
        

Spectral Theory of Wiener-Hopf Operators and
Functional Model.

J. P.MacCormick, B. S. Pavlov

Abstract

Using the Nagy-Foias functional model for contractions we reduce the spectral
problem for Wiener-Hopf Operators with rational symbols to the spectral problem
for finite matrices. In particular we suggest a simple approach to calculation of
Wiener-Hopf determinants for analytic symbols.

1 Introduction

In [10] the general approach for asymptotic calculation of classical Szegö-Kac deter-
minants [1, 2, 6] was proposed. This approach permits investigation of the asymp-
totics of the Fredholm determinants of the Wiener-Hopf operator T , defined on the
finite interval (0, a) as a reduction of integral operator with difference kernel:

T ≡ Ta(g) : L2(0, a) −→ L2(0, a)
u(x) �−→ u(x) +

∫ a
0 g(x− s)u(s) ds.

More specifically (see [11]), the asymptotics as a → ∞ can be calculated provided
the symbol σ = 1 +

∫
eiksg(s)ds possesses real roots. In [13], an elegant description

is given for the oscillating terms in the asymptotics, in the special case that the
symbol has only two real roots. Recovering similar asymptotics in the more general
case of matrix integral operators (see for instance [8, 9]), requires a more direct and
general approach to the problem, which can be supplied by the Lax-Phillips version
of analytic semigroup theory suggested first in [4] for scattering problems. This
approach is equivalent [5], to the construction of functional models of dissipative
operators [7].

In this paper we consider Wiener-Hopf operators on the finite interval (0, a)
whose symbols σ are analytic in the upper half plane or rational functions. In the
first case a straightforward procedure based on the Functional Model for calculating
the determinant of the operator is suggested. In the second case we just reduce the
spectral problem for Wiener- Hopf Operator to the similar problem for a finite
matrix . Our approach can be considered as an alternative to the classical approach
by Gohberg ,which differs from the prototype [12] in two respects : our simple
geometric mechanics remains practically unchanged (but just more boresome) for
matrix case and it is applicable to similar problems on multiconnected domains.
These interesting subjects will be discussed soon elswhere.
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2 Determinants of Wiener-Hopf operators with

analytic symbols — sketch of the plan and the

headlights.

Let T be the above Wiener-Hopf operator, and set ρ = σ − 1 = F∗g, where F∗

is the inverse Fourier transform. (The operator of multiplication by σ will also be
denoted by σ — the meaning is always clear from the context). Our approach to the
calculation of the determinant of T is based on the fact that T can be approximated
by some other operators Wβ whose eigenvalues are known exactly.

Recall that the inverse Fourier transform F∗ maps L2[0,∞] unitarily to the
Hardy space H+

2 of the upper half plane1. Further, F∗(L2[0, a]) = H+
2 � eikaH+

2 ,
and of course the convolution operator becomes the multiplication operator. So
denoting H+

2 � eikaH+
2 by Ka, and writing Pa for orthogonal projection H+

2 → Ka,
we see that T is unitarily equivalent to W ≡ Wa(σ) = PaσPa. In other words, we
have reduced our original problem to the calculation of

det (PaσPa). (*)

The exponential eika is a singular function, so we can find a sequence of Blaschke
products tending uniformly to it on the upper half plane. A good choice turns out
to be

Πβ(k) =
eika − e−β

1 − eikae−β
,

which does indeed tend uniformly (on the upper half plane) to eika as β → ∞.
It’s convenient to note here that the zeroes of Πβ(k) occur at the points kl =
2πl/a + iβ/a, l ∈ Z.

Let Kβ = H+
2 �ΠβH

+
2 , and Pβ = orthogonal projection H+

2 → Kβ. We consider
the operator

Wβ = PβσPβ

as an approximation for W , because in a sense to be made precise later, Kβ → Ka

and Pβ → Pa as β → ∞. The idea is that instead of (*), we can use

lim
β→∞

det (PβσPβ), (†)

provided that the Wβ approximate W well enough. But the whole point of this
approach is that the operator PβσPβ turns out to have a remarkably simple form,
provided the function σ is analytic in the upper half plane: its eigenvectors form
a complete set (and even a Riesz basis) in Kβ, and the eigenvalues are just σ(kl).
This fact immediately gives an explicit expression for (†).

The straightforward plan outlined here meets some minor obstacles, such as the
fact that the operators W and Wβ are close in operator norm but not in trace norm.
Therefore we need an intermediate operator, which is similar 2 to Wβ (and there-
fore has the same determinant), but close to W in trace norm. This intermediate
operator will be constructed as the image of Wβ under the multiplication operator
of an entire function fβ, which is bounded and invertible as an operator in L2(R).
In summary, the plan is realised as the following chain of statements, which sketch
the way of using Semigroup Theory (or the functional calculus for shift operators)
for calculating Szegö-Kac determinants.

1An excellent reference to material on Hardy spaces and Blaschke products is [3]
2In the technical sense, i.e. equal to AWβ A

−1 for some A.
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3 Proof of the main theorem

In all the following results, a > 0 and β > 1. We first state a well-known result
from the theory of semigroups.

Proposition 1 Let Πβ be the family of Blaschke products

Πβ(k) =
eika − e−β

1 − eikae−β
,

approaching the singular function eika ≡ θa uniformly in upper half plane as β → ∞.
Consider the generators Bβ of the contracting semigroup

Zβ(t) = Pβe
iktPβ ≡ eiBβt, t > 0,

which arises as a compression of the shift group onto the coinvariant subspaces

Kβ = H2
+ � ΠβH

2
+.

Then the Bβ are simple dissipative operators, with eigenfunctions given by

ψl(k) =
Πβ(k)
k − kl

, l ∈ Z

and corresponding eigenvalues kl = 2πl/a + iβ/a.

Proof: This is a well-known result, but we provide a proof here for completeness.
Denote by 〈 · , · 〉 the standard inner product on L2(R) (and inherited by H+

2 ).
First observe that Πβ

k−kl
∈ Kβ, since for any g ∈ H+

2 we have〈
Πβ

k−kl
, gΠβ

〉
=

∫ ∞
−∞

Πβ

k−kl
Πβg dk

=
〈

1
k−kl

, g
〉

as ΠβΠ̄β ≡ 1 on real axis
= 0 as g ∈ H+

2 and 1
k−kl

∈ H−
2

So to prove ψl is an eigenvector with eigenvalue kl, it remains to show that

PKβ

[
(eikt − eiklt)

Πβ

k − kl

]
= 0.

But this is equivalent to (eikt − eiklt) Πβ

k−kl
∈ ΠβH

+
2 , or eikt−eiklt

k−kl
∈ H+

2 , which is
obviously true since t > 0. �

A similar statement is valid for the systems of eigenvectors of the adjoint oper-
ators B∗

β. Actually in this case the eigenvectors conveniently coincide with the H+
2

reproducing kernels: ϕl(k) = 1
k−k̄l

. In other words, we have,

Proposition 2 The eigenvectors of B∗
β are

ϕl(k) =
1

k − k̄l
, l ∈ Z

with eigenvalues k̄l = 2πl − iβ.
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Proof: We need only check that {ϕl} and {ψl} are biorthogonal sets. To do this we
need a simple result stating the reproducing kernel for H+

2 :
Let c ∈ upper half plane, and f ∈ H+

2 . Then 〈f, 1
k−c̄〉 = 2πif(c). (The proof of

this result is simple: close the contour in the upper half plane after using the fact
that k = k̄ on the real axis.)

So if l 
= m, 〈ψl, ϕm〉 = 2πiΠβ(km)
km−kl

= 0. And if l = m, 〈ψl, ϕl〉 = 2πi
∏

l �=m(km −
kl) 
= 0 as an infinite Blaschke product converges to a non-zero complex number
except at zeroes of its factors. �

We also have the following fact which will be crucial for our proofs later on.

Proposition 3 The sets {ϕl} and {ψl} both form Riesz bases3 for the subspace Kβ.

Proof: Since we showed in Proposition 2 that {ϕl} and {ψl} are biorthogonal sets,
it will be enough to show this for the {ϕl} only.

First we show the {ϕl} are complete in Kβ. So suppose f ∈ Kβ, and 〈f, 1
k−k̄l

〉 =
0, each l ∈ Z. Then by the result used in the proof of Proposition 2 , f(kl) = 0 for
all l ∈ Z. So f ∈ ΠβH

+
2 . But f ∈ Kβ, hence f ≡ 0.

Finally we show the complete set ϕl is in fact a Riesz basis. Fortunately, this
problem was solved for us many years ago by Carleson [21, 15], in the context of
interpolation by analytic functions. The well-known Carleson condition states that
the family {ϕl} is a Riesz basis 4 iff

inf
m

∏
l �=m

∣∣∣∣km − kl
km − k̄l

∣∣∣∣ > 0.

A quick calculation shows that this condition holds for our set {ϕl}. �
In the next theorem we describe an important automorphism of L2(R) which

maps Kβ to Ka.

Theorem 4 Write θ(k) = eika, and let fβ(k) be the entire function of exponential
type defined by

fβ(k) = 1 − e−βeika.

Then the multiplication operator u �→ fβu is a bounded and invertible operator
on L2(R), transforming the orthogonal sum

L2(R) = H2
− ⊕Kβ ⊕ ΠβH

2
+

into the direct sum
ΠβθH

2
− + Ka + ΠβH

2
+,

where Ka = H2
+ � θH2

+ is a coinvariant subspace of the shift group corresponding to
the singular function θ. The entire functions

Φl = fβ ϕl

form a Riesz basis in Ka for each β > 1.

3By a Riesz basis, we mean a basis obtained from an orthonormal basis by an invertible, bounded,
linear transformation.

4Actually, the Carleson condition guarantees only that we have a so-called unconditional basis. A
Riesz basis must also satisfy inf ‖ϕl‖ > 0 and sup ‖ϕl‖ < ∞, but these conditions are clearly fulfilled
here.

4



       

Proof: Recall that a > 0 and β > 1 — we will use this fact repeatedly without
mentioning it. Multiplication by fβ is clearly bounded and invertible since 1 −
e−β ≤ |fβ| ≤ 1 + e−β on the real axis. We check each component of the claimed
transformation separately.

1st component: To see fβH
−
2 ⊆ ΠβθH

−
2 , suppose g ∈ H−

2 . Then

fβg = (1 − e−βeika)g = Πβθ(1 − e−βe−ika)g ∈ ΠβθH
−
2 .

To see f−1
β ΠβθH

−
2 ⊆ H−

2 , suppose again that g ∈ H−
2 . Then

f−1
β Πβθg =

1
1 − e−ikae−β

g ∈ H−
2 .

2nd component: To see Kβ
fβ−→ Ka is a bijection, it will be enough (by Propo-

sition 1) to show that {fβϕl}l∈Z is a complete set for Ka. First we claim that
fβϕl ∈ Ka:

fβϕl =
1 − e−βeika

k − kl

which is clearly in H+
2 , so suppose g ∈ H+

2 . Then

〈fβϕl, θg〉 =

〈
1 − e−βeika

k − kl
, eikag

〉

=

〈
e−ika − e−β

k − kl
, g

〉
= 0

as
e−ika − e−β

k − kl
∈ H−

2 .

It’s entire function , with decreasing modulus as �k → −∞, whereas g ∈ H+
2 .

So we have shown fβϕl ∈ Ka; now we need to show {fβϕl} is complete in Ka.
Actually, it will be more convenient to show {θ−1fβϕl} is complete in θ−1Ka, which
amounts to the same thing since θ is unitary. Note5 that θ−1Ka = H−

2 �e−ikaH−
2 . So

suppose g ∈ H−
2 , and 〈g, θ−1fβϕl〉 = 0, each l ∈ Z. We need to show g ∈ e−ikaH−

2 .
But

g ∈ e−ikaH−
2 ⇔ eikag ∈ H−

2

⇔
〈
eikag,H+

2

〉
= 0

⇔
〈
eikag,Kβ

〉
= 0 and

〈
eikag,ΠβH

+
2

〉
= 0.

We can check each of these last conditions separately. For the first, recall we assumed
〈g, θ−1fβϕl〉 = 0, i.e.

〈
g, e

−ika−e−β

k−kl

〉
= 0. But

〈
g, e−β

k−kl

〉
= 0 since g ∈ H−

2 and
1

k−kl
∈ H+

2 , so we have
〈
g, e

−ika

k−kl

〉
= 0 and hence 〈g, e−ikaKβ〉 = 0 as

{
1

k−kl

}
l∈Z

are
complete in Kβ.

5To see this, observe that Ka = L2 � eikaH+
2 � H−

2 , so e−ikaKa = L2 − �H+
2 � e−ikaH−

2 = H−
2 �

e−ikaH−
2 .
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We prove the second condition by contradiction. Suppose 〈eikag,Πβf〉 
= 0 for
some f ∈ H+

2 . Then eikag = q + Πβ p for some q ∈ H−
2 and some non-zero p ∈ H+

2 .
It is easy to see that q = eikar for some r ∈ H−

2 , so rearranging gives Πβ p = eikas,
for some s ∈ H−

2 . Thus s = e−ikaΠβ p = 1−e−ikae−β

1−eikae−β
p, or

s

1 − e−ikae−β
=

p

1 − eikae−β
.

But the left side here is in H−
2 , whereas the right side is in H+

2 . Thus p ≡ s ≡ 0,
contradicting the fact that p was not identically zero.

3rd component: To see fβ(ΠβH
+
2 ) ⊆ ΠβH

+
2 , suppose g ∈ H+

2 . Then fβΠβg =
(eika−e−β)g ∈ H+

2 . And for the reverse inclusion, f−1
β Πβ g = Πβ

g
1−e−βeika

∈ ΠβH
+
2 .

Finally we remark that the {Φl} are certainly a Riesz basis of Ka as they were
obtained from the Riesz basis {ϕl} of Kβ by a bounded invertible linear transfor-
mation. �

It is interesting to note here that in fact the functions Φl are Fourier images of
the projections of exponentials e−ik̄lx in L2(R) onto L2(0, a).

As explained in the introduction, it will turn out that the operators Wβ ≡
PβσPβ do not approximate the operator Wa ≡ PaσPa well enough for our purposes.
Therefore in the next theorem we introduce the operators Wβ which have the same
determinants as the Wβ. Then in Theorem 7 we show that Wβ is a good enough
approximation to Wa.

Theorem 5 The operator
Pβ
a = fβPβf

−1
β

is a skew (i.e. nonorthogonal) projection onto Ka parallel to the sum of subspaces

ΠβθH
2
− + ΠβH

2
+.

For each essentially bounded function σ defined on the real axis, the operator Wβ ≡
PβσPβ is bounded and is similar to the operator Wβ ≡ Pβ

a σPβ
a acting in the subspace

Ka; in particular, Wβ and Wβ have the same determinants.

Proof: The effect of fβ described in Theorem 4 means precisely that Pβ
a is zero on

ΠβθH
−
2 + ΠβH

+
2 , and the identity on Ka; this is the definition of a skew projection

so the first statement is proved.
Now it is not generally true for infinite-dimensional determinants that

det(PQP−1) = detQ,

but this formula does hold if P maps some Riesz basis of dom Q to a Riesz basis
of dom PQP−1. But we proved in Theorem 4 that fβ maps the Riesz basis {ϕl} of
Kβ to the Riesz basis {Φl} of Ka. By the definition of Wβ we have

Wβ|Ka = fβPβσPβf
−1
β |Ka = fβWa(σ)f−1

β |Ka,

so the above remarks tell us that detWβ = detWβ. �
Our next task is to estimate the norms of the various operators defined so far.

Define
εβ = sup

k∈R
(Πβ(k) − θ(k)) = sup

k∈R

(
1 − Πβ(k)θ(k)

)
.
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(It is easy to see these suprema are equal, and in fact that εβ ≤ 2e−β

1−e−β . In particular,
we see that εβ → 0 as β → ∞.)

We will need the following technical lemma.

Lemma 6 (i) The operator norm of Pβ
a is estimated by

‖Pβ
a ‖op ≤ 1

1 −
√

2εβ.

(ii) The following uniform estimate holds.

‖Pβ
a − Pa‖op ≤

√
2εβ

1 −
√

2εβ
.

(iii) If ρ ∈ L∞∩L2, then PaρPa is a Hilbert-Schmidt operator with Hilbert-Schmidt
norm not greater than ‖ρ‖2.

(iv) If ρ ∈ L∞∩L2, then Pβ
a ρPβ

a is a Hilbert-Schmidt operator with Hilbert-Schmidt
norm not greater than (

1
1 −

√
2εβ

)2

‖ρ‖2.

Proof:

(i) Given f ∈ L2 with ‖f‖ = 1, write f = Pβ
a f +Πβθf− +Πβf+, where f± ∈ H±

2 .
Let g = Pβ

a f + f− + θf+. (g is the result of “straightening” our decomposition
of f to make it an orthogonal decomposition.) Then

‖f − g‖ = ‖
(
Πβ − 1

)
f− + (Πβ − θ) f+‖

≤ εβ (‖f−‖ + ‖f+‖)

≤
√

2εβ
(
‖f−‖2 + ‖f+‖2

)1/2
.

So
‖g‖ ≤ 1 +

√
2εβ

(
‖f−‖2 + ‖f+‖2

)1/2
(recall ‖f‖ = 1).

Also, ‖g‖2 = ‖Pβ
a f‖2 + ‖f−‖2 + ‖f+‖2, so

(
‖f−‖2 + ‖f+‖2

)1/2
≤ ‖g‖. Thus

‖g‖ ≤ 1 +
√

2 εβ‖g‖, i.e. ‖g‖ ≤ 1
1−

√
2εβ

. Hence

‖Pβ
a f‖ ≤ ‖g‖ ≤ 1

1 −
√

2εβ
,

as claimed.

(ii) Given f ∈ L2 with ‖f‖ = 1, write f = Paf + f− + θf+, where f± ∈ H±
2 . Set

g = Paf + Πβθf− + Πβf+. (We have “bent” the orthogonal components of f
so that Pβ

a g = Paf .) Then

‖f − g‖ =
∥∥∥(

Πβθ − 1
)
f− + (eika − Πβ)f+

∥∥∥
≤ εβ(‖f−‖ + ‖f+‖)

≤
√

2εβ
(
‖f−‖2 + ‖f+‖2

)1/2
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Now we can obtain the desired estimate:

‖(Pβ
a − Pa)f‖ =

∥∥∥Pβ
a (f − g) + Pβ

a g − Paf
∥∥∥

= ‖Pβ
a (f − g)‖ (since Pβ

a g = Paf)
≤ ‖Pβ

a ‖op‖f − g‖

≤ 1
1 −

√
2εβ

√
2 εβ

(
‖f−‖2 + ‖f+‖2

)1/2

≤
√

2εβ
1 −

√
2εβ

‖f‖.

(iii) Taking the Fourier transform of PaρPa, we have an integral operator whose
kernel K is non-zero only on [0, a] × [0, a]. Thus

‖k‖L2×L2 =
∫ a

0

∫ a

0
|k(x− y)|2dx dy ≤ a

∫ ∞

−∞
|k|2dx < ∞,

as ρ ∈ L2 so k ∈ L2 too. A standard theorem on integral equations now tells
us the operator is Hilbert-Schmidt6.

(iv) Use a similar argument to (iii), together with (i). �

The next theorem states that the intermediate operator Wβ is actually close to
W in trace norm.

Theorem 7 Let σ be a bounded analytic function in the upper half plane, set ρ =
σ − 1 and suppose ρ can be expressed as the product of 3 functions, each in the
intersection of the Hardy classes H+

∞ ∩H+
2 :

ρ = ρ1ρ2ρ3, ρj ∈ H+
∞ ∩H+

2 (1)

Then ∥∥∥PaρPa − Pβ
a ρPβ

a

∥∥∥
Trace

≤
√

2εβ(
1 −

√
2εβ

)3 const,

where the constant depends only on the L2 and L∞ norms of the factors ρj. In
particular, Pβ

a ρPβ
a → PaρPa in trace norm as β → ∞.

Proof: We will need three basic facts about operators.
Fact A. An operator is of trace class if and only if it can be expressed as the

product of two Hilbert-Schmidt operators.
Fact B. The set of Hilbert-Schmidt operators is an ideal in the algebra of bounded

operators. So if A is Hilbert-Schmidt, and B is bounded, then AB and BA are both
Hilbert-Schmidt. Moreover, ‖BA‖HS ≤ ‖B‖op‖A‖HS and similarly for ‖AB‖HS.

Fact C. Fact B holds if we replace Hilbert-Schmidt by trace class throughout.
To get the proof started, we also need the following result, which allows us to

insert Pa and Pβ
a in certain places without affecting anything. Let ρ1, ρ2 be functions

in H+
2 . Then

Paρ1ρ2Pa = Paρ1Paρ2Pa, and Pβ
a ρ1ρ2Pβ

a = Pβ
a ρ1Pβ

a ρ2Pβ
a .

6See, for example, Proposition 4.8 of [20] — actually the statement there is that the operator is
compact, but exactly the same proof shows the operator is Hilbert-Schmidt.
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To see this, let f ∈ L2(R). Write ρ2Paf = Pa(ρ2Paf) + θf+, where f+ ∈ H+
2 .

Then Paρ1ρ2Paf = Paρ1Pa(ρ2f) = Paρ1Paρ2f . The second statement follows from
a similar calculation.

Now we can proceed with the proof of the theorem. Applying the above result
immediately, and then adding and subtracting some terms, we get

PaρPa − Pβ
a ρPβ

a

= Paρ1Paρ2Paρ3Pa − Pβ
a ρ1Pβ

a ρ2Pβ
a ρ3Pβ

a

=
(
Pa − Pβ

a

)
ρ1Paρ2Paρ3Pa

+ Pβ
a ρ1

(
Pa − Pβ

a

)
ρ2Paρ3Pa

+ Pβ
a ρ1Pβ

a ρ2

(
Pa − Pβ

a

)
ρ3Pa

+ Pβ
a ρ1Pβ

a ρ2Pβ
a ρ3

(
Pa − Pβ

a

)

We can estimate the trace norm of each term separately; we show only the second
term here as an example.∥∥∥Pβ

a ρ1

(
Pa − Pβ

a

)
ρ2Paρ3Pa‖Trace

= ‖
(
Pβ
a ρ1Pβ

a

)
︸ ︷︷ ︸
Hilbert-Schmidt

(
Pa − Pβ

a

)
ρ2︸ ︷︷ ︸

bounded

(Paρ3Pa)︸ ︷︷ ︸
Hilbert-Schmidt

‖Trace

≤
∥∥∥Pβ

a ρ1Pβ
a

∥∥∥
HS

∥∥∥(
Pa − Pβ

a

)
ρ2

∥∥∥
op

‖Paρ3Pa‖HS

≤
(

1
1 −

√
2εβ

)2

‖ρ1‖2

( √
2εβ

1 −
√

2εβ

)
‖ρ2‖∞‖ρ3‖2

The first line here used Lemma 6 (iii) and (iv), together with a slight variant of the
result above for inserting Pβ

a and Pa. The second line uses Facts A, B and C, and
the third line follows from Lemma 6 (ii)-(iv).

After estimating the other 3 terms in the same way and summing the results,
we get precisely the formula in the theorem. �

At last we are in a position to prove our main theorem, obtaining a formula for
detW .

Theorem 8 Suppose σ is an analytic function in the upper half plane, and σ − 1
satisfies the 3-factor condition (1) of the previous theorem. Then

detWa(σ) = lim
β→∞

∏
l∈Z

σ(kl), (2)

where kl = 2πl/a + iβ/a.

Proof: We apply our previous results to carry out the plan outlined in the intro-
duction. Note that in the first line we will use the fact that det is continuous with
respect to the trace norm. (This is proved in [11], for example). We have

detWa(σ) = limβ→∞ detWβ, by Theorem 7
= limβ→∞ detWβ, by Theorem 5
= limβ→∞

∏
(evals of Wβ), by definition of det

= limβ→∞
∏

l∈Z σ(kl), by Proposition 1

9



        

�

4 A generalisation

Using perturbation theory, we can extend the approach described above to the case
where the symbol is of the form

σ(k)π−1(k),

where σ is a bounded analytic function in the upper half plane and π is a finite
Blaschke product whose zeroes are in the upper half plane. (Note this means π−1 has
poles in the upper half plane.) The corresponding Wiener-Hopf operator on a finite
interval (0, a) is Fourier equivalent to the operator Paσπ

−1|Ka , and approximated
in trace class by the operator fβPβσπ

−1Pβf
−1
β , which can’t be diagonalized using

the semigroup approach as before. Nevertheless its determinant can be calculated
by the following method.

Denoting H2
+ �πH2

+ by Kπ and the corresponding orthogonal projection by Pπ,
we claim that we can rewrite the operator Wβ = Pβσπ

−1|Kβ
as

Wβ = (PβσPβ)
(
Pβπ

−1Pβ

)
|Kβ

+ Pβσπ
−1Pπ|Kβ

.

To see this, first make sure that the following decomposition of the identity
operator on L2(R) is true:

I = Pπ−1H−
2

+ π−1Pππ + Pβ + PΠβH
+
2

Then we have

Wβ = PβσIπ
−1|Kβ

= Pβσ{Pπ−1H−
2︸ ︷︷ ︸

this is zero
on π−1Kβ

+π−1Pππ + Pβ + PΠβH
+
2︸ ︷︷ ︸

anything in

ΠβH+
2 will

be killed by
Pβ

}π−1|Kβ

= Pβσ{π−1Pππ + Pβ}π−1|Kβ

= (PβσPβ)
(
Pβπ

−1Pβ

)
|Kβ

+ Pβσπ
−1Pπ|Kβ

,

as claimed.
Now det(PβσPβ) can be calculated exactly as before, and det(Pβ π−1Pβ) can

be calculated using a parallel theory which exploits the fact that π−1 is analytic
in the lower half plane. So the determinant of the first addend in this expression
for Wβ can be calculated; we claim the second addend contributes only a finite-
dimensional perturbation. To see this, re-prove Proposition 1 with π in place of
Πβ. The numbers kl end up being the zeroes of π, and there are only finitely
many of them! Hence Kπ is finite-dimensional. Therefore, the standard theory of
finite-dimensional perturbations can be used to obtain expressions for detW .
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5 Wiener-Hopf Operators with rational sym-

bols and functional model

.
The complete spectral theory of Wiener-Hopf operators with rational symbols

was developed in [12]. We suggest here an alternative approach, which can be easily
generalized for matrix symbols and for operators acting in Hardy classes on multi-
connected domains. We do not need any conditions concerning the selfadjointness
of the operators considered. Nevertheless, just to fascilate the formulation of our re-
suts and the comparisson of them with classical ones we consider only Wiener-Hopf
operators whose symbol σ are real rational functions

W ≡ Wa(σ) = PaσPa,

where Pa ≡ PKa ,Ka = H+
2 � eikaH+

2 . The asymptotics of the corresponding de-
terminants was calculated first in [1, 6, 2], and later for extended class of symbols
by [10, 11, 8]. Some new fascinating features of asymptotics of determinants were
found in [13].

The first part of our paper was aimed on the revealing connections between the
Nagy-Foias Functional Model and the spectral properties of Wiener-Hopf Operators
with analytic symbols. In this part we develop similar programm for rational sym-
bols. In particular we show, that the spectral analysis of Wiener-Hopf Operators
with the real rational symbol with 2N poles can be reduced to the spectral problem
for 2N × 2N matrix.

Considering the real rational symbol σ we assume, that it is represented in form
of a finite sum of reproducing kernels (Cauchy kernels ) with poles at prescribed
complex points and the derivatives of reproducing kernels :

σ(k) = 1 +
L,Ml∑

l=1,m=0

αm
l

(k − kl)m
+

ᾱm
l

(k − k̄l)m
≡ 1 + ϕ(k), �kl > 0.

It is easy to see, that the corresponding Wiener-Hopf operator Paϕ|Ka is compact.
Let us denote by kλn, n = −2

∑
Ml, .. − 2,−1, 1, 2, ..., 2

∑
Ml the roots of the

auxilliary equation ϕ(k) = λ (counting multiplicity).

Theorem 9 The eigenvalues of the Wiener-Hopf operator in the coinvariant sub-
space Ka = H2 � θaH

2, θa(k) = eika coincide with the zeroes of the determinant of
a finite square matrix :

det

⎧⎪⎪⎨⎪⎪⎩
... ... ... ...

...
αm
l

k
(λ
n −kl)m

...
ᾱm
l

(kλn−k̄l)m
eik

λ
na ...

... ... ... ...

⎫⎪⎪⎬⎪⎪⎭
Proof is based on the following statement , which is well known for m = 0 [7],

and obviously true for m ≥ 1
Proposition The following representations are true for the resolvents of the

generators of compressions shifts and adjoint shifts semigroups onto the coinvariant
subspace Ka = H2 � eikaH2:

Pa
1

k − p
u =

u− u(p)
k − p

, �p > 0, u ∈ Ka

Pa
1

k − p̄
u =

u− θ[θ̄u(p̄)]
k − p̄

, �p̄ < 0, u ∈ Ka.

11



     

The similar statement is true for the derivatives order m, m > 0 of the resolvent in
respect to the spectral parameter :

Pa
1

(k − p)m
u =

1
(m− 1)!

dm

dpm
u− u(p)
k − p

, �p > 0, u ∈ Ka

Pa
1

(k − p̄)m
u =

1
(m− 1)!

dm

dp̄m
u− θ[θ̄u(p̄)]

k − p̄
, �p̄ < 0, u ∈ Ka.

The first two formulas give the analytic continuation of the resolvent of the shifts
generators on the “ nonphysical sheet”, which is just one of halfplanes Λ±. In
a way these formulas realise the connection between the elementary Wiener-Hopf
Operators and the functional model. One can see, that each eigenfunction u of the
Wiener-Hopf operator Paϕ|Ka fulfills the corresponding homogeneous equation:

[ϕ(k) − λ]u(k) =
N,Ml∑

l=1,m=0

1
(m− 1)!

αm
l

dm

dpm
u(p)
k − p

∣∣∣∣
p=km

l

+
1

(m− 1)!
θ(k)ᾱm

l

dm

dp̄m
[θ̄u(p̄)]
k − p̄

∣∣∣∣
p=km

l

which implies

N,Ml∑
l=1,m=0

1
(m− 1)!

αm
l

dm

dpm
u(p)
k − p

∣∣∣∣
p=km

l

+

1
(m− 1)!

θ(k)ᾱm
l

dm

dp̄m
[θ̄u(p̄)]
k − p̄

∣∣∣∣
p=km

l

= 0

for any k = kλn. Hence the zeroes of the right and left sides coincide counting

multiplicity. Considering dr

dpr u(p)
∣∣∣∣
p=kl

≡ url and dr

dp̄r θ̄u(p)
∣∣∣∣
p=kl

≡ ulr as a new

unknowns, we get the condition of existence of the solution in the determinant
form:

det

⎧⎪⎪⎪⎨⎪⎪⎪⎩
... ... ... ...

... m
r!(m−r)!α

m
l

dr

dpr
1

kλn−p

∣∣∣∣
p=kl

.. m
r!(m−r)!θ(k

λn)ᾱm
l

dr

dp̄r
[θ̄u(p̄)]
kλn−p̄

∣∣∣∣
p=km

l

... ... ... ...

⎫⎪⎪⎪⎬⎪⎪⎪⎭ = 0.

On the other hand one can check that the functions constructed on the base of
new unknown found as solutions of the corresponding homogeneous linear system
coincide with the eigenfunctions of the original Wiener-hopf operator with λ equal
to the corresponding eigenvalue. �

The asymptotic behaviour of the determinant for small λδ is described by quasy-
polinomial in λδ, exp

d

λδ . The asimptotics of zeroes of these quasypolinomials for
small λ can be derived with using some construction involving Newton poligones
([14, 19]).

6 An example

Consider the symbol

σ(k) ≡ 4k(k2 − 1)
(k2 + 1)2

≡ sin 4 arctank.
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Denoting the main branch of the function arcsin λ
4 by ϕ(λ) , we can parametrize

the roots k0, k∞, k1, k−1 of the equation

σ(k) =
4k(k2 − 1)
(k2 + 1)2

= λ.

approaching 0,∞, 1,−1 respectively when λ → 0 the following way

k0(λ) = tan
ϕ(λ)

4
,

k∞(λ) = − 1

tan ϕ(λ)
4

,

k1(λ) =
1 − tan ϕ(λ)

4

1 + tan ϕ(λ)
4

,

k−1(λ) =
−1

k1(λ)

Then the eigenvalues of the Wiener-Hopf operator coincide with the zeroes of the
determinant of the following matrix⎛⎜⎜⎜⎜⎜⎜⎝

1
(k0−i)2

1
(k0−i)

1
(k0+i)2

eiak0 1
(k0+i)e

iak0

k2
0

(1+ik0)2
−k0

(1+ik0)
k2
0

(1−ik0)2
e
−i a

k0
k0

(−1+ik0)e
−i a

k0

(1+k0)2

[(1−i)−k0(1+i)]2
(1+k0)

[(1−i)−k0(1+i)]
(1+k0)2

[(1+i)−k0(1−i)]2
e
ia

1−k0
1+k0

(1+k0)
[(1+i)−k0(1−i)]e

ia
1−k0
1+k0

(1−k0)2

[(1+i)+k0(1−i)]2
(−1+k0)

[(1+i)+k0(1−i)]
(1−k0)2

[(1−i)+k0(1+i)]2
e
−ia

1+k0
1−k0

(−1+k0)
[(1−i)+k0(1+i)]e

−ia
1+k0
1−k0

⎞⎟⎟⎟⎟⎟⎟⎠
By direct calculation with “Mathematica” we find the determinant is equal to:
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(4+4 i) e
4 i a k
−1+k2 (−1+k)2 k (1+k)

(−i+k)6
+ (4−4 i) e

4 i a k
−1+k2 (−1+k)2 k2 (1+k)

(−i+k)6
+

8 e

i a(1+k2)
−1+k (−1+k) k2 (1+k)

(1−i k)3 (−i+k)3
+ 8 e

i a(1+k2)
1+k (−1+k) k2 (1+k)

(1−i k)3 (−i+k)3
+

(4−4 i) e

i a(−1+k2)
k (−1+k)2 k (1+k)

(i+k)6
+ (4+4 i) e

i a(−1+k2)
k (−1+k)2 k2 (1+k)

(i+k)6
+

(4+4 i) e

i a(1+k2)
1+k (−1+k)2 k (1+k)

(−i+k)2 (i+k)4
+ (4−4 i) e

−i a(1+k2)
k+k2 (−1+k)2 k2 (1+k)

(−i+k)2 (i+k)4
+

8 e

i a(1+k2)
−k+k2 (−1+k) k2 (1+k)

(1+i k)3 (i+k)3
+ 8 e

−i a(1+k2)
k+k2 (−1+k) k2 (1+k)

(1+i k)3 (i+k)3
+

(4−4 i) e

i a(1+k2)
−k+k2 (−1+k)2 k (1+k)

(−i+k)4 (i+k)2
+ (4+4 i) e

i a(1+k2)
−1+k (−1+k)2 k2 (1+k)

(−i+k)4 (i+k)2
+

(−4+4 i) e
4 i a k
−1+k2 (−1+k) k (1+k)2

(−i+k)6
+ (4+4 i) e

4 i a k
−1+k2 (−1+k) k2 (1+k)2

(−i+k)6
+

(4+4 i) e

i a(−1+k2)
k (1−k) k (1+k)2

(i+k)6
+ (4−4 i) e

i a(−1+k2)
k (−1+k) k2 (1+k)2

(i+k)6
+

(−4+4 i) e

i a(1+k2)
−1+k (−1+k) k (1+k)2

(−i+k)2 (i+k)4
+ (4+4 i) e

i a(1+k2)
−k+k2 (−1+k) k2 (1+k)2

(−i+k)2 (i+k)4
+

(4+4 i) e

−i a(1+k2)
k+k2 (1−k) k (1+k)2

(−i+k)4 (i+k)2
+ (4−4 i) e

i a(1+k2)
1+k (−1+k) k2 (1+k)2

(−i+k)4 (i+k)2
−

4 i e

i a(1+k2)
−1+k (−1+k)2 k (1+k)2

(1+k2)3
+ 4 i e

i a(1+k2)
1+k (−1+k)2 k (1+k)2

(1+k2)3
−

4 i e

i a(1+k2)
−k+k2 (−1+k)2 k (1+k)2

(1+k2)3
+ 4 i e

−i a(1+k2)
k+k2 (−1+k)2 k (1+k)2

(1+k2)3

Letting e(b) stand for eiab and rearranging the terms this becomes

4
(
−2 e(−1/k) e(k) − e(−1/k) e(1−k

1+k ) − e(k) e(1−k
1+k ) − e(−1/k) e( 1+k

−1+k )

−e(k) e( 1+k
−1+k ) − 2 e(1−k

1+k ) e( 1+k
−1+k )

)
k

+4
(
−16 i e(−1/k) e(k) − 4 e(−1/k) e(1−k

1+k ) + 4 e(k) e(1−k
1+k ) + 4 e(−1/k) e( 1+k

−1+k )

−4 e(k) e( 1+k
−1+k ) + 16 i e(1−k

1+k ) e( 1+k
−1+k )

)
k2

+4
(
58 e(−1/k) e(k) − 3 e(−1/k) e(1−k

1+k ) − 3 e(k) e(1−k
1+k ) − 3 e(− 1

k ) e( 1+k
−1+k )

−3 e(k) e( 1+k
−1+k ) + 58 e(1−k

1+k ) e( 1+k
−1+k )

)
k3

+4
(
128 i e(− 1

k ) e(k) − 128 i e(1−k
1+k ) e( 1+k

−1+k )
)
k4

+4
(
−196 e(− 1

k ) e(k) − 2 e(−1/k) e(1−k
1+k ) − 2 e(k) e(1−k

1+k )

−2 e(−1/k) e( 1+k
−1+k ) − 2 e(k) e( 1+k

−1+k ) − 196 e(1−k
1+k ) e( 1+k

−1+k )
)
k5

+O(k6)
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This function is approximated by quasypolinomial in e( 1
k ), k; k → 0. The zeroes

of it have a regular asymptotics defined by the corresponding Newton poligon( see
[14, 15]).

7 Conclusion. Wiener-Hopf Operator on a

multiconnected domain

The approach described here for Wiener-Hopf Operator with rational sumbols on
the line works for Wiener-Hopf Operators on any coinvariant subspace of the shift
group in the unit disc , and even for coinvariant subspaces of the shift group on
hyperelliptic Riemann Surface of finite genus.

Consider the invariant subspace of the multiplication by the analytic function
on a multiconnected domain Ω+ (the first sheet of the corresponding hyperellip-
tic Riemann Surface ). According to results of [16] the invariant subspaces are
parametrized by character-automorphic inner functions Sμ- the generating function
for the invariant subspace:

D+ = SμH
2
−μ.

The version of Harmonic Analysis on the multiconnected domain was developed
in [17]. In particular the explicite formulas for the resolvents of shift’s generators
are found in [17]. Hence the representations for the Wiener - Hopf operators with
simbols rational in respect to the shift genetators can be deduced in this case as
well with using of results [18] describing the analytic continuation of the resolvent of
the multiplication operator z∗ onto “nonphysical sheet” .This fact permitts to write
down the compression of the multiplication operator of any rational function as a
linear combination of resolvents of shifts and adjoints operators restricted onto the
corresponding coinvariant subspace. This permitts to use the approach described
above in this case as well.
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