Statistical models of visual shape and motion

By A. BLAKE, B. BASCLE, M. ISARD AND J. MACCORMICK

Department of Engineering Science, University of Ozford, Ozford OX1 3PJ,
UK.

The analysis of visual motion against dense background clutter is a challenging
problem. Uncertainty in the positions of visually sensed features and ambiguity
of feature correspondence call for a probabilistic treatment, capable of maintain-
ing not simply a single estimate of position and shape but an entire distribution.
Exact representation of the evolving distribution is possible when the distribu-
tions are Gaussian and this yields some powerful approaches. However normal
distributions are limited when clutter is present: because of their unimodality,
they cannot be used to represent simultaneous alternative hypotheses.

One powerful methodology for maintaining non-Gaussian distributions is based
on random sampling techniques. The effectiveness of “factored sampling” and
“Markov chain Monte Carlo” for interpretation of static images is widely accep-
ted. More recently, factored sampling has been combined with learned dynam-
ical models to propagate probability distributions for object position and shape.
Progress in several areas is reported here. First a new observational model is de-
scribed that takes object opacity into account. Secondly, complex shape models
to represent combined rigid and nonrigid motion have been developed, together
with a new algorithm to decompose rigid from nonrigid. Lastly, more powerful
dynamical prior models have been constructed by appending suitable discrete
labels to a continuous system state; this may also have applications to gesture
recognition.
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1. Introduction

This paper addresses some problems in the interpretation of visually observed
shapes in motion, both planar and three-dimensional shapes. Mumford (1996),
interpreting the “Pattern Theory” developed over a number of years by Gren-
ander (1976), views images as “pure” patterns that have been distorted by a
combination of four kinds of degradations. This view applies naturally to the
analysis of static, two-dimensional images. The four degradations are given here,
together with comments on how they need to be extended to take account of
three-dimensional objects in motion.

(i) Domain warping in which the domain of an image I is transformed by a

mapping g:
I(r) = I(g(r)).
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The three-dimensional nature of the world means that the warp g may be com-
posed largely of “projective” or “affine” transformations. The dynamical nature
of the problems addressed here will require time-varying warps g(r, t).

(ii) Superposition: objects may overlap and in certain forms of imaging this may
produce linear combinations, which is fortuitous because they can be analysed
by linear spectral decomposition. In images of opaque,three dimensional objects,
however, far surfaces are obscured by near ones.

(iii) Distortion and noise: image measurements are corrupted by noise and
blur:

I(r) = f(I(r),mn).
Image degradations may be most effectively modelled as applying to certain image
“features” obtained by suitable pre-processing of an image, rather than directly
to an image itself.

(iv) Observation failure: disturbance of the observation process; often caused,
in the work described here, by distracting background clutter.

A key idea in pattern theory is recognition by synthesis, in which predic-
tions following from particular hypotheses play an important role. The predic-
tions are generated and tested against the products of analysis of an image.
Bayesian frameworks, which have gained significant influence in modelling per-
ception [Knill et al., 1996], seem to be a natural vehicle for this combination of
analysis and synthesis. In the context of machine perception of shapes we can
state the problem as one of interpreting a posterior density function p(X|Z) for
a shape X in some appropriate shape-space S, given data Z from an image (or
data (Z1,Z,,...) from a sequence of images). The posterior density must be com-
puted in terms of prior knowledge about X and inference about X based on the
observations Z. Bayes’ formula expresses this as follows:

p(X|Z) o p(Z|X)po(X), (1.1)

in which po(X) is the prior density for X and the conditional density p(Z|X)
conveys the range of likely observations to arise from a given shape X. All this
links in directly with the four degradations above. In particular, type 1 (warping)
is represented in the prior pg. Types 3 and 4 (noise and observation failure) are
incorporated into the observation density p(Z|X).

The framework for Bayesian inference of visual shape and motion that forms the
basis of this paper is set out in detail in [Blake and Isard, 1998]. This paper aims
to summarise that framework and introduce several new ideas. The organisation
of the paper is summarised by section, as follows.

2. Statistical modelling of shape — how to choose a suitable shape-space S and
a prior pg, or to learn them from a set of examples.

3. Statistical modelling of image observations — how to construct an effective
observation density p(Z|X) that takes into account image intensities both within
the shape of interest and in the background.

4. Sampling methods — using random sample generation to construct an ap-
proximate representation of the posterior for X, given that the complexity of
p(Z|X) can make exact representation of the posterior infeasible.

5. Modelling dynamics — extending the Bayesian framework to deal with se-
quences of images demands priors for temporal sequences X1, Xo,.... These can
either be constructed by hand or learned from examples.
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6. Learning dynamics — the most effective way to set up dynamical models is
to learn them from training sets.

7. The Condensation algorithm — a random sampling algorithm for interpret-
ation of shapes in motion.

8. Dynamics with discrete states — extending the dynamical repertoire to mod-
elling of motion with several modes, for example walk—trot—canter—gallop.

2. Statistical modelling of shape

This section addresses the construction of a prior model po(X) for a shape.
This can be done in a somewhat general way if the dimensionality of the shape-
space S is fixed in advance to be small, for example just translations in the plane.
Then extended observation of the positions of moving objects in some area can be
summarised as a histogram which serves as an approximate representation of the
prior py [Fernyhough et al., 1996]. In higher dimensional shape-spaces, involving
three-dimensional rigid motion and deformation of shape, histograms are less
practical. Here we focus on Gaussian distributions.

A Gaussian distribution is specified by its mean and variance and these can
be estimated from a training sequence Xy, Xo, ... of shapes by taking the sample
mean X and the sample variance

M
¥ = % > (X = X) (X - X)"

k=1
Moreover, Principal Components Analysis (PCA) [Rao, 1973] can be used to re-
strict the shape-space S to explain most of the variance in the training set while
keeping the dimension of & small, in the interests of computational efficiency
[Cootes et al., 1993, Baumberg and Hogg, 1994, Lanitis et al., 1995, Beymer and Poggio, 1995,
Baumberg and Hogg, 1995a, Vetter and Poggio, 1996]. An example is given in
figure 1.
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Figure 1. PCA for faces. A shape-space of facial expressions is reduced here by PCA to the
two-dimensional space that best covers the expressions in a certain training sequence.

However, the resulting shape-space, though economical, is not especially easy
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to interpret because Principal Components need not be meaningful. More mean-
ingful “constructive” shape-spaces can be generated by acknowledging three-
dimensional projective effects and constructing affine spaces for instance whose
components are directly related to rigid body transformations [Ullman and Basri, 1991,
Koenderink and van Doorn, 1991]. In addition, named deformations can be in-
cluded in a basis for S as “key-frames” [Blake and Isard, 1994], as in figure 2.

.

Template Qg Key-frame: opening Q1  Key-frame, protrusion Qo

Figure 2. Key-frames. Lips template followed by two key-frames, representing interactively
tracked lips in characteristic positions. The key-frames are combined linearly with appropriate
rigid degrees of freedom, to give a shape-space suitable for use in a tracker for non-rigid motion.

A constructive shape-space S¢ can be combined with PCA to give the best of
both worlds. “Residual PCA” operates on a constructive shape-space that does
not totally cover a certain data-set, and fills in missing components by PCA.
Then the constructive subspace retains its interpretation and only the residual
components, covered by PCA, cannot be directly interpreted. This is done by
constructing a projection operator E¢ that maps S to §¢ and applying PCA to
the residual training-set vectors X7, X35, ... where

X"=X - E°X.

Full details of the algorithm are given in [Blake and Isard, 1998] and an example
of its application is shown in figure 3.
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Figure 3. Sampling from a prior for lip-shape, excluding translation Random sampling
illustrates how a learned prior represents plausible lip configurations. Any rigid translations in
the training set, due to head-motion, are separated out as a constructive shape-space in residual
PCA.
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Finally, some complex issues arise when dealing with mixed rigid and non-
rigid deformation. For example, one application is to track the facial motion
of an actor and channel the coded motion to a graphical animation. It can be
argued [Bascle and Blake, 1998] that the composition of expression and pose can
be expressed bilinearly to give shape parameters

X! = \Y;

where J; is the weight associated with the ith expression and Y} is the jth compon-
ent of an affine transformation. Decomposition of such products can be achieved
using Singular Value Decomposition (SVD) [Barnett, 1990], as has been done
elsewhere for structure and motion [Tomasi and Kanade, 1991], and shape and
shading [Freeman and Tenenbaum, 1997]. The practical result is good isolation
of pose from expression, as figure 4 shows.

Figure 4. Pose-invariant transmission of facial expression. Separation of nonrigid from
rigid motion by SVD is used here to extract the facial ezpression of an actor. The extracted
expression s displayed on this cat caricature in a fized pose, and can be seen to be independent
of the pose of the actor’s head.

3. Statistical modelling of image observations

Gaussian distributions may often be acceptable as models of prior shape, but
they are adequate as observation distributions only in the clutter-free case. Typ-
ically, in our framework, observations are made along a series of spines, nor-
mal to the hypothesised shape, as in figure 5. Consider the one-dimensional
problem of observing, along a single spine, the set of feature positions {z =
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Figure 5. Observation process. The thick line is a hypothesised shape, represented as a para-
metric spline curve. The spines are curve normals along which high-contrast features (white
crosses) are sought.

(21,22,...,20p)}. Assuming a uniform distribution of background clutter, and a
Gaussian model for error in measurement of the position of the true object edge,
leads [Isard and Blake, 1996] to the multi-modal observation density p(z|X) de-
picted in figure 6. The multiple peaks in the density are generated by clutter
and cannot possibly be modelled by a single Gaussian. A mixture of Gaussians
might be feasible but a very efficient alternative is to use random sampling (next
section).

The observation model above was based on the assumption that the observable
contour is a “bent wire” resting on a cluttered background. This is not very
realistic. It is highly desirable in practice to allow for object opacity and to
distinguish between the textured interior of an object and its cluttered exterior.
A probabilistic model that reflects this is based on the following assumptions.

Feature localisation error It is assumed that the feature detector reports
object outline position with an error whose density is £(-), taken usually to be
Gaussian.

Occlusion probability The possibility that the outline is missed by the fea-
ture detector is allowed, with probability q.

Clutter model Detection of clutter features is regarded as an i.i.d. random
process on the portion of each measurement line that lies outside the object. The
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Figure 6. Multi-modal observation density (one-dimensional illustration). A probabilistic
observation model allowing for clutter and the possibility of missing the target altogether is
specified here as a conditional density p(z|X). It has a peak corresponding to each observed
feature.

probability 7(n) that n clutter features are detected on a normal is generally
taken to be uniform.

Interior model Interior features on a measurement line are modelled as uni-
formly distributed along the interior portion of the normal. The distribution p(m)
for the number m of interior features observed is taken to be Poisson with a known
density parameter which is actually learned by observing instances of the object.
A density p(z|X) based on these assumptions can be constructed and expressed
as p = AD where )\ is a constant and

D(X) = p(z|X)/p(z|no object present)

— the contour discriminant. This is a discriminant function [Duda and Hart, 1973]
in the form of a likelihood ratio. It has the attraction that, in addition to convey-
ing the relative values of p(z|X), its absolute value is also meaningful: D(X) > 1
implies that the observed features z are more likely to have arisen from the object
in location X than from clutter.

Lastly, densities p(z|X) for each normal need to be combined into a grand
observation density p(Z|X), and this raises some issues about independence of
measurements along an object contour. Details of the form and computation of
the full observation density are given in [MacCormick and Blake, 1998]. Results
of the evaluation of the contour discriminant on a real image are shown in figure
7. Analysis of the same image using the simpler “bent wire” observation model
degrades the results, failing altogether to locate the leftmost of the three people.
The explicit modelling of object opacity has clearly brought significant benefits.

4. Sampling methods

The next stage of the pattern recognition problem is to construct the pos-
terior density p(X|Z) by applying Bayes’ rule (1.1). In the previous section it
became plain that the observation density has a complex form in clutter. This
means that direct evaluation of p(X|Z) is infeasible. However iterative sampling
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Figure 7. Finding head-and-shoulders outlines in an office scene. The results of a sample
of 1,000 configurations are shown ranked by value of their contour discriminant. The table
displays the cases in which D > 1, indicating a configuration that is more target-like than
clutter-like.

techniques can be used [Geman and Geman, 1984, Ripley and Sutherland, 1990,
Grenander et al., 1991, Storvik, 1994]. The factored sampling algorithm [Grenander et al., 1991].
generates a random variate X from a distribution p(X) that approximates the

posterior p(X|Z). First a sample-set {s(), ... s} is generated from the prior
density p(x) and then a sample X = X, ¢ € {1,..., N} is chosen with probability
p(Z|X =s)

YN p(ZIX =s0)

Sampling methods have proved remarkably effective for recovering static ob-
jects from cluttered images. For such problems X is a multi-dimensional set of
parameters for curve position and shape. In that case the sample-set {s(l), sy )}
is drawn from the posterior distribution of X-values, as illustrated in figure 8.

5. Modelling dynamics

In order to be able to interpret moving shapes in sequences of images, it is
necessary to supply a prior distribution not just for shape but also for the motion
of that shape. Consider the problem of building an appropriate prior model for
the position of a hand-mouse engaged in an interactive graphics task. A typical
trace in the z-y plane of a finger drawing letters is given in figure 9. If the entire
trajectory were treated as a training set, the methods discussed earlier could be
applied to learn a Gaussian prior distribution for finger position. The learned prior
is broad, spanning a sizeable portion of the image area, and places little constraint
on the measured position at any given instant. Nonetheless, it is quite clear from
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Figure 8. Sample-set representation of posterior shape distribution for a curve with
parameters X, modelling o head outline. Each sample s™ is shown as a curve (of varying
position and shape) with a mass proportional to the weight #™ . The prior is uniform over
translation, with some constrained Gaussian variability in the remainder of its affine shape-space.

- 100

- —200 -100 0 100 200

Figure 9. The moving finger writes. The finger trajectory (left) which has a duration of
about 10 seconds executes a broad sweep over the plane. If the trajectory is treated as a training
set, the learned Gaussian prior is broad, as the covariance ellipse (right) shows. Clearly though,
successive positions (individual dots represent samples captured every 20ms) are much more
tightly constrained.
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the figure that successive positions are tightly constrained. Although the prior
covariance ellipse spans about 300 x 50 pixels, successive sampled positions are
seldom more than 5 pixels apart.

For sequences of images, then, a global prior py(X) is not enough. What is
needed is a conditional distribution p(Xy|X_1) giving the distributions of pos-
sibilities for the shape Xy, at time ¢ = k7 given the shape X _; at time t = (k—1)7
(where 7 is the time-interval between successive images). This amounts to a “1st
order Markov chain” model in shape space in which, although in principle X,
may be correlated with all of X;...X;_q, only correlation with the immediate
predecessor is explicitly acknowledged.

For the sake of tractability, it is reasonable to restrict Markov modelling to
linear processes. In principle and in practice it turns out that a 1st order Markov
chain is not quite enough, generally, but 2nd order suffices. The detailed argu-
ments for this, addressing such issues as capacity to represent oscillatory sig-
nals and trajectories of inertial bodies, can be found in [Blake and Isard, 1998,
Chapter 9]. Figure 10 illustrates the point for a practical example. A second or-
der, “Auto-Regressive Process” (ARP) is most concisely expressed by defining a
state vector

Xy = ( §Z—1 ) : (5.1)

and then specifying the conditional probability density p(&Xk|Xk—1). In the case
of a linear model, this can be done constructively as follows:

X — X = A(Xk_l - ?) + Bwyg (52)

A
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Figure 10. Motion data from talking lips. Training sequence of 60 seconds duration (top).
Random simulations of learned models — 1st order (left) and 2nd order (right). Only the 2nd
order model captures the natural periodicity (around 1 Hz) of the training set, and spectrogram
analysis confirms this.

Phil. Trans. R. Soc. Lond. A (1998)



Statistical models of visual shape and motion 11

A:<?42 il),?:<%> and B:(OBO). (5.3)

and each wy, is a vector of Ny independent random A (0, 1) variables and wy,
wy are independent for k # k'. This specifies the probable temporal evolution of
the shape X in terms of parameters A, B, and covers multiple oscillatory modes
and/or constant velocity motion. The constructive form is attractive because it is
amenable to direct simulation, simply by supplying a realisation of the succession
of random variates wy,.

where

6. Learning dynamics

Motion parameters (A, B in this paper) can be set by hand to obtain desired
effects, and a logical approach to this has been developed [Blake and Isard, 1998,
chapter 9]. Experimentation allows these parameters to be refined by hand for
improved tracking but this is a difficult and unsystematic business. What is
far more attractive is to learn dynamical models on the basis of training sets.
A number of alternative approaches have been proposed for learning dynam-
ics, with a view to gesture-recognition — see for instance [Mardia et al., 1993,
Campbell and Bobick, 1995, Bobick and Wilson, 1995]. The requirement there is
to learn models that are sufficiently finely tuned to discriminate amongst similar
motions. In the context here of the problem of motion tracking, rather different
methods are called for to learn models that are sufficiently coarse to encompass
all likely motions.

Initially, a hand-built model is used in a tracker to follow a training sequence
which must be not be too hard to track. This can be achieved by allowing only mo-
tions which are not too fast, and limiting background clutter or eliminating it us-
ing background subtraction [Baumberg and Hogg, 1994, Murray and Basu, 1994,
Koller et al., 1994, Rowe and Blake, 1996]. Once a new dynamical model has
been learned, it can be used to build a more competent tracker, one that is
specifically tuned to the sort of motions it is expected to encounter. That can be
used either to track the original training sequence more accurately, or to track a
new and more demanding training sequence, involving greater agility of motion.
The cycle of learning and tracking is illustrated in figure 11. Typically two or
three cycles suffice to learn an effective dynamical model.

In mathematical terms, the general problem is to estimate the coefficients
Ay, Ay, X and B from a training sequence of shapes Xi,..., Xy, gathered
at the image sampling frequency. Known algorithms to do this are based on
the “Maximum Likelihood” principle [Rao, 1973, Kendall and Stuart, 1979] and
use variants of “Yule-Walker” equations for estimation of the parameters of auto-
regressive models [Gelb, 1974, Goodwin and Sin, 1984, Ljung, 1987]. Suitable ad-
aptations for multidimensional shape-spaces are given by [Blake and Isard, 1994,
Baumberg and Hogg, 1995b, Blake et al., 1995], with a number of useful exten-
sions in [Reynard et al., 1996]. One example is the scribble in figure 12, learned
from the training-sequence in figure 9.

A more complex example is learning the motions of an actor’s face, using the
shape-space described earlier that covers both rigid and non-rigid motion. Figure
13 illustrates how much more accurately realistic facial motion can be represented
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Shape Space

Hand-built dynamics

Training sequence
slow, clutter—free

Fast test
sequences

Faster training
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Figure 11. Iterative learning of dynamics. The model acquired in one cycle of learning
s installed in a tracker to interpret the training sequence for the mext cycle. The process is
natialised with a tracker whose prior 4s based on a hand-built dynamaical model.
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Figure 12. Scribbling: simulating a learned model for finger-writing. A training set
(left) consisting of siz handwritten letters is used to learn a dynamical model for finger motion.
A random simulation from the model (right) exhibits reasonable gross characteristics.

by a dynamical model which is actually learned from examples.

The learning algorithms referred to above treat the training set as exact whereas
in fact it is inferred from noisy observations. Dynamics can be learned directly
from the observations using Expectation-Maximisation (EM) [Dempster et al., 1977].
Learning dynamics by EM is suggested by Ljung (1987) and the detailed al-
gorithm is given in [North and Blake, 1997]. It is related to the Baum-Welch al-
gorithm used to learn speech models [Huang et al., 1990, Rabiner and Bing-Hwang, 1993]
but with additional complexity because the state-space is continuous rather than
discrete. In practice, accuracy of the learned dynamics are significantly improved
when EM is used, especially in the case of more coherent oscillations.

An extension of the basic algorithm for classes of objects, dealing independ-
ently with motion and with variability of mean shape/position over the class, is
described in [Reynard et al., 1996]. The same algorithm is also used for modular
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Figure 13. Trained dynamics for facial motion. Hand-built dynamics, ezhibited here by
random simulation (left) are just good enough, when used in tracking, to gather a training se-
quence. Trained dynamics (right) however, capture more precisely the constraints of realistic

facial motion.

learning — the aggregation of training sets for which a joint dynamical model is
to be constructed.

7. The Condensation algorithm

The CONDENSATION algorithm is a random sampling algorithm for motion

tracking using statistical observations and a dynamical prior. It is based on

factored sampling but extended to apply iteratively to successive images in a se-

quence. Similar sampling strategies have appeared elsewhere [Gordon et al., 1993,

Kitagawa, 1996], presented as developments of Monte Carlo methods. The meth-

ods outlined here are described in detail elsewhere. Fuller descriptions and deriva-

tion of the CONDENSATION algorithm are in [Isard and Blake, 1996, Isard and Blake, 1998a].
Given that the estimation process at each time-step is a self-contained itera-

tion of factored sampling, the output of an iteration will be a weighted, time-

stamped sample-set, denoted s,(cn), n = 1,...,N with weights W](Cn), represent-
ing approximately the conditional state-density p(Xx|Z;) at time ¢ = k7, where
Z, = (Zy,...,7Zy), the history of observations. How is this sample-set obtained?

Clearly the process must begin with a prior density and the effective prior for
time-step k should be p(Xk|Zj_;). This prior is of course multi-modal in general
and no functional representation of it is available. It is derived from the represent-
ation as a sample set {(sgl_)l,wl(c@l), n=1,...,N} of p(Xx_1|Zj_,), the output
from the previous time-step, to which prediction must then be applied.

The iterative process applied to the sample-sets is depicted in figure 14. At the
top of the diagram, the output from time-step & — 1 is the weighted sample-set
{(sgl_)l,w,@l), n =1,...,N}. The aim is to maintain, at successive time-steps,
sample sets of fixed size N, so that the algorithm can be guaranteed to run
within a given computational resource. The first operation therefore is to sample

(with replacement) N times from the set {sgcn_)l}, choosing a given element with

probability 7r,(€"_)1. Some elements, especially those with high weights, may be
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predict

measure

Figure 14. One time-step in the CONDENSATION algorithm. Blob centres represent sample
values and sizes depict sample weights.

chosen several times, leading to identical copies of elements in the new set. Others
with relatively low weights may not be chosen at all.

Each element chosen from the set is now subjected to a predictive step, using
an ARP dynamical model as in equation (5.2). This involves sampling a value of
X, randomly from the conditional density p(Xj|X;_1) to form a new set member

sgl). Since the predictive step includes a random component, identical elements
may now split as each undergoes its own independent random motion step. At

this stage, the sample set {sgl)} for the new time-step has been generated but,
as yet, without its weights; it is approximately a fair random sample from the
effective prior density p(Xk|Zk 1) for time-step t = k7. Finally, the observation
step from factored sampling is applied, generating weights from the observation
density p(Zy|Xx) to obtain the sample-set representation {(s ,(cn), ,(cn))}
density for time ¢.

A good deal of experimentation has been performed in applying the CONDENS-
ATION algorithm to the tracking of visual motion, including moving hands and
dancing figures. Perhaps one of the most stringent tests was the tracking of a
leaf on a bush, in which the foreground leaf is effectively camouflaged against
the background. Results are shown in figure 15 and experimental details can be
found in [Isard and Blake, 1996].

of state-
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Figure 15. Tracking with camouflage. Stills depict mean contour configurations, with
preceding tracked leaf positions plotted at 40ms intervals to indicate motion.

8. Dynamics with discrete states

A recent development of the dynamical models already described is to append
to the state variable X a discrete state y; to make a “mixed” state

‘wz<ﬁ), (8.1)

where yi, € {1,..., Ng} is drawn from a finite set of discrete states with integer
labels. Each discrete state represents a mode of motion such as “stroke”, “rest”
and “shade” for a hand engaged in drawing. Corresponding to each state yy_1 =14
there is a dynamical model p;(Xj|Xx—1) which, in the case of the drawing hand,
is likely to be an ARP as in (5.2). The stroke model, for instance, might represent
constant velocity motion, whereas shading would be oscillatory. In addition, and
independently, state transitions are governed by

P(yk = jlyk—1 = 1) = Tiyj,
a transition matrix following usual practice for Markov chains. More generally,

transition probabilities could be made sensitive to the context Xj,_; in state space,
so that

P(ye = jlys—1 = 1, Xp—1) = Tij (X—1).
Phil. Trans. R. Soc. Lond. A (1998)
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For example this could be used to express an enhanced probability of transition
into the “resting” state when the hand is moving slowly.

Incorporation of mixed states into the CONDENSATION algorithm is straightfor-
ward. It involves using the extended state X,j' in place of the original X}, so that

a sample s,(Cn) is now a value of the extended state. The prediction step, which

generates a new sample sgcn) from an old one s,(Cn_)1 requires a discrete step and a

continuous one. First, the discrete state y; for the new sample is y; = j, chosen
randomly, with probability T; ;, where 4 is the discrete state of the old sample.
Then the continuous state is chosen by sampling randomly from a continuous
density, as in the original algorithm, but now one of several possible densities
pi(Xk|Xx_1) where again 7 is the discrete state of the old sample.

Experiments with a three-state model for drawing have been described in detail
elsewhere [Isard and Blake, 1998b]. In addition to enhancing tracking perform-
ance, there is the bonus that the current discrete state y; can be estimated at
each time ¢t = k7, effectively performing gesture recognition as a side-effect. One
interesting variation on the mixed-state theme uses continuous conditional dens-
ities p;(AX%|X—1) which are not ARP models. Consider the example of a moving
ball, which may occasionally bounce. This could be represented using two states
{1,2} in which ¢ = 1 stands for the free ballistic motion of the ball, and i = 2 is
the bounce event. A suitable transition matrix would be

1—¢ €
r=(1" %)

in which 0 < ¢ < 1 so that ballistic motion has a mean duration 7/¢ between
bounces. The fact that T 2 = 0 ensures that the model always returns to ballistic
motion after a bounce — bouncing at each of two consecutive time-steps is dis-
allowed. Now p;(...]...) is an ARP for ballistic motion but pa(...|...) models
the instantaneous reversal of velocity normal to the reflecting surface. Details of
experiments with such a model are in [Isard and Blake, 1998b] but the results
are illustrated in figure 16.

9. Conclusions

A high-speed tour has been given of a framework for probabilistic modelling of
shapes in motion, and of their visual observation. The key points are that visual
clutter makes motion analysis hard, and demands full-blooded probabilistic mech-
anisms to handle the resulting uncertainty. Further, prior models of motion and
of observation provide powerful constraints, especially so when the models are
learned. A more detailed development is given in [Blake and Isard, 1998]. Since
that account, several new modelling tools have been developed. First, the con-
tour discriminant is a new observational model that is expressed as a likelihood
ratio and takes opacity of objects into account. Second, complex models for com-
bined rigid and nonrigid motion have been constructed, with a new algorithm
for decomposing the two components. Third, extending dynamical states to in-
clude discrete labels can significantly enhance their power to constrain perceptual
interpretation of shape.

Many interesting questions remain to be addressed. One is whether sampling
methods for object localisation can be fused elegantly with the CONDENSATION al-
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Figure 16. Mixed states tighten constraints in dynamical models. A conventional, con-
tinuous-state ARP model (left) used to track ballistic motion, fails unrecoverably as the ball
bounces. Introducing an explicit discrete state for the bounce allows the sample set to split, so
that a significant proportion are able to track the bounce.

gorithm, to allow robust handling of “birth” and “death” [Grenander and Miller, 1994]
processes in which objects enter and leave the scene. A second is to extend mixed-
state models to give reliable gesture recognition on the fly, in a manner that is
integrated with the tracking process. A third is to develop algorithms, based on
EM, to learn dynamical models from sequences tracked by CONDENSATION, using
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the full richness of its probabilistic representation, both for continuous and mixed
state systems.
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