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This technical report is an extended version of a con-

ference paper [7].

Abstract A resolution-independent image models the

true intensity function underlying a standard image of

discrete pixels. Previous work on resolution-independent

images demonstrated their efficacy, primarily by em-

ploying regularizers that penalize discontinuity. This

paper extends the approach by permitting the curvature

of resolution-independent images to be regularized. The

main theoretical contribution is a generalization of the

well-known elastica energy for regularizing curvature.

Experiments demonstrate that (i) incorporating curva-

ture improves the quality of resolution-independent im-

ages, and (ii) the resulting images compare favorably

with another state-of-the-art curvature regularization

technique.
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1 Introduction and related work

Viola et al. [22,23] introduced the notion of a resolution-

independent latent image to model the true intensity

function underlying a standard image of discrete pix-

els. Figure 1 gives an example of the approach: the true

intensity function is approximated by a piecewise linear

function u, whose linear patches are defined on a trian-

gle mesh. The crucial feature is that the mesh’s vertices

are positioned with arbitrary precision, which frees the

model from any notion of discrete pixels. The vertex po-

sitions and patch intensities are determined by minimiz-

ing an energy that includes a regularizer term, which
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models the prior expectations of resolution-independent

images in general.

Previous work on resolution-independent images em-

ployed a regularizer based primarily on the discontinu-

ities in u. The main contribution in this paper is to

extend the regularizer to incorporate the curvature of

u. Starting from the well-known elastica energy [2], we

derive explicit expressions for computing the elastica

energy on the smooth and non-smooth regions of the

image domain. The non-smooth region includes steps

and corners (defined rigorously later), leading to sep-

arate step energy and corner energy terms in the en-

ergy functional. The paper also includes practical ex-

periments demonstrating the benefits of the approach

and a favorable comparison with another state-of-the-

art curvature regularizer.

There is a considerable amount of related work on

curvature regularization, including a long history of vari-

ational and level set methods (e.g. [10,15,19]), methods

derived from the elastica energy (e.g. [2,11]), and other

approaches such as total curvature [4] and Gaussian

derivatives [6]. The work of Schoenemann et al. [18]

and Strandmark and Kahl [20] is most closely related

to the present paper. These approaches regularize cur-

vature based on a fixed [18] or adaptive [20] mesh, em-

ploying linear programming relaxations for optimiza-

tion. However, the meshes are restricted to a fixed small

set of edge angles, so lines not at those orientations

must be jagged. In our work, all angles are equally

treated (ignoring floating point issues). The curvature

term contrasts with this paper in that it applies to bi-

nary images and to corners with exactly two prongs

(as defined in Section 4.2); the approach here permits

resolution-independent images with arbitrary intensi-

ties and multi-pronged corners. Hence, we believe the

novel theoretical contribution of the paper is twofold:

first, the well-known approach of regularizing curvature
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by minimizing an elastica energy is reformulated so that

it can be applied explicitly to resolution-independent

images (Sections 3 and 4); second, this reformulation

leads to a corner energy that has not, to our knowl-

edge, been studied previously (Section 4.2).

2 The set of resolution-independent images

At the core of our approach is the concept of a resolution-

independent image. Informally, a resolution-independent

image is produced by an idealized camera with infinite

resolution, infinite color depth, infinite depth of field,

and zero noise. So the resulting image is defined on a

connected subset Ω of R2, rather than on a discrete

set of pixels as with any real camera. Similarly, the im-

age takes values in a continuous range (say, [0, 1]), as

opposed to a discrete set of greylevels. (For simplicity,

we consider only monochrome images throughout the

paper.) However, it is not the case that all functions

u : Ω → [0, 1] are resolution-independent images. This

is because we also adopt an idealized model of the phys-

ical world: the world consists of piecewise smoothly-

varying objects, and the color of each object is also

piecewise smooth. As a result, resolution-independent

images are piecewise smooth too.

Thus, Ω is partitioned into a differentiable region D

(where u is continuously differentiable) and its comple-

ment J , termed the jump set (where u or its derivative

is discontinuous). As shown in Figure 2, it is useful to

further partition J into steps, ridges, and corners—so

Ω = D∪Jstep ∪Jridge ∪Jcorner. Some mild assumptions

described below guarantee that u is well-behaved near

the jump set. In particular, limx→x0
u(x) exists for any

x0 ∈ J , and is independent of the path used to approach

x0, provided the path remains in the differentiable re-

gion D.

Note that the concept of a resolution-independent

image is not new. Apart from minor technical differ-

ences, our resolution-independent images are identical

to the so-called cartoon functions f(x, y) introduced

over 20 years ago by Mumford and Shah [12]. Many sub-

sequent works have followed their formulation. Notwith-

standing the considerable mathematical similarities be-

tween the Mumford-Shah model and our own, there is a

crucial difference in philosophy and methodology. The

vast majority of work in the Mumford-Shah tradition

is described within a theoretical framework seeking a

piecewise smooth cartoon f(x, y) that approximates an

arbitrary “true” image g(x, y), where both f and g are

defined on a plane domain Ω ∈ R2. But at implemen-

tation time, both f and g are typically discretized onto

fixed lattices (which may or may not coincide with the

grid of pixels of a real-world input image I). In contrast,

the approach of this paper is to think of the desired

f(x, y) as the “true” image—a resolution-independent

image taken by an idealized camera. In this approach,

the function g does not appear explicitly, since the in-

put image I is regarded as a discretely-sampled, noisy,

and blurred version of f . Moreover, even in the numer-

ical implementation, f is never discretized onto a fixed

lattice. Instead, we use a completely adaptive piecewise-

linear triangle mesh whose vertices can move during

optimization, taking arbitrary locations in the image

plane.

For a detailed discussion of the differences between

the present approach and the Mumford-Shah tradition,

please see the work of Viola et al. [23], which is the di-

rect inspiration for the present paper. Indeed, the latent

images of Viola et al. are identical to our resolution-

independent images, except that some additional tech-

nical conditions are imposed here to ensure that the re-

quired curvature-related quantities are finite. We switch

terminology from “latent” to “resolution-independent”

to emphasize that the implementation places no limit

on the resolution of the output (except for floating-

point limitations, which are negligible for the applica-

tions considered here).

We now establish some more formal definitions and

notation. Let Ω ⊂ R2 be a bounded open set, and u :

Ω → [0, 1] a real-valued function defined on Ω. Then

u is a resolution-independent image on Ω if there is

a finite collection of disjoint, connected, open subsets

Di, each of which has a piecewise twice continuously

differentiable boundary, such that:

1. Ω is the disjoint union of the Di and their bound-

aries (or more precisely, that part of the Di’s bound-

aries inside Ω); and,

2. u is continuously differentiable on eachDi, and obeys

a Lipschitz condition on each Di; and

3. each of the (finitely many) smooth portions of bound-

ary of the Di also obeys a second order Lipschitz

condition.

The Lipschitz conditions are stronger than necessary

for the framework of this paper, but they are a conve-

nient way to ensure that u behaves well and they have

no practical impact on the type of problems addressed.

Insisting that Ω be open is also a convenience, since it

excludes the image boundary from further considera-

tion.

It is worth noting here that the implementation

in this paper models only a very restricted class of

resolution-independent images: piecewise-linear trian-

gle meshes. That is, each Di is a triangle, and u is

a linear function on each Di. However, in Sections 3

and 4, we develop a theory of curvature regularization
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Fig. 1 In this paper, resolution-independent images are modeled as in Viola et al. [23], employing a piecewise linear intensity
function defined on a triangle mesh whose vertices are positioned with arbitrary precision.

for the entire class of resolution-independent images.

This general theory is then applied to piecewise-linear

triangle meshes in Section 4.4.

Let us denote the set of all resolution-independent

images on Ω by I(Ω). Note that I(Ω) is a proper sub-

set of BV(Ω), the set of functions of bounded variation

on Ω. Intuitively, we can think of I(Ω) as the set of

bounded variation functions whose regions of discon-

tinuity are “nice” (i.e. consisting of piecewise smooth

curves) and whose gradient is bounded wherever it is

defined.

We call the union of the boundaries of the Di (but

excluding the boundary of Ω) the jump set of u, de-

noted J . The terminology is motivated by the fact that

any “jumps” in u (i.e. discontinuities in u or its deriva-

tive) must occur on J . An alternative definition is that

J = Ω − D, where D = ∪iDi is the region where u

is guaranteed to be continuously differentiable. (The

notation D is intended to be a mnemonic for “differen-

tiable.”)

It follows immediately from the definition of a resolution-

independent image that J consists of: (i) a finite set of

corner points ci; and (ii) a finite set of twice contin-

uously differentiable curves γi which run between the

corner points. We may assume that the γi are param-

eterized by arc length, and the second order Lipschitz

condition means the curvature of the γi has an upper

bound. The Lipschitz condition for u on D means that

u has well-defined limits as it approaches the jump set.

In particular, we can fix an orientation for each γi so

that it makes sense to talk of the “left” and “right”

sides of γi. Then for any point x = (x, y) lying on one

of the γi, the limiting values uL(x) and uR(x), as we

approach x from the left and right sides respectively,

exist and are independent of the path used. Similarly,

suppose the boundary of one of the regions Di contains

the corner point cj . Then the limiting value of u as we

approach cj from within Di exists and is independent

of the path, provided only the approaching path stays

within Di.

It will be useful to partition the jump set of u into

corners, steps, and ridges. For informal definitions, see

Figure 2. Formally, we first define the corner set Jcorner =

∪ici as the union of the endpoints of the γi. Next define

the step set

Jstep = {x ∈ J − Jcorner s. t. u is discontinuous at x}
(1)

Finally, the ridge set is the remainder of the jump set:

Jridge = J − Jcorner − Jstep. Intuitively, ridges are lo-

cations where u is continuous but its derivative is dis-

continuous or undefined. As a matter of technical con-

venience, however, our definition of Jridge also permits

points where both u and its derivative are continuous.

To summarise notation, the domain Ω of a given

resolution-independent image u can be expressed as the

disjoint union of the continuously differentiable region

D and the three types of jumps, as follows:

Ω = D ∪ J
= D ∪ Jstep ∪ Jridge ∪ Jcorner. (2)
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Fig. 2 Taxonomy of the jump set of a resolution-independent image. Each panel shows part of a 2D grayscale
resolution-independent image, visualized as a surface. The image plane coincides with the horizontal x-y plane, and the
grayscale intensity of the image is plotted on the vertical z axis, as indicated by the set of axes on the left.

3 Regularizers for resolution-independent

images

We are interested in imposing a prior on resolution-

independent images u. This will be done via a real-

valued regularizer E(u), with the usual interpretation

of E as an energy functional, so that u-functions with

low values of E have high prior probability.

The regularizer to be used in this work is a gen-

eralization of two commonly-used regularizers: the to-

tal variation energy and the elastica energy. To place

the novel contribution of this paper in context, the to-

tal variation and elastica energies are reviewed in Sec-

tions 3.1 and 3.2 respectively. These sections are re-

formulations of standard, well-known material, albeit

described in the non-standard context of resolution-

independent images.

3.1 Total variation

One commonly-used regularizer for images is the total

variation:

ETV(u) =

∫
Ω

|∇u|. (3)

At first glance, this expression appears problematic for

discontinuous u, since ∇u is not defined at discontinu-

ities. It is well known, however, that the total varia-

tion ETV is defined—and finite—for all functions u of

bounded variation, provided we interpret
∫
|∇u| suit-

ably (for example, as a distribution). There are rigor-

ous measure-theoretic approaches to this [24], but the

simplest approach is to smooth u with a small kernel of

unit volume, and take a limit as the width of this kernel

tends to zero. It is not hard to show that, for u ∈ I,

the contribution of a small element ds of the step set

is |uL − uR|ds. By integrating these small elements ds

over the step set Jstep, we see that the contribution of

Jstep to the integral (3) is∫
Jstep

|uL − uR|. (4)

Thus, for u ∈ I, we can decompose the total variation

regularizer as:

ETV(u) =

∫
D

|∇u|+
∫
Jstep

|uL − uR| (5)

This justified by our previous calculation (4) of the con-

tribution of Jstep, and by noting that Jridge and Jcorner
contribute nothing to the total variation.

The intuition behind using total variation as a regu-

larizer should be obvious: it favors monotonicity, with-

out specifying any preference between monotonic func-

tions with the same boundary conditions. For example,

consider a u that is a sequence of steps, each in the same

direction (either all up or all down), starting at height 0

and finishing at height H. The heights of the individual

steps can be different. This u receives the same energy

as any smooth, monotonic interpolation from 0 to H.

3.2 Elastica energy

The elastica energy is a commonly-used regularizer for

curvature in computer vision applications. The one-

dimensional version of this energy, derived from the

physical energy required to bend a thin pliable rod into

a given smooth shape, was considered as early as 1744

by Euler ([3]; see this paper’s appendix for details). For

a smooth curve Γ parameterized by arc length s, it is

given by

E1D-elastica(Γ ) =

∫
s

(a+ bκ(Γ, s)p) ds. (6)

Here, a, b, p ≥ 0 are constants and κ(Γ, s) is the (un-

signed) curvature of Γ at s, as defined in elementary

geometry. Physics (and Euler) say that p = 2, but other

values may give good results in computer vision appli-

cations.

Recall that κ is typically defined as the (possibly

signed) magnitude of the second derivative of Γ , or

equivalently as the reciprocal of the radius of curva-

ture [5]. Throughout this paper, we adopt the conven-

tion that curvature is an unsigned quantity.
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One-dimensional elastica energies have also been used

in numerous computer vision applications [11,13]. Of

more direct interest here is the generalization of elas-

tica energy to two dimensions, as proposed by Masnou

and Morel [9], and employed by many others (e.g. [18]).

This two-dimensional elastica energy is given by

Eelastica(u) =

∫
x∈Ω

(a+ bκLL(x)p)|∇u(x)| dx. (7)

Here κLL(x) is the (unsigned, 1D) curvature of the level

line of u passing through x ∈ Ω. We will refer to κLL as

the level line curvature. To define κLL more precisely,

fix x0 ∈ Ω with u(x0) = l, and define the level set

Γl = {x ∈ Ω|u(x) = l}. Typically, the intersection of a

sufficiently small neighborhood of x0 with Γl is a sim-

ple smooth curve γ(s), parameterized as usual by arc

length. We can then define κLL(x0) = κ(γ, s0), where s0
has been chosen so that γ(s0) = x0, and where κ is the

(unsigned) 1D curvature from elementary geometry.

Chan et al. [2] provide a detailed and illuminating

derivation of the 2D elastica energy (7) from the 1D

pliable-rod definition (6). The basic idea is to integrate

the 1D version over levels l; the extra weight of |∇u(x)|
in (7) then appears as the Jacobian when transforming

from height and arc-length parameters (l, s) to image

plane parameters x = (x, y).

As with the one-dimensional elastica energy, the

two-dimensional energy (7) has an intuitive physical in-

terpretation: it is the total amount of energy that would

be expended to build the image out of thin, horizontal,

pliable rods, assuming the energy of each individual rod

is given by Equation (6) multiplied by the height spac-

ing δl between rods. Note that for this physical anal-

ogy to be appropriate, the rods must be horizontal (so

that they correspond to level sets), and they should be

placed at equally-spaced heights separated by δl. As we

will be repeatedly appealing to this physical interpreta-

tion of the elastica energy later, let us call it the pliable

rod analogy.

There are three obvious problems with our defini-

tion of level line curvature for resolution-independent

images. First, if u is flat (i.e. ∇u = 0) in a neighbor-

hood of x0, then there is no unique level curve γ passing

through x0, and κLL is not defined at all. Second, if x0

is in the step set of u, the level curve may be degenerate

(possibly consisting of a single point, for example), so

κLL may not be defined. Third, if x0 is in the ridge set or

corner set of u, the level curve may either be undefined

or it may have a sharp corner at x0, meaning κLL is in-

finite. It turns out that the first two of these problems

are easily rectified, but the third remains troublesome.

Let us examine each in turn:

Problem 1 (∇u = 0): The value of κLL in regions where

∇u = 0 is actually irrelevant, since throughout this

document κLL (or, more generally, κpLL) always appears

multiplied by |∇u|. Equation (7) provides an example of

this. For concreteness, we can arbitrarily define κLL = 0

in regions where ∇u = 0, and this problem is solved.

Alternatively, we can appeal to the pliable rod anal-

ogy discussed above. Because no rods are required to

“build” a flat area of the image, the elastica energy of

a flat area is zero.

Problem 2 (x ∈ Jstep): This problem can be solved by

again appealing to the pliable rod analogy. It turns out

(see Section 3.3) that the contribution to (7) of a small

element ds of the step set is (a+bκ̂p|uL−uR|)ds, where

κ̂ is the curvature of the step set itself. (Note that κ̂ is

defined and finite everywhere in Jstep, by the definition

of a resolution-independent image.) Hence, this prob-

lem is also solved.

Problem 3 (x ∈ Jridge, Jcorner): For points on a ridge,

the pliable rod analogy fails, since the level sets at a

ridge may have sharp corners. The assumed form (6)

of the energy for our rods becomes infinite at a sharp

corner (except in the particular case p = 1), as we can

see from the following limit argument. We keep the an-

gle of the corner constant, while decreasing the radius

r of the circular arc used to approximate it. The length

of the arc is proportional to r, while the curvature of

the arc is, by definition, 1/r. The energy therefore has

a term proportional to r1−p, which for p > 1 becomes

infinite as r → 0. The same problems of infinite energy

apply to sharp corners where u has a step discontinuity.

We could, of course, solve this problem by permit-

ting infinite energy values, and setting Eelastica(u) =∞
for images u that have ridges or discontinuous corners.

Indeed, this is what some previous authors employing

the elastica energy (7) have implicitly done, with the

consequence that ridges and discontinuous corners in u

are forbidden (e.g. [2]). Whether or not it is reasonable

to take this approach depends on the application. For

example, if we are trying to perform inpainting using (7)

as the regularizer, and the boundary of the region to

be inpainted has no ridges, it is reasonable to attempt

an inpainting with no ridges. But if the boundary does

have ridges, it seems problematic to forbid ridges in the

inpainted region. We propose a simple solution to the

problem of ridges in Section 4.1, and corners in Sec-

tion 4.2.
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3.3 Computation of the step contribution

In the discussion of Problem 2 above, it was claimed

that the contribution to the elastica energy of a small

element ds of the step set is (a+bκ̂p)|uL−uR| ds, where

κ̂ is the curvature of the step set. We now give an ar-

gument supporting this claim, by appealing directly to

the pliable rod analogy.

Consider a small portion ds of Jstep shown in Fig-

ure 3(a), where the portion is small enough that we can

approximate uL and uR as constant. To build this part

of the image requires stacking horizontal rods directly

on top of each other. Each individual rod has energy

δl(a + bκ̂p) ds, by definition. The total height of the

stack is just |uL−uR|, so the contribution of this stack

is (a+ bκ̂p)|uL−uR| ds. Integrating over all elements of

the step set, this is equivalent to stating that the con-

tribution of the entire step set to the elastica energy

is∫
Jstep

(a+ bκ̂p)|uL − uR| ds. (8)

Obviously, the above argument is based on physical

intuition rather than mathematical rigor, which may

trouble some readers. In this particular case, it is rel-

atively easy to give a more rigorous calculation, based

on smoothing u with a small unit-volume kernel, ap-

plying the definition of elastica energy (7) that is valid

for smooth u, then taking the limit as the width of the

kernel tends to zero. However, we prefer the approach

based on physical intuition because it is easier to under-

stand, and our final goal does not require mathematical

rigor. We need to construct an energy whose minimiza-

tion results in pleasing resolution-independent images;

constructing that energy via plausible physical reason-

ing is a perfectly acceptable approach. Hence, in the

remainder of the paper, we will appeal to physical intu-

ition whenever necessary without attempting to inject

additional rigor.

4 Curvature-related extensions of the elastica

energy

This section describes the main theoretical contribu-

tions of the paper. It first gives details of how to com-

pute the contribution to the elastica energy due to ridges

(Sections 4.1) and corners (Sections 4.2). Section 4.3

then unifies the preceding calculations into a single gen-

eralized elastica energy. Finally, Section 4.4 describes

the variant of the generalized elastica energy appropri-

ate for the triangle meshes used in the present paper. To

the best of our knowledge, all three subsections present

primarily novel material.

4.1 Computation of the ridge contribution

As remarked above, building a ridge out of pliable rods

requires sharp corners in the rods, and this can lead

to infinite energies if we insist on an elastica energy of

the form (7). Two easy solutions to suggest themselves.

One solution is to take p = 1. In this particular case, we

can take a limit as the radius of curvature of a corner

tends to zero, and the resulting value remains finite:

the energy contribution of a sharp corner of exterior

angle θ is easily seen to be bθ. The other solution is

to adopt a more general physical model of our rods:

simply declare that the rods are made of some material

that can be bent into a sharp corner using finite energy.

For example, this energy could simply be bθp for some

p, or the energy could also incorporate robustness by

employing, say, bmin(τ, θp) for some threshold τ . To

keep our notation uncluttered, we will typically use bθp

as the energy for a rod with a sharp corner of exterior

angle θ, but the reader can bear in mind the many

obvious generalizations that are possible.

Now that we have a viable physical model, it re-

mains to compute the energy contribution of a small

portion of ridge. For a sufficiently small portion, the left

and right sides of the ridge can be modeled as planes,

say by z1 = a1x + b1y + c1 and z2 = a2x + b2y + c2
respectively. The gradients of these planes are given by

∇z1 = (a1, b1)ᵀ, ∇z2 = (a2, b2)ᵀ. Each level set line

in the neighborhood of this ridge consists of two line

segments joined at a sharp corner. It’s easy to check

that the exterior angle at this corner is just the angle

between the gradient vectors, denoted angle(∇z1,∇z2),

so the contribution of a single rod is

δl angle(∇z1,∇z2). (9)

It’s also easy to check that the magnitude of the gra-

dient of the ridge itself (i.e. the intersection of the two

planes) is |a1b2 − b1a2|/
(
(b1 − b2)2 + (a1 − a2)2

)1/2
,

which can be rewritten in terms of gradients as

|∇z1 ×∇z2|
|∇z1 −∇z2|

. (10)

Here, × is the vector cross product and | • | is the Eu-

clidean norm.

We now wish to add up the contributions of a large

number of rods with energy (9), and change variables

from level set parameter l to the ridge’s arc length

s. Some analysis of the number of rods with vertical

separation δl needed to fill a macroscopic length of

ridge shows that the slope of the ridge (10) is the cor-

rect Jacobian for this transformation. So we need to

multiply (9) by (10) and integrate. Reverting to no-

tation uL, uR (instead of planar patches z1, z2) for the
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(a) step (b) 2-prong corner (c) 3-prong corner

Fig. 3 Computing the elastica energy of steps and corners.

resolution-independent image values on the left and right-

hand sides of a ridge, we obtain the following expression

for the energy of the ridge set:

Eridge =∫
Jridge

b angle(∇uL,∇uR)p |∇u
L×∇uR|

|∇uL−∇uR| ds.
(11)

Note that we have also re-introduced the coefficient b

which weights all the curvature-related terms in our

energy. Later, we will use a further generalization in

which the final factor (the slope of the ridge) is raised

to a power α. And it is also useful to make explicit the

dependence on parameters b, p, α, writing

Eridge(b, p, α) =∫
Jridge

b angle(∇uL,∇uR)p
(
|∇uL×∇uR|
|∇uL−∇uR|

)α
ds.

(12)

4.2 Computation of the corner contribution

For the reasons given in Section 3.3, we use the pliable

rod model to compute the energy of a sharp corner

point, such as the one in the right-most panel of Fig-

ure 2. It follows from the Lipschitz conditions of Sec-

tion 2 that every non-trivial corner lies at the endpoint

of two or more prongs: smooth curves in the jump set.1

The right-most panel of Figure 2 has five prongs, for

example. The image intensity is, by definition, smooth

between prongs. The Lipschitz conditions of Section 2

also guarantee that the intensity tends to sensible limits

as we approach the prongs and the corner point itself.

1 The use of the word “non-trivial” here requires some ex-
planation. A trivial corner is isolated from the step set (al-
though it may adjoin the ridge set), as in the third panel of
Figure 2. Such corners may have no prongs, but they also
have zero energy, so we need not consider them here.

Thus, by considering a sufficiently small neighborhood

of the corner, the intensity function can be approxi-

mated arbitrarily well by using prongs that are straight

lines and an intensity that is constant between prongs.

Let us first examine the simplest possible case: a

two-prong corner (see Figure 3(b)), whose prongs meet

with interior angle θ, with constant intensity values u1
and u2 on the inside and outside of the corner respec-

tively. How would we build this geometric shape using

horizontal pliable rods? As shown in Figure 3(b), each

rod must be bent through angle |π−θ|, and the rods are

stacked vertically (using our standard vertical spacing,

δl).

Here we encounter the same apparent difficulty as

with ridges: the construction requires sharp corners in

the rods, but this leads to infinite energies if we insist

on an elastica energy of the form (6). Fortunately, the

same solution applies. We assume the rods are made

of some material that can be bent into a sharp corner

using finite energy. For example, this energy could be

b|π − θ|p for some p, or the energy could also incorpo-

rate robustness by employing, say, bmin(τ, |π− θ|p) for

some threshold τ . Later experiments use the non-robust

version, which performs well for our applications.

Adopting this (literally) more flexible definition of a

rod, the energy of each rod is b|π− θ|p δl, and the total

height of the stack of rods is |u2− u1|. Integrating over

l, we obtain the total corner energy for a two-pronged

corner as b|π − θ|p|u2 − u1|.
Now let us turn to the general case of a multi-

pronged corner, with N prongs. (See Figure 3(c) for

a 3-prong example.) For concreteness, label the prongs

from 1 toN in an anti-clockwise direction. As before, we

may assume the prongs are straight lines and the image

takes on constant values u1, u2, . . . , uN on the wedges

between each consecutive pair of prongs. So u1 is the
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value of the image on wedge 1 between prongs 1 and 2,

and so on up to uN , which is the value on wedge N

between prong N and prong 1. The angle of wedge i is

θi. In what follows, subscripts are computed modulo N .

In particular, uN+1 means the same thing as u1, and

similarly for θN+1.

We can think of this simplified geometry as a circu-

lar pie cut into wedges, where each wedge happens to be

of a different height and angle. We need to calculate the

energy required to build this multi-level pie out of pli-

able rods, as in Figure 3(c). One simple approach uses

recursion: find the lowest wedge, and build up the sides

of the wedge to the height of the lowest adjacent wedge.

At this point, the lowest wedge has effectively been re-

moved from the structure, and the problem has been

reduced to building a new pie that possesses one fewer

wedge. The recursion can bottom out at two wedges,

which is the two-prong case considered above. Alterna-

tively, we can make our final formula (15) a little more

elegant by bottoming out at one wedge, which is a de-

generate “corner” of zero energy.

More formally, let i∗ be the index of the lowest

wedge, so

i∗ = arg min
i∈{1,...,N}

ui. (13)

Let j∗ be the index of the lowest wedge adjacent to i∗,

so

j∗ = arg min
i∈{i∗−1,i∗+1}

ui. (14)

Let C = (ui, θi)
N
i=1 denote the N -prong corner, and

Ecnr(C) the desired elastica energy of this corner. Write

Ĉ for the (N − 1)-prong corner that results from filling

in wedge i∗ up to height uj∗ . Then compute Ecnr(C)

recursively according to

Ecnr(C) =

{
0 if N = 1,

Ecnr(Ĉ) + b|π − θi∗ |p|ui∗ − uj∗ | if N > 1.

(15)

Later, we will consider a generalization of this formula

in which | · | is replaced by a robust function ρτ (·) ≡
min(τ, | · |) and raised to a power α. We also make ex-

plicit the dependence on parameters b, p by writing

Ecnr(C;b, p, α) =
0 if N = 1,

Ecnr(Ĉ; b, p, α, τ)

+b|π − θi∗ |pρτ (ui∗ − uj∗)α
if N > 1.

(16)

4.3 A generalized elastica energy for all

resolution-independent images

Recall that the domain Ω of a resolution-independent

image u decomposes into four different regions accord-

ing to (2): differentiable (D), step (Jstep), ridge (Jridge),

and corner (Jcorner) regions. Therefore, the elastica en-

ergy (7) decomposes into integrals over these four re-

gions, and the previous subsections computed expres-

sions for each integral. Combining these—specifically,

substituting (8), (12), and (16) into (7)—gives a more

explicit expression for the elastica energy:

Eelastica(u) =∫
x∈D

(a+ bκLL(x)p)|∇u(x)| dx

+

∫
Jstep

(a+ bκ̂p)|uL − uR| ds

+Eridge(b, p, α)

+
∑

corners C

Ecnr(C; b, p, α)

(17)

It is convenient to generalize this expression by al-

lowing different exponents αi for the gradient factor

in each term, and also allowing different coefficients λi
and curvature exponents pi for each term. This gives

an elastica energy EG (where “G” stands for “ general-

ized”) defined by

EG(u) =λ1

∫
x∈D

(a+ bκLL(x)p1)|∇u(x)|α1 dx

+λ2

∫
Jstep

(a+ bκ̂p2)|uL − uR|α2 ds

+λ3Eridge(b, p3, α3)

+λ4
∑

corners C

Ecnr(C; b, p4, α4)

(18)

The generalization to arbitrary αi, λi, pi is not justified

by any physical or theoretical reasoning. Rather, we

appeal to the fact that we are seeking a regularizer that

works well in practice. The generalization is justified if,

by generalizing a physically realistic expression to one

that is not physically realistic, we can obtain better

performance when analyzing real images. As we shall

soon see, numerous previous authors have taken exactly

the same approach. But it should be noted that the

natural (i.e. physically realistic, according to the pliable

rod model) values for the αi, λi are all 1, and for the pi
the natural value is 2.

Let us now examine how the generalized elastica

energy (18) relates to previous work. By taking λ1 =

λ2 = α1 = α2 = 1, and λ3 = λ4 = b = 0, we recover the

total variation, up to a constant multiplier. By taking
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λ3 = λ4 = b = 0, we obtain an expression similar2 to

the regularizer used by Viola et al. [23]—which, as pre-

viously noted, is the direct inspiration for the present

work. Hence, the high-level claim that the present work

adds a notion of curvature to Viola et al. can now be

made more explicit: this paper incorporates the cor-

ner energy, by permitting λ4 6= 0 in (18). But there is

an extra wrinkle here. This paper does not implement

the ridge energy, which is equivalent to setting λ3 = 0.

Hence, a more accurate description of this paper’s con-

tribution is that it permits a non-zero corner energy to

be taken into account.

4.4 Elastica energy for images on a triangle mesh

We are particularly interested in computing the gener-

alized elastica energy EG for images that are piecewise

linear on a triangle mesh. These images have zero cur-

vature on the interiors of all the triangles, so κLL ≡ 0

on D. Moreover, the mesh edges (which are all straight

lines between triangle vertices) have zero curvature too,

so κ̂ ≡ 0 on Jstep. It is easy to see that this renders irrel-

evant the values of p1, p2, a, b in (18). And as mentioned

in the previous subsection, this paper takes λ3 = 0.

These observations result in a simplified form of the

elastica energy for triangle meshes, ET (where the “T”

stands for “triangle”):

ET(u) =λ1

∫
x∈D
|∇u(x)|α1 dx

+λ2

∫
Jstep

|uL − uR|α2 ds

+λ3Eridge(b, p3, α3)

+λ4
∑

corners C

Ecnr(C; b, p4, α4, τ)

(19)

Previous work [22] has shown some benefits from

taking α1 = 2, pi = 1. The experiments in this paper

also adopt these settings, and set all other constants

(λi, αi) to their physically realistic value (1.0), except

where stated otherwise. The robustness parameter τ is

set to 10% of the dynamic range in the input image.

5 Algorithmic details

The algorithm used here for computing resolution-indep-

endent images is modeled closely on Viola’s work [22,

23], where the reader can find many additional details.

2 Viola et al. actually did implement a form of ridge energy
different to the one considered here. Ignoring that ridge en-
ergy, (18) with λ3 = λ4 = b = 0 is identical to the regularizer
of Viola et al.

In this paper, we provide only a high-level overview of

the technique, and highlight several differences to the

Viola algorithm.

The discussion so far focused exclusively on the reg-

ularization of our resolution-independent image u, but

we also need a data term that expresses the affinity

between u and some input image I. This input I is a

standard, discrete set of grayscale pixel values denoted

Ii. We assume pixel i of I was formed by blurring the

true (continuous) intensity function with some kernel

κi. This leads to a data term D(u, I) of the form

D(u, I) = λ0
∑
i

‖Ii −
∫
Ω

κi(x)u(x) dx‖. (20)

Here, λ0 is the data gain expressing the relative impor-

tance of the data and regularization terms. Experiments

in this paper take λ0 = 10 (unless stated otherwise), a

value that was determined by trial and error to yield

reasonable performance on a variety of inputs. For the

norm ‖ · ‖, we use the square of the standard Euclidean

norm. Ideally, the kernel functions κi would be esti-

mated from the point spread function of the camera

used to capture I, but this lies outside the scope of

the present paper. We take the pragmatic and simple

choice of setting κi to be a 2D square box function,

equal to 1 on the unit square centered at pixel i and

zero elsewhere.

The computation of a resolution-independent image

û is achieved by minimizing the total energy E(u, I),

which combines the triangle mesh energy (19) and data

term (20):

û = arg min
u

E(u, I) = arg min
u

(ET (u) +D(u, I)).

(21)

Recall that u is a piecewise linear triangle mesh,

parameterized by: (i) the 2D locations of each vertex

in the mesh (two real parameters per vertex); and (ii)

the height and slope of each triangle in the mesh (three

real parameters per triangle). The average density of

the mesh is application-dependent. In experiments re-

ported here, the typical distance between neighboring

vertices is 1–3 pixels. Even on modest-sized images, this

leads to tens of thousands of triangles and vertices, and

hundreds of thousands of parameters. For example, the

256× 256 input of the segmentation result in Figure 9

leads to a mesh with over 42,000 triangles, 21,000 ver-

tices and a resulting total of 170,000 parameters.

All experiments in this paper perform the minimiza-

tion (21) over these parameters by first initializing the

mesh to a reasonable estimate, then applying an off-

the-shelf nonlinear optimizer. Specifically, the initial-

ization is done by using a regular grid of vertices spaced
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1.5 pixels apart, augmented by further vertices placed

at subpixel locations identified as edgels by a Canny

edge detector. The intensity values are initialized by

assigning each triangle the constant intensity obtained

by integrating I over the triangle.

Minimization is performed in Matlab via Schmidt’s

minFunc3, using the LBFGS algorithm [14] with default

options. Note that LBFGS is a quasi-Newton method,

requiring the objective function’s derivative but not its

Hessian. The derivative of non-corner terms is taken

from Viola [22]; the derivative of the corner energy (16),

although tedious to implement and debug, requires only

elementary geometry and calculus.

The experiments described here require hundreds or

thousands of iterations to reach convergence (as defined

by the default minFunc criteria). The approach is thus

rather computationally expensive. The computational

cost of the experiments reported here, all employing

Matlab implementations on a 2012 desktop PC with

an Intel Core2 Q9400 CPU, range from several CPU-

core-minutes (for the results of Figure 5) to nearly 50

CPU-core-hours (for the results of Figure 9).

As previously stated, the above approach follows

Viola in many respects. There are two important dif-

ferences, however. First, we perform joint optimization

over all parameters simultaneously. This contrasts with

Viola’s approach, which alternates between optimiza-

tions over the vertex location variables and the inten-

sity height/slope variables, and also employs so-called

N/Z flip moves, which make global changes to the mesh

structure.

Second, we take a simpler approach to the prob-

lem of degenerate triangles—triangles that become ex-

cessively narrow slivers as the optimization proceeds.

If the mesh contains one or more problematic slivers,

we remove a vertex from each sliver, and re-triangulate

the resulting hole using a constrained Delauney trian-

gulation [16]. Each new triangle’s intensities must then

be initialized based on the nearest undisturbed trian-

gle, and the entire minimization restarted. In principle,

this could lead to extremely slow convergence. In prac-

tice, however, we find that running sliver-removal just

once before beginning any minimization is typically suf-

ficient.

Figure 7, discussed in more detail below, demon-

strates that our joint minimization approach has sim-

ilar performance to the more elaborate alternating ap-

proach of previous work. Moreover, the joint approach

is simpler to implement and appears to encounter fewer

problems with degenerate triangles. (Note that this dis-

cussion compares optimization approaches only. So in

3 Mark Schmidt, http://www.di.ens.fr/~mschmidt/

Software/minFunc.html, 2012

this experiment, both the joint and alternating approaches

incorporated the corner energy, and therefore required

the corner energy derivative also.)

6 Results

6.1 Qualitative assessment of incorporating curvature

Figure 4 demonstrates the main qualitative result of

this paper: incorporating curvature into the energy func-

tional leads to modest improvements in the quality of

resolution-independent images. In terms of the stan-

dard taxonomy of computer vision tasks, Figure 4 is

best described as an example of super-resolution, show-

ing various upsampled outputs (c)–(h) based on the in-

put (b). However, we wish to avoid for now analyz-

ing metrics for any one task such as super-resolution,

instead concentrating on the more abstract and fun-

damental goal of constructing resolution-independent

images. Specifically, we address the question: do we ob-

tain better resolution-independent images by incorpo-

rating curvature? To answer this question, we run our

experiments twice with identical settings—except for

the parameter λ4 of (19) which is switched from 0 (cor-

responding to “without curvature”) to 1 (corresponding

to “with curvature”) between experimental runs.

Let us now examine Figure 4 in more detail. Panel (a)

shows the original image of a person holding a computer

chip, from which this example is derived. Panel (b) is a

60 × 46 detail from the original, used as input for the

remaining panels. Panels (c) and (d) are renderings of

the resolution-independent images produced by running

the minimization (21) described in the previous section:

panel (c) is “without curvature” and (d) is “with curva-

ture.” To the human eye, these two outputs appear ex-

tremely similar, with excellent reconstructions in some

regions (e.g. the M, the two 7 s, and the C ) and im-

perfect ones in others (e.g. the P and the 3 have their

interiors incorrectly filled).

But as shown in panels (e)–(h), which zoom in on

some particular regions of interest, there are some sub-

tle but important differences between the two outputs.

(Note that these panels represent extreme super-resolution,

showing regions that are 11 × 7 pixels in the input

image.) Specifically, panels (e) and (f) show the let-

ter C derived from the input, without and with cur-

vature respectively. In both cases, the curved shape of

the C has been recovered surprisingly well, albeit im-

perfectly. (We can see artifacts of the triangle mesh,

such as the sharp corner points at the lower right end

of C in both outputs.) More importantly, the output

computed with curvature shows some improvement over

the without-curvature output: in panel (f), the outline
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of the C represents a smoother curve, and the grayscale

values in the interior of the C are also smoother. Pan-

els (g) and (h) show a portion of a straight specular

edge. Again, the extreme super-resolution performs well

in both cases, recovering boundaries that are nearly

straight despite the blocky, staircase-like input. And we

again see artifacts of the triangle mesh in both outputs:

a few triangles with incorrectly-inferred grayscale val-

ues protrude from the main strip of high intensity. But

the more important point is that panel (h), computed

with curvature, produces a straighter boundary for the

high-intensity strip, when compared with panel (g) (which

was computed without curvature).

Although we have shown outputs for only one im-

age here, the results are typical. It is reasonable to

conclude that incorporating curvature produces modest

improvements in the detailed structure of resolution-

independent images.

6.2 Quantitative assessment of incorporating curvature

The previous subsection provided a qualitative assess-

ment of the improvements from incorporating curva-

ture, based on the subjective assessment of whether

highly-magnified portions of an image (such as Fig-

ure 4(e)–(h)) look reasonable. In this subsection, we

confirm the previous qualitative results with a quan-

titative assessment based on peak signal-to-noise ratio

(PSNR). The experiment involves the task of simulta-

neous denoising and upsampling, as shown in Figure 5.

The ground truth image in panel (a) is a 64 × 64 de-

tail of the well-known “peppers” image. Panel (b) is a

blurred, noisy version of the ground truth. It was cre-

ated by first averaging 4× 4 blocks of (a), then adding

Gaussian noise with standard deviation equal to 5% of

the image’s dynamic range. This results in a 16×16 im-

age to be used as input to the algorithm for estimating

resolution-independent images (Section 5). As with the

previous experiment, outputs were produced without

and with curvature energy, shown in panels (c) and (d)

respectively. A subjective assessment seems to confirm

the previous experiment, since the with-curvature re-

sult appears to have smoother object boundaries, and

smoother grayscale values within objects.

Because we have the ground truth for this experi-

ment, we can also assess these outputs quantitatively,

by computing their PSNR with respect to the ground

truth. PSNR is a well-known concept, but we give a

precise definition here for completeness. To compute

PSNR, the resolution-independent image is first ren-

dered at the resolution of the ground truth. Denote the

ground truth pixel values by Ij ∈ [0, 1] and the rendered

output’s pixel values by I ′j ∈ [0, 1]. Let the number of

pixels in each image be N = 64 × 64. Then the PSNR

is defined by

PSNR = −10 log10

∑
j

(Ij − I ′j)2/N

 . (22)

Figure 6 shows the results. This graph also demon-

strates the sensitivity of the computation to the data

gain parameter, λ0, in Equation (20). The data gain is

varied on the horizontal axis, with the corresponding

PSNRs for the computations with and without curva-

ture shown on the vertical axis. A higher PSNR corre-

sponds to a higher-quality reconstruction, so it is clear

that the with-curvature results are superior to the without-

curvature results for each value of the data gain.

A further experiment demonstrated that these re-

sults are typical, on average. A 64×64 patch was se-

lected uniformly at random from each of the first 40 im-

ages of the Berkeley Segmentation Dataset [8], and the

above experiment was run with identical settings on

all 40 patches. The mean improvement in PSNR after

switching on curvature energy was 0.17 dB. Figure 8

shows the input patches for this experiment, together

with the individual PSNR improvement for each patch.

Note that incorporating curvature does not always re-

sult in significant improvement, and sometimes actually

reduces PSNR. But the influence is strongly positive

on average. For example, if we define PSNR changes of

less than 0.15 dB as insignificant, then these 40 patches

contain 10 significant improvements and only two sig-

nificant reductions.

As discussed at the end of Section 5, this paper em-

ploys a simple joint optimization approach, contrasting

with the more elaborate alternating approach of pre-

vious work. Figure 7 shows the computational expense

of these two approaches for the experiment described

above (i.e. simultaneously denoising and upsampling

the “peppers” image). It is clear that the energy min-

imization proceeds at roughly the same rate for both

approaches, but the alternating approach is less smooth

since it encounters degenerate triangles more often. The

resulting retriangulation can also lead to an increase in

the energy value.

6.3 Comparison with alternative curvature

regularization

The previous two experiments focused solely on deter-

mining whether incorporating curvature regularization

into the resolution-independent image framework im-

proves the quality of results. However, curvature regu-

larization is employed in many other paradigms, and it
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(a) 244 × 200 (uncropped) input image (b) 60 × 46 cropped input image

(c) output without curvature energy (d) output with curvature energy

(e) an 11 × 7 region of (c) i.e. without
curvature energy

(f) an 11 × 7 region of (d) i.e. with
curvature energy

(g) an 11 × 7 region of (c) i.e. without
curvature energy

(h) an 11 × 7 region of (d) i.e. with
curvature energy

Fig. 4 Comparison of resolution-independent images computed with and without curvature energy.
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(a) ground truth image (64 × 64) (b) input image: noisy, subsampled, 16 × 16 version of (a)

(c) output without curvature energy (d) output with curvature energy

Fig. 5 Simultaneous denoising and super-resolution.

is reasonable to ask how the approach of this paper

compares to other state-of-the-art curvature regular-

ization techniques. A comprehensive comparison with

other curvature regularization techniques is beyond the

scope of this paper, since our main objective is to en-

hance the theory and practice of resolution-independent

images. Here, we provide here a comparison with one re-

cent state-of-the-art approach: the technique of Strand-

mark and Kahl [20]. The Strandmark-Kahl (SK) ap-

proach minimizes a particular choice of elastica energy

over an adaptive mesh, but the precise form of the en-

ergy and the methodology for adapting the mesh are

quite different to the present paper.

In addition, the SK approach is targeted at regu-

larizing curvature in binary output images, which can

therefore be regarded as foreground-background seg-
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Fig. 6 Estimating a resolution-independent image with curvature energy produces superior PSNR.
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Fig. 7 The simple joint optimization approach of this paper has similar computational expense to the more elaborate alter-
nating approach of previous work.
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Fig. 8 Randomly-selected 64×64 patches from the first 40 images of the Berkeley Segmentation Dataset [8]. Below each image
is the improvement in PSNR when curvature is used to compute the resolution-independent image.

mentations. So that our results can be compared di-

rectly with SK, we obtain a binary image by threshold-

ing a rendering of the resolution-independent output.

More precisely, given an input image I, we run the min-

imization algorithm of Section 5 to obtain a resolution-

independent image u. Each triangle in the mesh of u

is assigned a new constant intensity of 1 or 0 accord-

ing to whether the triangle’s mean intensity is above a

given threshold. The resulting u′ is a binary, resolution-

independent image, and can be rendered at any desired

resolution for comparison with other algorithms. The

threshold is selected manually, after inspecting a his-

togram of the output’s grayscale values.

Figure 9 shows the results of this comparison on

the well-known “cameraman” image. Each image in the

right-hand column is a detail of the corresponding im-

age in the left-hand column. In the top row, panels (a)

and (b), we have the 256 × 256 grayscale input image

of the cameraman. The second row, panels (c) and (d),

shows the resolution-independent image computed from

the input. The third row, panels (e) and (f), shows the

binary resolution-independent image computed from (c)

as described above. The final row, (g) and (h), shows

the best SK output on this image. (Here, “best” sim-

ply means the most visually pleasing result appearing

in SK [20]; the image was kindly provided by the first

author of that paper.)

Comparing the third and fourth rows of Figure 9, we

see that the approach of this paper has segmented many

more thin, elongated regions than SK. But this differ-

ence is of little interest—without specifying a particular

application and associated error metric, one cannot say

whether it is preferable to include elongated regions in

the foreground or not. Of much more interest is the

qualitative nature of the cameraman’s boundary. We

see that this paper’s approach yields boundaries that

are considerably more smooth and visually appealing



16 MacCormick and Fitzgibbon

than the SK output. This is particularly noticeable on

the coat, right arm, and legs.

Note that the pixelation artifacts in panel (h) are

not directly relevant to this discussion. When compar-

ing panels (f) and (h), the relevant difference is the

bumps in the boundary of (h) that have a scale of sev-

eral pixels. The lack of pixelation in (f) is, of course,

an advantage of the resolution-independent approach

in general, but has no direct bearing on the curvature

regularization being investigated here.

7 Conclusion

The key contribution of the paper was the derivation

of a novel corner energy (16), used to regularize cur-

vature in resolution-independent images modeled by

piecewise linear triangle meshes. Experiments showed

qualitative and quantitative improvements in the ac-

curacy of resolution-independent images inferred using

the new curvature regularizer. The technique also com-

pared favorably with a state-of-the-art approach for bi-

nary segmentation. The clearest opportunity for future

work is to incorporate an energy term for the ridge set.

It may also be possible to reduce the computational ex-

pense of the approach by employing different techniques

for mesh generation (e.g. [1,17,21]).
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Appendix: Euler’s definition of elastica

Numerous papers cite Euler’s work on elastica, but it is sur-
prisingly difficult to track down the relevant excerpt. It ap-
pears in Euler’s 1744 publication [3], Methodus inveniendi lin-
eas curvas . . . , Appendix I (“Additamentum I”), paragraph 2
(p247):

. . . ut inter omnes curvus eiusdem longitudinis, qua
non solum per puncta A & B transeant, sed etiam in
his punctis a rectis positione datis tangantur, definiatur
ea in qua sit valor huius expressionis

∫
ds
RR

minimus.

This can be translated as:

. . . that, of all curves of the same length, which
not only pass through points A and B, but also are
touched at these points by given tangents, it is defined
by that in which the value of the expression

∫
ds
R2 is

the smallest.
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(a) input image (256 × 256) (b) detail of (a)

(c) resolution-independent image (d) detail of (c)

(e) binarized version of (c) (f) detail of (e)

(g) output of SK [20] (h) detail of (g)

Fig. 9 Resolution-independent segmentation.


