultiCam to appear

14The code is available as http://tmhare.mvps.org/downloads/vcam.zip, and is attributed to a person whose
name is given only as “Vivek.”

15Code available from http://globalmousekeyhook.codeplex.com.
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useful. The results of a careful user study are reported in Section 6, but that study focuses on one
very specific scenario, whereas my own use of MultiCam has been much more varied. Therefore,
this Section reports briefly on some aspects of my experience.

With rare exceptions, the remote participants showed little interest in controlling the cameras.
In general, therefore, I was not relieved of the burden of camera-switching. On the other hand, I
felt the total effort of camera management was significantly reduced in most cases. Rather than
constantly having to adjust a single camera to show the current region of interest, I was frequently
able to leave the cameras in a fixed position for long periods and simply switch between them.
My enjoyment of the conversations was thus increased. Remote participants also gave a strong
impression of having increased enjoyment, compared to single-camera conversations in the past.
(But recall that these participants comprised friends and family, so their reactions probably have
a positive bias.)

Figure 1(a)–(c) shows the three camera setups that proved most useful in these conversations.
In Figure 1(a) we see a two-camera scenario in which one camera is perched on a laptop for a
headshot of the main Skyper, and another camera is on the table beside it trained on a child in the
background. Figure 1(b) shows another two-camera scenario, again with one camera capturing the
standard Skyper headshot. The other camera is also perched on the laptop, but faces the opposite
direction. This mimics the setup of dual-camera smartphones and tablets, but with more flexibility,
since the exact direction of the cameras can be adjusted individually. In this scenario, I often pick
up the outward-facing camera and direct it manually for a period of time before placing it back on
the laptop.

Figure 1(c) shows a three-camera scenario. Skype is still being run from a laptop, but using a
living room TV as a display. The remote participant’s tiled mode view of this scenario is shown in
Figure 1(e). One camera is mounted on top of the TV, showing a wide view of the entire scene.
Another camera is perched as usual on the laptop for a headshot of the main Skyper. A third
camera is available to be moved around as needed, capturing the activity of a small child on the
floor; at this particular instant, the third camera is behind the Skyper on the arm of a sofa. This
setup has been particularly successful for group events, such as opening presents, in which attention
naturally focuses on different people at different times.

6 User study

A user study was conducted to examine some of the benefits and drawbacks of using multiple cam-
eras with video chat, focusing especially on a comparison between speaker-controlled and listener-
controlled camera-switching.

6.1 Participants

A group of 23 individuals was recruited to participate in the study. Participants were all acquain-
tances of the author who voluntarily responded to email requests or similar; the resulting participant
pool comprised friends, family, colleagues, and one student. Participants’ ages ranged from 20 to
70 (median 40). Two participants were new to Skype; the remainder had frequently used Skype for
single-camera video chat. Two participants had used the MultiCam camera-switching functionality
previously; of the remainder, four had some knowledge of the MultiCam project, and the remaining
17 participants had no knowledge of it. Nine of the participants could reasonably be described as
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technically savvy (i.e. work in a computer-related profession, or maintain an active amateur in-
terest in technology); the remainder had no particular skills or affinity with computer technology.
Geographically, there was a three-way split between participants: five in the same North American
town as the author, eight in other North American locations, and ten outside North America (all
either Europe or Oceania). Approximately 70% of participants employed laptop monitors, with
the remainder using larger desktop monitors. Fourteen users employed a single webcam at their
own end of the conversation; nine used no camera at all; none used multiple cameras. Hence,
although the sample is relatively small and was not selected via random sampling, it contains a
good cross-section of video chat users.

6.2 Method

The user study employed the two-camera setup shown in Figure 1(d), in which a person (the
speaker) can sit on a sofa and communicate with the study participant (the listener), using a
whiteboard adjacent to the sofa when desired. We will refer to this video chat scenario as the
whiteboard lecture scenario. One camera, positioned on top of the laptop, presents a head-and-
shoulders view of the speaker sitting on the sofa. The other camera, positioned on the desk,
displays the whiteboard. Thus, exactly 3 views were available to study participants: the speaker,
or the whiteboard, or a tiled view of both. (The tiled view is shown in Figure 1(f).) The whiteboard
is positioned such that, on a typical monitor and under typical Skyping video quality, writing on
the whiteboard can be read reasonably easily when the whiteboard camera is the primary camera,
but is not very legible in the tiled view. This is important because it provides an incentive to switch
between views; otherwise, it would probably be optimal to remain in tiled view at all times, and
this would reveal no useful information comparing local and remote camera control.

As will be described in more detail shortly, participants needed the ability to switch between
the three camera views in this study. As explained in Section 2, the only camera-switching method
guaranteed to be available to all users is the switch-by-IM method. For consistency, therefore, all
participants used the IM method for switching cameras in this study.

Each user in the study participated in a Skype session with the author, lasting about 10 minutes.
The core of the session involved two three-minute lectures, delivered by the author using the
whiteboard and a handheld prop. The most important feature of the session was that in one of
the three-minute lectures, the speaker had exclusive control of the camera-switching, and in the
other lecture, the listener had exclusive control. The ordering all these two camera-control options
was alternated for each participant, so the first lecture was speaker-controlled in exactly half of the
sessions.

The following script describes the content of each session in more detail:

1. Introduce the physical environment, and demonstrate the three possible views (person, white-
board, tiled).

2. Explain to the listener how to switch between the three views using Skype instant messages,
and allow the listener sufficient practice at switching views until they claim to be comfortable
with it (typically 30–60 seconds).

3. Explain that the listener will now receive two three-minute mini-lectures about a particular
topic in computer science (data compression), and the speaker will control the cameras in
one lecture, whereas the listener will control the cameras in the other lecture. Announce
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who will be controlling the cameras first. (As already mentioned, this alternated with each
participant.)

4. Deliver first lecture, on run-length encoding.

5. State clearly that responsibility for camera control is now switching from speaker to listener
or vice versa.

6. Deliver second lecture, on LZ77 compression.

7. Verbally administer the questionnaire.

Both mini-lectures involved the same routine of alternately talking directly at the camera while
sitting on the sofa, and writing on the whiteboard. The specific set of states for each lecture
was: sofa, whiteboard, sofa, whiteboard, sofa. The middle “sofa” segment involved, for both mini-
lectures, the use of a handheld prop (actually a paperback book that was opened to show some
example data that we might wish to compress). Hence, even listeners who might have been happy
to stare at a whiteboard while listening to a disembodied voice had an incentive to switch back to
the sofa view during the middle segment.

Precise details of the questionnaire administered at the end of each session are given in Ap-
pendix E. The most important questions gauged whether the users preferred speaker-controlled
cameras, listener-controlled cameras, or neither. The strength of this preference was coded using
Likert-type categories (e.g. “mildly disagree”). Other questions asked users to list any aspects of
the experience they liked or disliked during the speaker-controlled and listener-controlled segments.
Users were also asked how much they used the tiled view, and a final open-ended question asked
for any further comments or feelings about the experience.

It is important to note that it is definitely not the goal of the study to evaluate the raw efficacy
of the whiteboard lecture scenario for distance learning or collaborative web conferencing. The
scenario is contrived solely to provide an easily-controlled, replicable situation in which remote and
local control of camera-switching can be compared while keeping other factors constant. Indeed,
numerous software products targeted at distance learning and web conferencing are available,16 and
MultiCam is not envisaged as a direct competitor these products. In fact, they are complementary:
any such product receives input from a webcam, and can therefore be enhanced by using MultiCam-
style virtual camera software to provide simultaneous multiple-camera functionality if desired.

6.3 Results and discussion of user study

6.3.1 Camera control preference

Figure 6 shows the strength of participants’ preferences between speaker-controlled and listener-
controlled camera-switching. For simplicity, the graph shows results coded with Likert-type cat-
egories (i.e. the level of agreement/disagreement) applied to the statement “When the speaker
controlled the camera, the overall experience was more satisfactory.” However, to eliminate acqui-
escence bias,17 the data was obtained in a different way, resulting in perfect symmetry between

16e.g. Elluminate and Wimba Classroom for distance learning; GoToMeeting and Microsoft’s Live Meeting for web
conferencing—to mention just two of the many products available in each category.

17Acquiescence bias is the tendency of respondents to agree with statements. See texts on psychology or market
research for details (e.g. [20]).
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preferences for listener control and speaker control. Participants were first asked whether they
preferred speaker control, listener control, or neither. Those expressing a preference were then
asked to follow up by selecting from “strongly agree,” “agree,” or “mildly agree” in reaction to
the statement “When the [speaker/listener] controlled the camera, the overall experience was more
satisfactory.” Of course, the word “speaker” or “listener” in this statement was selected according
to the participant’s previously-stated preference.

Figure 6: User preferences for speaker-controlled camera-switching vs listener-
controlled camera-switching. Frequencies of agreement levels with the following statement are
shown: “When the speaker controlled the camera, the overall experience was more satisfactory.”

A glance at Figure 6 gives the strong impression that users preferred speaker-controlled camera-
switching, and this impression is confirmed by statistical analysis. The median response is “agree”—
the second-highest response on the 7-point scale. To check our intuition that this median differs by
a statistically significant amount from the “neutral” response, we can perform a chi-squared test of
the null hypothesis that the population median is “neutral.” To do this, restrict attention to the
19 participants who expressed a preference: 4 for listener control and 15 for speaker control. If the
null hypothesis held, we would expect 9.5 in each category. Computing a chi-squared statistic in
the usual way, we find χ2 = 6.37 on 1 degree of freedom, which yields a p-value of 0.012. Hence, we
can reject the null hypothesis at, say, the 2% level of significance, and conclude that there was a
statistically significant preference for speaker control.

On the other hand, we also see that the results were not a complete landslide for speaker-
controlled camera-switching: 15 participants expressed a preference for speaker control, and 8 did
not. So 35% of respondents are either neutral or prefer listener control. Applying the usual formula
for standard error σ of a population proportion gives σ = (0.35× (1− 0.35))/√23 = 0.052. The 95%
confidence interval of ±2σ is therefore [24%,45%]. In fact, the sample size is too small for this
simple approach to be rigorous, but it seems adequate for the qualitative discussion given here. We
only wish to conclude that a significant minority (perhaps a quarter to a half) of the population
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Advantages of speaker control:

could concentrate more easily (not distracted by
thinking about switching cameras)

9

lecturer can anticipate the need for a switch and
thus switches at the right time

8

Advantages of listener control:

had control over the experience 10

had the ability to go back to the whiteboard
when desired

5

concentrated better because had to pay atten-
tion

2

Disadvantages of listener control:

poor interface for switching cameras 8

harder to concentrate/distracting to switch
cameras

5

switching delay was annoying 4

lose a few seconds of attention at every switch 3

Figure 7: Theme analysis of user study comments. All comments that occurred twice or
more are listed, with the frequency of occurrence in the right column.

does not prefer speaker control.
Combining the conclusions of the previous two paragraphs, we see that for the particular white-

board lecture scenario tested, an ideal multi-camera system would function primarily by speaker-
controlled switching, to satisfy the statistically-significant preference of the population for speaker
control. However, the ideal system would also permit control by the listener (to whatever extent
desired), which is especially important for the significant minority of listeners who prefer to be in
control. Obviously, we should be extremely careful when extrapolating this conclusion beyond the
particular version of the whiteboard lecture scenario tested. We expand on this point in Section 6.4,
after presenting the remaining user study results.

6.3.2 Pros and cons of camera-switching options

Figure 7 lists all the important themes to emerge from the questions asking participants to list any
likes or dislikes of the two camera-switching options (speaker control and listener control). Note
that these were open-ended questions,18 so participants had no cues as to possible responses. The
Figure shows any theme that was mentioned by at least two participants. Classification of responses
was done by the author, and is of course subjective. Nevertheless, several clear points emerge.

18Advantages and disadvantages of open-ended questions are discussed in psychology and market research textbooks
(e.g. [19]).
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The strongest reason for liking speaker control was that it was easier to concentrate on the
content of the lecture—these participants considered camera control a burden, and devoting thought
to camera control detracted from the attention that could be paid to the lecture itself. For example,
one participant stated: “I can concentrate on the speaker, not on the technology.” A related but
separate point is that the speaker knows in advance when a switch will be required, and thus is
able to time the switches appropriately. In contrast, the listener realizes a switch is required only
after the speaker performs whatever action triggers the need for a switch. Thus, even for a user
who does not find camera-switching burdensome, listener control has the disadvantage that most
camera switches occur late. One participant spoke of losing “a few seconds” of relevant viewing at
every such switch.

No themes for disliking speaker control emerged; the only comment in this category was from
a single participant, who noted that he or she “couldn’t check something on the whiteboard.”

The strongest reason for liking listener control was the somewhat tautological notion of being
“in control.” Some participants perceived explicit educational value in being able to time their own
switches, especially for lingering on, or extra glances at, the whiteboard. In fact, four of the five
users who mentioned the ability to go back to the whiteboard as an advantage of listener control
actually preferred speaker control in general. This is important, as it demonstrates that even users
who prefer speaker control can benefit from the ability to seize control occasionally. A more subtle
and surprising effect was also apparent: some users derive intrinsic satisfaction from being in control,
without necessarily perceiving a causal link to an educational outcome. Comments along these lines
include: “it was kind of fun to be the one in charge,” and “the part of me that likes to flip through
the channels liked it.” Two participants preferred listener control for another surprising reason:
they found the requirement to be alert and ready to switch cameras when necessary forced them to
pay more attention to the lecture, resulting in a more satisfactory outcome. This reasoning directly
contradicts the 10 users who found camera-control detrimental to concentration—more evidence
that the user base has diverse preferences and multi-camera video chat should try to account for
them.

The main stated disadvantage of listener control was the poor interface for switching cameras.
There were two aspects to this. As remarked above, remote camera-switching was performed via
the IM hack, which requires a minimum of two keystrokes and, more importantly, is not at all
intuitive. It is not surprising that users disliked this. However, six users were also frustrated by
having to cycle through the three view settings in a fixed order. This calls into question one of the
hypotheses on which the MultiCam interface was based: namely, that switching between multiple
views, including a tiled view, is excessively complex and that the simplest possible interface (a single
advance-to-next-view operation) is therefore preferable. It seems this hypothesis is not correct for a
significant fraction of users. Thus, alternative interfaces should be explored in future multi-camera
chat systems.

Another important dislike of listener control was the delay between requesting a switch and
receiving it. Average round-trip times were not recorded during the user study chat sessions, so
it is not known if these complaints correlate with large network latencies. (Two of the four who
mentioned this problem were in Oceania, but the other two were in North America—the same
continent as the lecturer.) In any case, it is interesting that delay was perceived as a disadvantage
specific to listener control. Speaker-initiated switches would have suffered delays of similar mag-
nitude (although perhaps up to 50% less, depending on the root cause), but were not perceived as
problematic.
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There is one other factor that was notable for its absence in the user comments: when the
listener controls the cameras, the speaker is freed from this concern, and (at least in principle)
can devote more effort to delivering a smooth and clear presentation. Of course, in this case,
the lecturer was extremely well-practiced in using MultiCam and was able to use the convenient
camera-switching interface provided by the MultiCam application. So it is quite possible there was
little or no discernible difference between the clarity of the two mini-lectures.

6.3.3 Use of tiled mode

It is natural to wonder whether multi-camera video chat systems should provide a tiled mode: is it
a beneficial feature, or does it just clutter the interface and confuse the users? The user study was
not specifically designed to answer this question, and the utility of tiled mode clearly depends on
the application. Nevertheless, we can glean a little insight from the participants’ responses. Two
participants chose to use tiled mode most of the time during the listener-controlled mini-lecture.
A further nine participants used tiled mode at least once. The remaining 12 participants did not
use tiled mode. Hence, it seems that for this application at least, tiled mode is attractive to a
significant fraction of users.

6.4 Conclusions from the user study

The nutshell conclusion of the user study is: for the whiteboard lecture scenario, a majority of
users prefer speaker-controlled camera-switching to listener-control, but a significant minority do
not. Note, however, that care is needed when extrapolating this conclusion beyond the particular
version of the whiteboard lecture scenario tested. Indeed, even if we restrict consideration to the
whiteboard lecture scenario, it seems clear that generalization is problematic. This is because
certain aspects of the scenario could be varied in such a way as to produce preferences tilted
strongly towards speaker or listener control. For example, the speaker could have deliberately
“forgotten” to switch cameras several times during the speaker-controlled test.19 This would be
immensely frustrating to the listeners, and could be made as extreme as desired, resulting in
virtually 100% of participants expressing a preference for listener control. On the other hand, the
speaker could have made listener control difficult and frustrating by frequently moving on and off
the whiteboard, picking up props for only one or two seconds, and making very brief references
back to the whiteboard, all without verbally telegraphing any intentions.

These thought experiments demonstrate that preference for listener- or speaker-control is highly
application-dependent. And there are two other factors that may have influenced the results: (i)
the use of the non-intuitive IM hack for switching cameras; and (ii) the fact that the vast majority
of participants had never used MultiCam before, and had only a brief 30–60-second practice session
to gain familiarity with switching cameras. Both of these factors would tilt the results towards a
preference for speaker control.

But the application-dependence and other sources of variability do not render our conclusions
from the user study irrelevant—they simply mean we must be careful in making generalizations.
For example, it would be wrong to conclude that a majority of users prefer speaker-control to

19In fact, this did happen twice, by accident. Participants were instructed to disregard the mistakes, but they may
have been influenced anyway, of course.
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listener-control for multi-camera video chat in general. On the other hand, it does seem reasonable
to infer the following conclusions:

� For any given multi-camera video chat scenario, there can be both a significant proportion of
users who prefer local control of camera-switching, and a significant proportion of users who
prefer remote control.

� Even users who have a preference for not controlling the camera-switching in a given scenario
can derive benefits from seizing control occasionally.

� A significant fraction of unpracticed users find that controlling the cameras detracts from their
ability to concentrate on the video chat (but this may not be true of users with substantial
practice, especially if a more convenient interface than the IM hack were provided).

� Significant delays between a switch request and its execution can be a source of frustration.

7 Benchmark experiments

If, as this report suggests, end-users can benefit from the use of multiple cameras while video chat-
ting, it is important to verify that simultaneous use of multiple cameras does not consume excessive
resources on a consumer-grade computer. This section describes an experiment to investigate this,
together with additional experiments that examine some MultiCam design choices and compare
the performance of MultiCam to two other multi-camera systems.

7.1 Hardware used by the experiments

The experiments employ four different USB webcams: a Logitech QuickCam Chat, a Logitech
QuickCam Easy/Cool20, a Microsoft LifeCam VX-3000, and a Microsoft LifeCam HD-3000. These
are all low-cost cameras: at the time of writing, they could be purchased from Amazon at costs
of $19, $21, $25, and $29 respectively. We deliberately use low-cost cameras, as we are targeting
consumers who have no desire to purchase professional-grade equipment. The selection of cameras
is heterogeneous for two reasons: (i) it allows us to investigate the amount of variability in resource
usage and performance between these cameras, and (ii) it is perhaps more representative of a
consumer whose collection of webcams has grown piecemeal over time.

Experiments were conducted on two different machines: a relatively recent (2011) standard
office desktop with four cores, and an older (2007) laptop with two cores. The motivation behind
the choice of machines is that the desktop represents a typical consumer setup at the time of
writing, whereas the laptop could be considered an impoverished setup. If we are prepared to
ignore feebler devices such as smartphones, tablets, and even older single-core machines, our laptop
is a reasonable worst-case scenario.

Figure 8 tabulates the some details of the chosen machines’ hardware and software. Before
looking at empirical results, let us consider the theoretical impact of each of these specs. The CPU
speed and number of cores have a direct impact on the CPU utilization measurements, as we will

20The Logitech QuickCam comes in several different flavors, which are not always clearly distinguished by vendors.
The names given here are the ones the cameras themselves advertise to DirectShow as a so-called friendly name. In
practice, this is the string that user sees when selecting a camera source within a video chat program.
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desktop laptop
year purchased 2011 2007
make and model Dell Optiplex 780 Toshiba Portege M400
CPU model Intel Core2 Quad (Q9400) Intel Core2 (T5600)
CPU cores 4 2
CPU frequency 2.66 GHz 1.83 GHz
amount and type of memory 16 GB dual-channel DDR3 4 GB dual-channel DDR2
DRAM frequency 532 MHz 333 MHz
measured memory bandwidth 6894 MB/s 3102 MB/s
GPU ATI Radeon X1550 Intel GMA 950
USB 2.0 ports 8 3
Operating system Windows 7 Enterprise (64-bit) Windows 7 Professional (32-bit)
Skype version 5.5.59.124 5.5.59.124

Figure 8: Details of the two machines used for resource usage experiments. Memory
bandwidth is measured using the STREAM benchmark [14, 15].

see shortly. A näıve calculation accounting for only the number and clock frequency of the cores
suggests the desktop will be (4 × 2.66)/(2 × 1.83) ≈ 2.9 times as fast as the laptop for tasks with
plenty of parallelism.

The amount of memory is irrelevant for these experiments, as long as there is ample memory
to accommodate the maximum of 240 MB consumed by the most resource-hungry experiment
(simultaneously running MultiCam.exe and Skype.exe during a 4-camera video chat). The memory
frequency (being directly proportional to the bandwidth between main memory and CPU) also turns
out to be irrelevant: memory bandwidth proves not to be a bottleneck for either machine, as the
following worst-case calculation shows. A camera operating at 30 frames per second (fps), with
resolution21 480 × 640, and transmitting its data in uncompressed 24-bit RGB format, consumes
a bandwidth of 26 MB/s. So four cameras consume about 105 MB/s, which is far less than the
3102 MB/s memory bandwidth measured on the low-spec laptop, let alone the 6894 MB/s for the
standard desktop machine.

The number of USB ports can also impact experiments of this type. Each USB 2.0 port has
a theoretical maximum bandwidth of 60 MB/s, assuming each has an independent controller (this
assumption is not true, as we shall see later). So the worst case camera bandwidth of 26 MB/s
is less than half of the 60 MB/s USB 2.0 bandwidth. Thus, provided there are at least as many
ports as cameras, there is, in principle, ample bandwidth for the data from each camera to traverse
the USB ports. Note that the laptop had only three USB ports, and therefore required two of the
cameras to be multiplexed through a USB hub22 for our four-camera experiments. Again assuming
the worst-case camera bandwidth of 26 MB/s, we see that, in principle, even two-way multiplexing
of cameras through a USB 2.0 hub should not produce a bottleneck. In practice, of course, there
may be more subtle limitations on simultaneously streaming data from many USB ports. Some

21The reader may legitimately ask why 480 × 640 can be considered a “worst-case” resolution. Clearly, we can
imagine video chats employing much higher resolutions than this. Nevertheless, at the time of writing, 480 × 640
is a generous resolution for typical video chat scenarios, and appears to be the default Skype resolution for many
webcams.

22A D-Link DUB-H7 USB 2.0 powered hub.
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of the variability in the frame rate and CPU utilization results (look ahead to Figure 9, which is
discussed in detail below) may arise from this.

7.2 Experiment 1: MultiCam resource usage

The objective of the first experiment is to measure the resource usage of MultiCam with up to
four cameras, both in isolation and as part of a video chat. Which resources are of interest for
this experiment? Note that network resources are irrelevant, because during a video chat, the chat
software using the MultiCam filter consumes exactly the same network bandwidth as it would with
a single camera, regardless of the number of physical cameras connected to the MultiCam filter.
In fact, the two primary resources consumed by the cameras are (i) CPU, and (ii) bandwidth of
various internal buses, especially USB buses. In this experiment we report CPU utilization directly,
whereas the effects of bus saturation are demonstrated indirectly, by measuring the video frame
rate of the MultiCam filter.

There was a separate run of the experiment for each nonempty subset of the four cameras,
resulting in a total of 15 camera combinations. As already mentioned, the experiment was repeated
on two different machines (desktop and laptop). Furthermore, each machine/camera possibility was
tested in two different ways: a raw run and a Skype run (described in more detail below). This
results in a total of 15 × 2 × 2 = 60 runs. In each run, two main data points were collected: CPU
utilization, and video frame rate.

A raw run consisted of executing a simple benchmark program that displays a MultiCam video
stream on the monitor in tiled mode. Specifically, this was a lightly-altered version of the Play-
Cap example code in DirectShow. Note that the raw runs therefore did not involve any video
chat software—the objective was to measure the bare-bones resource consumption of the cameras
connected to the MultiCam filter, without any additional overhead for video chat.

A Skype run consisted of a Skype video chat between the two experiment machines described
above. Only one end of the chat transmitted video in each run, and audio was disabled (although the
impact of this is small). Let us call the machine transmitting video the source of the chat, and the
machine receiving video the destination. CPU utilization and video frame rate were both measured
at the source, and frame rate was measured via Skype’s “Call Technical Info” menu option. For all
Skype runs, the laptop was connected to a residential broadband service via 802.11g wireless, and
the desktop employed a wired connection to a university campus network. The physical distance
between the two machines was about 0.5 miles, and Skype reported the vast majority of round-trip
times in the range 50–60 ms.

In each run, the average CPU utilization was recorded over a period of 90 seconds, using
Windows performance counters. CPU utilization figures are reported as a percentage of all CPU
resources on the machine (e.g. 50% utilization on a four-core machine is equivalent to 100% uti-
lization of two of the cores.) Frame rates were averaged over 250 frames. Naturally, all reasonable
steps were taken to prevent other processes consuming resources during measurement periods. In
addition, each run had a burn-in period of about 10 seconds to allow the video stream to initialize
satisfactorily before measurements began. As discussed in Section 4.5, cameras are always requested
to deliver data at 640 × 480 resolution with 30 fps23, in 8-bit RGB format, and are subsequently
subsampled by the MultiCam filter if necessary for display in tiled mode.

23It turns out that one of the cameras (the VX-3000) can only support up to 15 fps at this resolution.
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Results for raw runs

Figure 9 shows the results of the raw runs. The top panel shows how CPU utilization varied for
the 15 different camera combinations. There are several interesting features of these results. First,
the CPU utilization of the laptop is roughly three times higher24 than the desktop, as we would
expect from the discussion in Section 7.1 (although there is considerable variation from the 3×
multiplier). Second, CPU consumption by the cameras is approximately additive: the cost of any
set of cameras is roughly the sum of the cost of each camera used individually (but again with
considerable variation, and at least one significant exception discussed below).

Third, there can be great variation in the cost of any given camera. In this case, three of the
cameras consume about 5% of the desktop CPU, but the remaining camera consumes about 15%—
three times as much! The outlier camera is the LifeCam HD-3000. No specific efforts were made
to investigate the discrepancy, but it may be due to the higher native resolution of this camera
compared to the others. To further complicate matters, it turns out that the HD-3000 consumes
only half as much CPU (about 8%) when plugged into a USB port on the back of the machine,
rather than one of the front ports that happened to be used for this particular experiment. This
also explains the two data points in the 4-camera desktop category, in all three panels of Figure 9:
in each case, the HD-3000 was swapped from the front to the back to produce a second 4-camera
data point.

This leads to the fourth observation: there can be very significant variations in resource usage
by cameras, and the variation can be for obscure reasons that would certainly be inexplicable to
typical end-users. The 2× change by moving from a rear to front USB port just mentioned is one
example of this. Another peculiarity is the fact that two of the 3-camera sets on the laptop consume
significantly more CPU than the 4-camera set. This suspicious result was confirmed in repeated
tests, but was not investigated further.

The fifth and final observation is the most obvious but also most important: the total CPU
consumption on our typical (i.e. desktop) setup is only a small fraction of the available resources,
and even on the impoverished (i.e. laptop) setup, the most CPU-intensive runs still leave some room
for other tasks to use the CPU. Hence we can conclude that multi-camera video chat is comfortably
feasible on consumer PC hardware.

The middle panel of Figure 9 shows the video frame rate achieved by MultiCam for the same
camera sets as the CPU tests. On this metric, the desktop and laptop have very similar performance
for the majority of camera sets. But there are notable exceptions, including the surprisingly low
frame rates of two cameras (the two QuickCams) in single-camera mode on the laptop. As with the
CPU results, we see some counterintuitive trends. For example, the two QuickCams, which each
achieve fewer than 10 fps when used alone on the laptop, are even worse when used together (6 fps),
but can improve dramatically when combined with one of the other cameras (e.g. 30 fps with the
HD-3000). Such mysterious results might lead one to suspect a performance bug in MultiCam, such
as misuse or abuse of the DirectShow APIs. But as we will see shortly (Figure 10, middle panel),
Skype obtains similarly poor frame rates from one of the QuickCams when using it directly (i.e.
without MultiCam) on the laptop. This suggests that the poor single-camera performance—and
presumably the mysteriously-good multi-camera performance too—is not specific to MultiCam,
and may instead derive from some combination of the camera drivers, the USB controllers, and the
DirectShow framework.

24The exact value of the average multiplier is 3.3.
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Figure 9: MultiCam CPU utilization and frame rate for a local display benchmark. Top:
CPU utilization for all possible combinations of four different webcams, on two different computers.
Middle: Frame rate for the same set of experiment runs. Bottom: The same data as the previous
two graphs, combined a single graph (for clarity, only the runs on the desktop computer are shown).
In the top and middle panels, some points have been shifted horizontally to improve visibility.
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The bottom panel of Figure 9 shows the same data as the two upper panels, combined on a
single graph so that any relationship between frame rate and CPU utilization can be observed. For
clarity, only results for the desktop machine are shown. The surprising result is that the relationship
is rather weak (R2 = 0.27,0.67,0.51 for 1,2,3 cameras respectively). This once again demonstrates
that camera performance and resource usage is unpredictable, and appears to depend on subtle
interactions between several hardware and software modules.

The high-level conclusion to be drawn from Figure 9 is twofold. First, video chat with several
cameras simultaneously consumes only a fraction of the resources on a typical consumer machine
and is therefore feasible. Second, the performance (in terms of both CPU and frame rate) of hetero-
geneous sets of cameras working together is unpredictable. Camera manufacturers and video chat
software developers probably need to devote considerable effort to reducing this unpredictability
if end-users are to experience consistently satisfying multi-camera video chats. The good news is
that this experiment did uncover some sweet spots: in the bottom panel of Figure 9, for example,
we see that one set of three cameras can operate at 30 fps for less than 25% CPU, and all four
cameras can operate at 15 fps for less than 20% CPU, provided that we are lucky enough to choose
the right USB ports.

Results for Skype runs

Figure 10 shows the same information as Figure 9, but for the Skype runs rather than the raw
runs. Comparing the top panels of Figures 9 and 10, we see that Skype adds significant CPU
overhead to the local display benchmark. Presumably, this overhead is primarily due to Skype’s
proprietary compression and encryption, which have been analyzed in several prior works (e.g.
[2, 26]). Interestingly, the 3× multiplier between desktop and laptop (which is expected based on
CPU specs, and held roughly true for the local display benchmark) is no longer even approximately
correct; the average multiplier is in fact only 1.8. But this discrepancy can be explained by the
lower average frame rate from the laptop: on average, the laptop frame rate was 1.6 times lower
than the desktop, and since 1.6 × 1.8 ≈ 3.0, we recover the expected ratio of CPU utilization.

This brings us to the middle panel of Figure 10. Comparing with Figure 9, we see the desktop
machine fared well with the imposition of Skype. In fact, 14 of the 15 camera combinations had
the same or similar frame rate (±5 fps).25 But as already mentioned, the laptop suffered: six
camera combinations remained within ±5 fps, but six others suffered double-digit decreases.26 Also
apparent from the middle panel of Figure 10 is the lower frame rate achieved for Skype runs by
the laptop, compared with the desktop (this contrasts with the raw runs). Most likely, this is
due to the lower upload bandwidth of the laptop’s location (recall that it employed residential
broadband). A 2012 study [26], which used Skype version 5.2, has shown that Skype monitors the
available bandwidth and congestion (probably via packet loss rate), and adjusts its video codec
as appropriate. One of the codec’s main adjustable parameters is the frame rate, and it appears
to target the discrete values 5, 10, 15, and 30 fps—although as we see in the figure, this may not
always be achievable. It remains an open question as to whether Skype also moderates its codec to
account for excessive CPU usage. Finally, this middle panel provides a sanity check, showing data
for using Skype with a single camera natively (i.e. without MultiCam). The same frame rate was

25The single exception here was the HD-3000, which achieves 29 fps on the local benchmark, but a puny 5 fps with
Skype.

26And one combination improved by 8 fps. Go figure!
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Figure 10: MultiCam CPU utilization and frame rate during a Skype video chat. Top:
CPU utilization for all possible combinations of four different webcams, on two different computers.
Middle: Frame rate for the same set of experiment runs. Bottom: The same data as the previous
two graphs, combined a single graph (for clarity, only the runs on the desktop computer are shown).
In the top and middle panels, some points have been shifted horizontally to improve visibility.
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Figure 11: CPU utilization for three multi-camera software systems. Points have been
shifted horizontally to improve visibility.

achieved for three of the four cameras, providing reasonable evidence that MultiCam itself is not
unduly hindering performance.

The bottom panel in Figure 10 shows the same data as the previous two panels, but including
only the desktop Skype runs for clarity. As with the raw runs, we see a weak correlation between
frame rate and CPU usage.

The high-level message for the Skype runs (Figure 10) is the same as for the raw runs (Figure 9):
chatting with multiple cameras simultaneously is feasible with a fraction of a typical machine’s
resources, but performance can vary widely and sometimes mysteriously. On the positive side,
we again find (see the bottom panel) that one combination of three cameras achieves 30 fps with
modest CPU (30% in this case). On the negative side, one camera used in isolation languished at
5 fps on the desktop machine, and certain other combinations of multiple cameras were almost as
bad (see middle panel). Even worse, some of the laptop results were dreadful, with frame rates as
low as 2–3 fps.

7.3 Experiment 2: Resource usage of other multi-camera software

It is natural to wonder if the resource consumption of MultiCam is commensurate with other multi-
camera software. Experiment 2 addresses this by measuring the CPU utilization of MultiCam and
two other multi-camera systems: ManyCam, and VHMS (see Section 3 for descriptions of these
systems). Figure 11 shows the results of running PlayCap (the same local display benchmark as
in Experiment 1) on the same 15 camera combinations, for each of the three systems. ManyCam
supports at most two cameras, so this system has no data points for the 3- and 4-camera combi-
nations. In addition, the benchmark was run for each single camera without any virtual camera
software; these are the points labeled “native” in Figure 11.
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The high-level conclusion from this experiment is that MultiCam is reasonable in its CPU
consumption. It is a little more expensive (perhaps 5% of CPU for three or four cameras) than
VHMS, a little more expensive (1–3% of CPU) for a single camera than the camera natively, and
a little less expensive than ManyCam (about 5% of CPU).

7.4 Experiment 3: Camera-switching latency of other multi-camera software

As we already saw in the results of the user study (Section 6), low latency of the camera-switch
operation is important for positive user experiences. Two of the design decisions for MultiCam (si-
multaneous data retrieval from all cameras, and fixed output resolution—discussed in Sections 4.3
and 4.4 respectively) were made with the explicit goal of low-latency camera-switching. Experi-
ment 3 investigates whether MultiCam is successful in reducing camera-switching latency below
that of existing multi-camera software.

The experiment deliberately eliminates network latency from consideration. Although it is an
important component of the user’s experienced latency, network latency is the same for all systems,
so would only add unnecessary noise to a comparison of camera-switching latency. Therefore, we
measure camera-switching latency on PlayCap, the same local display benchmark employed in
the previous two experiments. Specifically, we measure the time between the user’s request to
switch cameras (issued via a mouse click in all cases considered here) and the resulting switch
of views in the display window. A screen capture tool27 was used to record both the mouse
click and the PlayCap output window in a single movie. Latencies were computed by manually
single-stepping through these screen-capture movies to find the frames in which the relevant events
occurred. The screen-capture movies had a temporal resolution of about 22 ms, so the uncertainty
in any single measurement is ±11 ms. The latency figures are derived from the difference of two
such measurements, so the uncertainty in the latencies is 2 × 11, or approximately ±22 ms. The
experiment employed the same 2 cameras (the two LifeCams) in each test, with the user switching
from a primary view of the VX-3000 to the HD-3000.

Figure 12 shows the results for the same systems compared in Experiment 2: this report’s
MultiCam, VHMS, and ManyCam. It is clear that MultiCam enjoys a significant advantage here,
being 2–3 times faster than the other systems. But note that the true camera-switching latency
experienced by a remote user will be the sum of the amounts from Figure 12 and the network
latency, which may itself be hundreds of milliseconds. Hence, the difference between the three
systems observed by a remote user would be less dramatic than this 2–3× factor. Nevertheless, in
order for the total switching latency to be tolerable on a connection with non-negligible delay, it
is clearly important for the camera-switch itself to have low latency, and it seems MultiCam has
succeeded in achieving this.

The relatively large latency for the other two systems (more than one second in the case of
VHMS) suggests that these systems switch cameras by stopping the running DirectShow graph,
performing surgery on it, then restarting the graph. MultiCam’s alternative approach of keeping
all cameras running and feeding only the relevant bits downstream appears to save at least several
hundred milliseconds, at a modest cost in CPU, as we saw in Experiment 2.

27CaptureWizPro, http://www.pixelmetrics.com/CapWizPro
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Figure 12: Camera-switching latency for three multi-camera software systems.

7.5 Experiment 4: Display latency of multiple cameras

It has been shown that for audio calls, Skype users’ satisfaction is much more strongly influenced
by the transmitted signal’s bitrate and jitter than by its latency [6]. But there do not appear
to be any similar results for video chat, so it seems desirable to understand whether or not the
simultaneous use of multiple cameras affects video latency. Experiment 4 investigates this. As with
Experiment 3, network latency is eliminated—not because it is unimportant, but because it is a
constant added to any delay due to multiple-camera use. Therefore, we again consider latency for
the PlayCap local display benchmark.

The experimental method uses a type of recursion, inspired by the method of vDelay [3], but
significantly simplified since we are measuring local rather than remote display latency. The webcam
whose latency is to be estimated is pointed at the monitor where its own output is being displayed
in the PlayCap window. Meanwhile, immediately adjacent to this window, a visible event takes
place at regular intervals—a counter incrementing once per second was used in this case. As in
Experiment 3, a screen capture tool is used, this time to capture the counter and any relevant
portion of the PlayCap window. Figure 13 shows the technique. By positioning the camera at the
right angle, we can ensure that the captured image of the counter is displayed immediately adjacent
to the counter itself (in this particular case, the original counter is on the far right, and its image
is immediately to the left). The captured image of the image of the counter is also captured by the
camera, and displayed adjacent to the previous image. This process can be continued indefinitely,
but the image quality degrades with each trip through the camera, and in practice the degradation
was too severe to permit analysis after the third iteration.

By single-stepping through the resulting screen-capture movie, we can determine the frame in
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Figure 13: Example of screen capture used to compute display latency. The “57” on the
right is displayed directly on the screen, and the reproductions of the “57” to the left are the result
of three successive feedback loops through the camera.

which the rightmost and leftmost counters increment. The difference in the capture times of these
frames is equal to the camera’s capture-to-display latency multiplied by the number of iterations
(which, as already mentioned, was three in most cases). The main advantage of using the feedback
loop to measure latency is accuracy. As with Experiment 3, the time resolution of the screen
capture is about 22 ms, but this uncertainty is reduced by a factor of three when using the triple
feedback loop. For each camera and scenario—described shortly—measurements were taken for
about 10 separate events, and averaged to further reduce uncertainty.

Measurements were made for each of the four webcams used in the previous experiments. More
specifically, each camera’s latency was measured in two scenarios: (i) the given camera is the
only one connected to the MultiCam filter (the others might as well be disconnected; they have
no effect on the system), and (ii) all four cameras are connected to the MultiCam filter and are
simultaneously displayed in tiled mode, but we measure the particular tile whose content comes
from the camera being measured. The feedback system for reducing uncertainty is not directly
applicable to the tiled mode scenario, so measurements of the tiled scenario were based off only a
single camera latency and have a correspondingly higher uncertainty.

Figure 14 shows mean and standard deviation for each camera and scenario. For any given
camera, we see a relatively small difference between the single-camera and four-camera scenario;
two of these differences are increases and two are decreases. Hence, it seems safe to conclude that
simultaneous use of up to four webcams does not significantly alter the latency of video observed by
video chat users. We can also see the dramatic differences in latencies between different cameras—
as much as a factor of 3, ranging from 100 to 300 ms. This is yet another example of the “chat user
beware” maxim emerging from these experiments. If video latency is an important component of
user satisfaction, then camera manufacturers and video chat software developers should probably
provide better tools to help users choose appropriate technology.

8 Privacy and invasiveness multi-camera video chat

The prospect of the listener controlling the view of the speaker’s location raises the question of
whether the speaker’s privacy might be violated by such systems. As an extreme thought ex-
periment, suppose the speaker is in a room (such as an office or bedroom), and employs a 360°
panoramic, high-definition camera stationed in the center of the room. Further suppose the lis-
tener can zoom in on any portion of the camera’s panorama, and the resolution is sufficiently good
that the listener could read the visible text of any papers or books in view. (Note that there is
no consumer-grade technology that achieves this at the time of writing; we are simply using the
scenario as an extreme case of potential privacy violation. More realistically, we might imagine
three or four cameras showing different views of the room, with the listener switching between and
zooming in on just those available views.)
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Figure 14: MultiCam display latency for single and multiple cameras. Horizontal lines
show the mean and vertical lines show the standard deviation of the 10 latency measurements taken
for each scenario.

Described in this way, the scenario feels somewhat creepy, and one is tempted to immediately
categorize it as a clear violation of privacy. But this conclusion does not withstand more careful
scrutiny. Recall that our underlying objective is to restore to the video chat participants the same
freedoms they would have in a face-to-face conversation. Therefore, the privacy properties of the
system should be assessed by comparing with the privacy properties of a face-to-face meeting in the
same location as the multi-camera system. So, our thought experiment with a high-def panoramic
camera in the speaker’s office or bedroom is only valid if that speaker would have been comfortable
having a face-to-face meeting with the listener in the same office or bedroom. Obviously, if you
wouldn’t invite your acquaintance Fred into your bedroom for a face-to-face meeting, then you
shouldn’t chat with Fred via an immersive video system based in your bedroom either. On the
other hand, if you are comfortable with the idea of Fred wandering around your bedroom or office,
reading the titles of books on the wall and glancing at the receipts on your desk, there is no rational
reason to avoid immersive video chat with Fred in that same location.

It might be argued that when Fred is physically present and looking at your books or receipts,
you get immediate feedback on his actions and can take steps to prevent privacy violations (e.g.
put the receipts in a drawer as Fred walks over towards the desk). In contrast, it could be argued
that a remote listener has more chance to snoop on arbitrary parts of the environment without the
speaker being aware. There is some truth to this claim, especially given that the video stream can
be recorded and analyzed later, perhaps even using super-resolution techniques [5]. The obvious
response is that the speaker should know the capabilities of the camera and remove any private
material from view before the video chat starts. And the situation is further ameliorated by the
fact that the speaker can always monitor the listener’s view via the local view window (so if you
see Fred is zooming in on the receipts, put them away). Indeed, this is an important reason that
chat software should always provide a local view window option.

38



Overall, then, it is reasonable to conclude that immersive video chat creates no privacy violations
beyond the face-to-face conversations it seeks to emulate. But one of the fundamental points of
this report is that we can and should put an even more positive spin on the situation. Provided
the speaker has chosen a suitable location for the video chat, it is actually a good thing that the
listener can, for example, examine books and pictures on the wall, see what kind of cell phone the
speaker has, and see the titles of some documents the speaker happens to be reading. These are
exactly the kind of serendipitous observations that lead to interesting and varied conversations,
and which are completely absent from today’s video chat paradigm.

9 Discussion and future work

The most obvious opportunity for future work is to incorporate non-standard imaging devices, such
as panoramic cameras, into the mix of cameras. Improving the UI for camera-switching should be
a priority, perhaps using image stitching [4] to combine views, or navigation between views inspired
by the Photo Tourism of Snavely et al. [23].

This report has also highlighted some areas in which webcam manufacturers and video chat
software developers could improve the multi-camera chat experience. These include

� addressing the unpredictable CPU usage, frame rate, and latency of cameras identified by the
benchmark experiments (Section 7)

� standardizing a protocol for remote camera switching (Appendix C provides specific sugges-
tions)

� providing cameras with a “ready” mode, whereby they can begin transmitting video data
upon request, essentially instantaneously

� providing features to distinguish between physical and virtual cameras (as discussed in Ap-
pendix A.3)

� ensuring the current camera device is released before a newly-selected device is activated (see
Appendix A.4)

10 Conclusion

Multi-camera video chat seems to be a promising and underutilized tool in the multimedia mi-
lieu. This report has demonstrated the feasibility of multi-camera chat on standard consumer
hardware, and suggested scenarios in which multiple cameras improve the chat experience. A user
study provided strong empirical findings on the advantages and disadvantages of listener-controlled
switching between camera views. Some design trade-offs inherent in multi-camera chat software
were discussed, and the report also presented MultiCam, an open-source package providing multi-
camera chat. Perhaps researchers, software developers, and hardware designers can build on these
ideas to provide rich, easily-controlled, multi-view video chat experiences in the future.

A MultiCam design details

This appendix fills in a variety of technical details relating to the design of MultiCam.
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A.1 Creation and destruction of MultiCam filter

DirectShow filters are C++ objects. (More precisely, they are Microsoft COM objects, but the
distinction will not be important in what follows.) An important consequence of this is that video
chat software creates a given DirectShow filter when it is needed for a video chat, uses it for
the duration of the chat, then destroys the filter at the chat’s conclusion. So our design cannot
assume that a MultiCam filter exists on the system at any particular time. This fact is particularly
important for communication between the MultiCam application and the MultiCam filter.

A.2 Temporary DirectShow graph

Webcam capabilities are enumerated via the IAMStreamConfig::GetStreamCaps() DirectShow
method for filter pins. This method may be called on a pin whose filter is not currently connected
to a graph. In fact, Skype does exactly this on startup: before creating any DirectShow graphs, all
cameras on the system are asked to enumerate their capabilities. MultiCam faces a chicken-and-egg
problem here, since it does not know its capabilities until it has been connected to its upstream
filters (the physical cameras).

The reasons for this are a little technical, and rely on details that were swept under the rug
in the earlier discussion of selecting webcam capabilities (Section 4.4). DirectShow has a facility
termed “intelligent connect,” whereby filters mutually negotiate a suitable media type when they
are connected, based on various preferences and requirements defined within the filters. MultiCam
takes advantage of this. Specifically, MultiCam relies on intelligent connect to determine the media
type of the connection to the physical camera that happens to occur first in the operating system’s
enumeration of cameras. This media type is used as the output media type, with some fields
changed to take account of the resolution selected by the method of Section 4.4.

The advantage of doing this is that the MultiCam filter’s output media type is identical (in
almost all fields) to at least one of the physical cameras. And if the physical cameras all happen to
be identical, all connections will use exactly the same media type and no unnecessary conversions are
performed. The disadvantage is that it is impossible to enumerate the MultiCam filter’s capabilities
without first connecting the filter to its upstream cameras. To work around this, the MultiCam
code creates a temporary DirectShow graph if it is needed at capability enumeration time, and
destroys this graph as soon as the enumeration is done.

A.3 Distinguishing virtual cameras from physical cameras

MultiCam is targeted at consumers, and should ideally require no configuration. In particular, users
should not be required to specify the exact set of physical cameras to be used within MultiCam—
although advanced users should of course have the option to specify the cameras if desired. Hence,
the default behavior, when a MultiCam filter is instantiated, is for all physical cameras connected
to the system to be employed as inputs to the MultiCam filter. Unfortunately, this ideal behavior
does not appear to be achievable in all cases.

The problem is that there is no reliable way of distinguishing a physical camera from a virtual
camera. Suppose, for example, that ManyCam and MultiCam are both installed on a given system,
which also has two physical webcams connected. When a MultiCam filter is instantiated, the web-
cam drivers and the ManyCam driver appear to be the same category of device.28 So without using

28Specifically, this is CLSID VideoInputDeviceCategory. See Appendix B for details.
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additional heuristics, MultiCam would employ all three “cameras” as inputs. This can have dire
results. For example, if the user had previously specified MultiCam as an input to ManyCam, we
would have a directed cycle in the DirectShow graph, meaning it can’t run successfully. Undirected
cycles can also cause problems, as the following example shows. Suppose the user had previously
specified one of the webcams—let’s call it Webcam A—as the input to ManyCam. When a Multi-
Cam filter is instantiated, both MultiCam and ManyCam attempt connections to Webcam A, but
only one can succeed. Note that an undirected cycle does not always lead to an unrunnable graph.
In fact, one of the chief features marketed for ManyCam is that it can be used simultaneously as
the input to multiple applications. But physical cameras do not have this ability.

At present, MultiCam solves this problem as best it can using heuristics. All common virtual
camera filters are automatically excluded from the enumeration of camera devices. Devices are also
excluded if they refuse to enumerate their capabilities or cannot be connected to the graph in a
timely fashion. Finally, advanced users can specify the exact set of devices to be used as inputs
via a configuration file. This is useful in several situations: (i) working round situations where the
heuristics fail; (ii) using a subset of the physical cameras connected; (iii) deliberate use of a virtual
camera such as ManyCam as one of the inputs (which could be desirable for an advanced user who
has taken care not to create any cycles in the DirectShow graph).

Although this problem is not severe, it’s worth noting that programs like MultiCam could be
made more user-friendly if operating systems could definitively distinguish between physical and
virtual cameras. This is a feature that could be included in future multimedia frameworks.

A.4 Difficulty switching between physical cameras and MultiCam

The present design of MultiCam has a subtle flaw that should be acknowledged. To explain this,
suppose that a user is running Skype and has previously selected a physical camera as the video
input device. The user decides to switch to MultiCam as the input device, and selects MultiCam in
the Skype UI. Unfortunately, it turns out that Skype does not release the old device before activating
the new one. This prevents MultiCam from starting properly, since (as described above) MultiCam
needs to activate each physical camera itself before it can report its own capabilities. There are,
no doubt, relatively simple fixes for this problem, but they have not yet been investigated. Indeed,
ManyCam does not exhibit this symptom, which proves that it is possible for a virtual camera
to interact satisfactorily with this part of the Skype UI. On the other hand, the existing design
of MultiCam has no problems with Yahoo Messenger; in that program, users can switch directly
between MultiCam and a physical camera. Hence, it seems worth mentioning this issue so that
Skype developers can address it if desired.

The current workaround for selecting MultiCam as the video input in Skype is ugly but ac-
ceptable. When MultiCam is installed, a separate virtual camera, named VCam, is also installed.
VCam is a pure virtual camera: it does not use any physical cameras as input, instead generating
random colors at every pixel in its output. Hence, Skype is perfectly happy for users to switch
between a physical camera and VCam, and between VCam and MultiCam. So the workaround
is for users to temporarily select VCam as the input device whenever switching between a single
physical camera and MultiCam.
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B Masquerading as a physical camera

To the best of my knowledge, there is no officially-published standard for enumerating the devices
suitable for video chat on a Windows box. However, DirectShow filters may be registered as
belonging to a particular category of filters (identified by a GUID), and a widely-accepted de
facto requirement is that video devices should be registered in the CLSID VideoInputDevice-

Categoryfilter category. For brevity, we will refer to this as the VideoInputDevice category.29 Note
that membership of the VideoInputDevice category is a necessary, but not sufficient, condition for
a device to be usable in video chat. For example, the filter for a TV tuner is likely to be registered
in this category, but it may not be desirable to offer the TV signal as an input to video chat.

Thus, merely registering a filter as a VideoInputDevice is not sufficient. The filter must also
behave sufficiently like a physical camera, in the sense that it gives a sensible response to any
DirectShow API method call made by the video chat software. Again, there appears to be no
published standard for this required behavior. Presumably, every video chat application defines its
own standard implicitly, by running a battery of tests on each VideoInputDevice to determine its
suitability. I am not aware of any video chat application that documents these tests, and in the
case of proprietary software such as Skype, we cannot examine the source code to check what the
requirements might be.

Therefore, the following rather tedious, but effective, approach was adopted in reverse engi-
neering the behavior required of a virtual camera suitable for Skype. (The approach is described
here in case it is of use to other implementers of similar systems.) First, we start with the example
code for the source filter CSource provided by Microsoft. As already discussed, ensure that the
filter will be registered as a VideoInputDevice. Next, alter and add to this code by implementing
every virtual function in the class hierarchy above, and including, CSource. Each function should
log the fact that it was called and perhaps additional information about its parameters and return
values. Now run the video chat software, choosing this new filter as the video source. By examining
the log, we can determine which methods were called and make sensible guesses as to the desired
behavior.

There is a further complication which has been ignored up until this point. In DirectShow,
filters are connected via software abstractions called pins, which are implemented as C++ classes
derived from a suitable base class. A filter’s pins determine much of its behavior, so the technique
described above for reverse engineering the behavior of the virtual camera’s filter must also be
applied to the virtual camera’s output pin. That is, derive a new class from CBaseOutputPin,
implement all virtual functions in the class hierarchy, add suitable logging for every function, and
test with Skype.

B.1 Skype’s camera requirements

Here we briefly present the results of the reverse engineering approach just described. Of course,
these results depend on undocumented behavior of Skype, and this behavior could change with
future versions of Skype. Nevertheless, a quick summary of the results (obtained for Skype
version 5.5) may be a useful guide for others implementing similar systems. We assume the

29There are at least two concrete pieces of evidence that membership of the VideoInputDevice category is indeed a
de facto requirement for video devices. First, the GraphEdit utility provided by Microsoft as part of the DirectShow
framework appears to list precisely these devices as “Video Capture Sources.” Second, Skype appears to ignore any
device not in this category.
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VideoInputDevice filter is derived from CTransformFilter, and the filter’s output pin is de-
rived from CTransformOutputPin. Moreover, it is essential that the output pin implement the
IKsPropertySet and IAMStreamConfig interfaces.

On startup and/or when the user is altering video settings, Skype causes the following Direct-
Show methods to be called on the VideoInputDevice filter:

� CBaseFilter::GetPinCount()

� CBaseFilter::GetPin()

� CBaseFilter::JoinFilterGraph()

� CTransformFilter::DecideBufferSize()

� CTransformFilter::CheckInputType()

� CTransformFilter::CheckTransform()

Similarly, the Skype startup or video settings code causes the following calls of DirectShow methods
on the VideoInputDevice filter’s output pin:

� IKsPropertySet::Get() (when the property AMPROPERTY PIN CATEGORY is requested, this
should return PIN CATEGORY CAPTURE)

� IAMStreamConfig::GetFormat()

� IAMStreamConfig::GetNumberOfCapabilities()

� IAMStreamConfig::GetStreamCaps()

� IAMStreamConfig::SetFormat()

� CBasePin::GetMediaType()

� CBasePin::Connect()

� CBasePin::CheckMediaType()

Hence, all of the above methods must be implemented and return sensible results in order for a
virtual camera to masquerade as a physical camera for use in Skype.

C MultiCam Ap2Ap protocol

As discussed in Section 4.1, two instances of the MultiCam application communicate using Skype’s
Ap2Ap facility, which is part of the Skype desktop API. The Ap2Ap facility allows MultiCam in-
stances to exchange arbitrary UTF-8-encoded strings. Here, we describe the strings actually used.
This collection of commands is termed the MultiCam Ap2Ap protocol. The protocol consists of four
types of requests, three of which require responses. Hence, there are five commands in the proto-
col: Ping, Pong, AskNumCams, ReplyNumCams, AskVersion, ReplyVersion and AdvanceCamera.
These are described in detail below, but let us first establish some notation. If the protocol spec-
ifies that the string “FOO” should be sent, this means that “FOO” should be first appended to an
appropriate command in the Skype Desktop API. A typical example of a string actually sent to
Skype would be:
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ALTER APPLICATION multicam WRITE skypeusername:1 FOO

This example assumes that an Ap2Ap connection named multicam has already been established
with a communication stream named skypeusername:1. Please see the documentation of the Skype
Desktop API [22] for details of how to achieve this.

The existing implementation of MultiCam assumes an Ap2Ap connection named multicam is
used (as in the example above), but it is possible to envisage the same MultiCam Ap2Ap protocol
being used by other third-party applications using different Ap2Ap connection names, so this
requirement is not part of the protocol specification.

C.1 Ping request and Pong response

A Ping request consists of the string AP2AP PING. On receiving this request, MultiCam should
respond with the string AP2AP PONG. These commands are obviously useful for debugging, but they
are also used in the implementation to check for the presence of a remote MultiCam instance.

C.2 AskNumCams request and ReplyNumCams response

An AskNumCams request consists of the string AP2AP ASK NUMCAMS. On receiving this request,
MultiCam should respond with a ReplyNumCams response. The response consists of the string of
the form

AP2AP REPLY NUMCAMS n

where ‘ ’ represents a space character, and n is the number of physical cameras currently detected
by the MultiCam filter (or 0 if the filter is unavailable). The number n should be formatted as the
standard UTF-8 text representation of an integer.

The ReplyNumCams response may also be sent at any other time (i.e. without necessarily wait-
ing for an AskNumCams request). For example, the current implementation sends ReplyNumCams
when the MultiCam Ap2Ap connection is first achieved.

C.3 AskVersion request and ReplyVersion response

An AskVersion request consists of the string AP2AP ASK VERSION. On receiving this request, Mul-
tiCam should respond with a ReplyVersion response. The response consists of a string of the
form

AP2AP REPLY VERSION d.d d.d.d.d

where ‘ ’ represents a space character, and each d is a digit. The first set of digits (“d.d”) is the
version number of the MultiCam Ap2Ap protocol (1.1, at the time of writing). The second set
of digits (“d.d.d.d”) is the version number of the MultiCam application program (0.1.0.8, at the
time of writing).

C.4 AdvanceCamera request

An AdvanceCamera request consists of the string AP2AP ADVANCE CAMERA. There is no response.
On receiving this request, the MultiCam application should send an AdvanceCamera message to
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the MultiCam filter on the local machine (or, if the filter is not available, do nothing). As described
in Appendix D.3, this message will have the effect of either switching the MultiCam filter between
tiled and non-tiled mode, or advancing the primary camera within non-tiled mode.

D MultiCam Ap2Filt protocol

The MultiCam application and MultiCam filter communicate with each other via the MultiCam
Ap2Filt protocol, described in this section. Ap2Filt messages are transmitted using the standard
Microsoft Windows messaging functionality, via Win32 API functions such as SendMessage() and
SendMessageTimeout(). The MultiCam application and MultiCam filter each create a hidden
window whose sole purpose is to send and receive these messages. There are seven message types:
Discover, Attach, Kick, Ping, Pong, AdvanceCamera, and Reset. Each employs a different message
ID (where message ID is defined as the second parameter in the Win32 SendMessage() function).
The message IDs themselves are not fixed in advance, but are determined each time the protocol
is instantiated, using the Win32 RegisterWindowMessage() function. The parameters needed by
RegisterWindowMessage() are

MulticamDiscover4AD2E57A-AF70-42AE-9A64-BC88F995B9C8

MulticamAttach4AD2E57A-AF70-42AE-9A64-BC88F995B9C8

MulticamAdvance4AD2E57A-AF70-42AE-9A64-BC88F995B9C8

MulticamKick4AD2E57A-AF70-42AE-9A64-BC88F995B9C8

MulticamPing4AD2E57A-AF70-42AE-9A64-BC88F995B9C8

MulticamPong4AD2E57A-AF70-42AE-9A64-BC88F995B9C8

MulticamReset4AD2E57A-AF70-42AE-9A64-BC88F995B9C8

respectively, for each of the seven message types.
The family of Win32 messaging functions such as SendMessage() all employ similar parameters,

including the hWnd, wParam, and lParam parameters which are referenced in the discussion below.
For more information about the data types and usage of these parameters, see the Win32 API
documentation [7].

D.1 Discover, Attach, and Kick Ap2Filt messages

The Discover message is broadcast by the MultiCam filter whenever an instance of the filter is
created. Here, “broadcast” means that the hWnd parameter is HWND BROADCAST. The wParam pa-
rameter is set to the handle of the filter’s hidden window, and the lParam parameter is set to the
number of physical cameras connected to the filter.

If there is no MultiCam application present when the Discover message is broadcast, the message
has no effect. If a MultiCam application is present, it should attach itself to the filter. Specifically,
the MultiCam application sends an Attach message directly to the filter’s hidden window (it can do
this as it has just received that window’s handle), setting the wParam parameter to the handle of its
own hidden window. On receiving the Attach message, the MultiCam filter stores the application’s
hidden window’s handle for later use.

The Kick message is used by the MultiCam application in order to kickstart the Discover-
Attach sequence just described. This is needed because sometimes a user will start the MultiCam
application only after the MultiCam filter has already been created by the video chat software. A
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Kick can also be used to restart communication after an unexpected breakdown. The usage of Kick
is entirely straightforward: the MultiCam application broadcasts the message (i.e. hWnd is set to
HWND BROADCAST), setting the wParam and lParam parameters to arbitrary values since they will be
ignored. On receiving a Kick, the MultiCam filter sends a Discover message as described above.

D.2 Ping and Pong Ap2Filt messages

Ping and Pong messages are used for debugging and for periodically checking the connection be-
tween the MultiCam application and filter. Specifically, the MultiCam application sends a Ping to
the MultiCam filter whenever it chooses (the wParam and lParam parameter values are irrelevant).
On receiving a Ping, the MultiCam filter sends a Pong message back to the MultiCam application
(again, the wParam and lParam parameter values are irrelevant).

D.3 AdvanceCamera Ap2Filt message

The AdvanceCamera message is sent from the MultiCam application to the MultiCam filter. Its
purpose is to either switch to a new primary camera (in non-tiled mode) or to switch between tiled
and non-tiled modes. The wParam and lParam parameter values are not used in this message.

Note that the physical cameras connected to the MultiCam filter have a particular ordering
which is established when the filter first uses the DirectShow API to enumerate the cameras.
This enables us to define the behavior of the MultiCam filter when it receives an AdvanceCamera
message as follows. If the filter is currently in non-tiled mode, and the primary camera is not the
last camera, the filter remains in non-tiled mode and new primary camera is the successor of the
old primary camera. If the filter is in non-tiled mode, and the primary camera is the last camera,
the filter switches to tiled mode. If the filter is in tiled mode, it switches to non-tiled mode and
sets the primary camera to be the first camera.

D.4 Reset Ap2Filt message

The Reset message is sent from the MultiCam application to the MultiCam filter. Its purpose
is to force a reinitialization of the MultiCam filter. This may be useful if an unexpected error
is encountered, or if an unhandled change in the hardware configuration (such as the addition or
removal of a physical camera) has occurred. The wParam and lParam parameter values are not
used in this message. The precise behavior of the MultiCam filter on receiving a Reset message is
not specified here. Note that the current implementation does not implement this feature, but it
is anticipated that future versions of MultiCam may benefit from it.

E User study questionnaire

The following survey was administered verbally to each participant in the user study described in
Section 6.

1. Overall, which do you feel gave you a more satisfactory experience: you, the listener, con-
trolling the cameras; or me, the speaker, controlling the cameras? If you have no preference,
that is also a valid answer.
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2. [Skip this question if no preference is expressed on the previous question.] This question asks
how strongly you feel about your answer to the previous question. I will read a statement
summarizing your answer to the previous question, and then ask you to tell me whether you (i)
strongly agree, (ii) agree, or (iii) mildly agree with the statement. “When the listener/speaker
controlled the camera, the overall experience was more satisfactory.” [Choose “listener” or
“speaker” in this statement according to the answer to the previous question.] Please tell me
whether you strongly agree, agree, or mildly agree with that statement.

3. When I, the speaker, was controlling the camera, was there anything that you liked or disliked
about that experience? List as many things as you wish.

4. When you, the listener, were controlling the camera, was there anything that you liked or
disliked about that experience? List as many things as you wish.

5. When you were controlling the camera, did you use the simultaneous view of both cameras
much, if at all?

6. Please tell me any other thoughts or feelings you have about your experience using this system.
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