
Curvature regularization for
resolution-independent images

John MacCormick1 and Andrew Fitzgibbon2

1 Department of Computer Science, Dickinson College, USA
2 Microsoft Research, Cambridge, UK

Abstract. A resolution-independent image models the true intensity
function underlying a standard image of discrete pixels. Previous work
on resolution-independent images demonstrated their efficacy, primarily
by employing regularizers that penalize discontinuity. This paper extends
the approach by permitting the curvature of resolution-independent im-
ages to be regularized. The main theoretical contribution is a gener-
alization of the well-known elastica energy for regularizing curvature.
Experiments demonstrate that (i) incorporating curvature improves the
quality of resolution-independent images, and (ii) the resulting images
compare favorably with another state-of-the-art curvature regularization
technique.
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1 Introduction and related work

Viola et al. [19, 20] introduced the notion of a resolution-independent latent im-
age to model the true intensity function underlying a standard image of discrete
pixels. Figure 1 gives an example of the approach: the true intensity function is
approximated by a piecewise linear function u, whose linear patches are defined
on a triangle mesh. The crucial feature is that the mesh’s vertices are positioned
with arbitrary precision, which frees the model from any notion of discrete pix-
els. The vertex positions and patch intensities are determined by minimizing an
energy that includes a regularizer term, which models the prior expectations of
resolution-independent images in general.

Previous work on resolution-independent images employed a regularizer based
primarily on the discontinuities in u. The main contribution in this paper is
to extend the regularizer to incorporate the curvature of u. Starting from the
well-known elastica energy [2], we derive explicit expressions for computing the
elastica energy on the smooth and non-smooth regions of the image domain. The
non-smooth region includes steps and corners (defined rigorously later), lead-
ing to separate step energy and corner energy terms in the energy functional.
The paper also includes practical experiments demonstrating the benefits of the
approach and a favorable comparison with another state-of-the-art curvature
regularizer.
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Fig. 1. In this paper, resolution-independent images are modeled as in Viola et al. [20],
employing a piecewise linear intensity function defined on a triangle mesh whose ver-
tices are positioned with arbitrary precision.

There is a considerable amount of related work on curvature regularization,
including a long history of variational and level set methods (e.g. [9, 12, 16]),
methods derived from the elastica energy (e.g. [2, 10]), and other approaches
such as total curvature [4] and Gaussian derivatives [5]. The work of Schoene-
mann et al. [15] and Strandmark and Kahl [17] is most closely related to the
present paper. These approaches regularize curvature based on a fixed [15] or
adaptive [17] mesh, employing linear programming relaxations for optimization.
However, the meshes are restricted to a fixed small set of edge angles, so lines not
at those orientations must be jagged. In our work, all angles are equally treated
(ignoring floating point issues). The curvature term contrasts with this paper in
that it applies to binary images and to corners with exactly two prongs (as de-
fined in Section 4.1); the approach here permits resolution-independent images
with arbitrary intensities and multi-pronged corners. Hence, we believe the novel
theoretical contribution of the paper is twofold: first, the well-known approach
of regularizing curvature by minimizing an elastica energy is reformulated so
that it can be applied explicitly to resolution-independent images (Sections 3
and 4); second, this reformulation leads to a corner energy that has not, to our
knowledge, been studied previously (Section 4.1).

2 The set of resolution-independent images

At the core of our approach is the concept of a resolution-independent image. For-
mal mathematical definitions are given in our technical report [6]. Here, we rely
primarily on intuition to convey the essential concepts. A resolution-independent
image is produced by an idealized camera with infinite resolution, infinite color
depth, infinite depth of field, and zero noise. The resulting image u is defined
on a connected subset Ω of R2, with intensities in the continuous range [0, 1].
We assume the world consists of piecewise smoothly-varying objects, giving rise
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Fig. 2. Taxonomy of the jump set of a resolution-independent image. Each
panel shows part of a 2D grayscale resolution-independent image, visualized as a sur-
face. The image plane coincides with the horizontal x-y plane, and the grayscale inten-
sity of the image is plotted on the vertical z axis, as indicated by the set of axes on
the left.

to resolution-independent images that are also piecewise smooth. So Ω is parti-
tioned into a differentiable region D (where u is continuously differentiable) and
its complement J , termed the jump set (where u or its derivative is discontinu-
ous). As shown in Figure 2, it is useful to further partition J into steps, ridges,
and corners—so Ω = D∪Jstep∪Jridge∪Jcorner. Some mild assumptions [6] guar-
antee that u is well-behaved near the jump set. In particular, limx→x0

u(x) exists
for any x0 ∈ J , and is independent of the path used to approach x0, provided
the path remains in the differentiable region D.

3 Regularizers for resolution-independent images

We are interested in imposing a prior on resolution-independent images u. This
will be done via a real-valued regularizer E(u), with the usual interpretation
of E as an energy functional, so that u-functions with low values of E have high
prior probability.

The elastica energy is a commonly-used regularizer for curvature in computer
vision applications. The one-dimensional version of this energy, derived from the
physical energy required to bend a thin pliable rod into a given smooth shape,
was considered as early as 1744 by Euler ([3]; see this paper’s appendix for
details). For a smooth curve Γ parameterized by arc length s, it is given by

E1D-elastica(Γ ) =

∫
s

(a+ bκ(Γ, s)p) ds. (1)

Here, a, b, p ≥ 0 are constants and κ(Γ, s) is the (unsigned) curvature of Γ at
s, as defined in elementary geometry. Physics (and Euler) say that p = 2, but
other values may give good results in computer vision applications.

Of more direct interest here is the generalization of elastica energy to two
dimensions, as proposed by Masnou and Morel [8], and employed by many others
(e.g. [15]). This two-dimensional elastica energy is given by

Eelastica(u) =

∫
x∈Ω

(a+ bκLL(x)p)|∇u(x)| dx. (2)
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Here κLL(x) is the (unsigned, 1D) curvature of the level line of u passing through
x ∈ Ω. Chan et al. [2] provide a detailed and illuminating derivation of the
2D elastica energy (2) from the 1D pliable-rod definition (1). The basic idea
is to integrate the 1D version over levels l; the extra weight of |∇u(x)| in (2)
then appears as the Jacobian when transforming from height and arc-length
parameters (l, s) to image plane parameters x = (x, y).

As with the one-dimensional elastica energy, the two-dimensional energy (2)
has an intuitive physical interpretation: it is the total amount of energy that
would be expended to build the image out of thin, horizontal, pliable rods,
assuming the energy of each individual rod is given by Equation (1) multiplied
by the height spacing δl between rods. Note that for this physical analogy to
be appropriate, the rods must be horizontal (so that they correspond to level
sets), and they should be placed at equally-spaced heights separated by δl. As
we will be repeatedly appealing to this physical interpretation of the elastica
energy later, let us call it the pliable rod analogy. As our first practical example,
the next subsection calculates the elastica energy of a step in the image.

3.1 Computation of the step contribution

Consider a small portion ds of Jstep shown in Figure 3(a), where the portion is
small enough that we can approximate uL and uR as constant. To build this part
of the image requires stacking horizontal rods directly on top of each other. Each
individual rod has energy δl(a + bκ̂p) ds, by definition. The total height of the
stack is just |uL− uR|, so the contribution of this stack is (a+ bκ̂p)|uL− uR| ds.
Integrating over all elements of the step set, this is equivalent to stating that the
contribution of the entire step set to the elastica energy is∫

Jstep

(a+ bκ̂p)|uL − uR| ds. (3)

Obviously, the above argument is based on physical intuition rather than
mathematical rigor, which may trouble some readers. In this particular case, it
is relatively easy to give a more rigorous calculation, based on smoothing u with
a small unit-volume kernel, applying the definition of elastica energy (2) that
is valid for smooth u, then taking the limit as the width of the kernel tends to
zero. However, we prefer the approach based on physical intuition because it is
easier to understand, and our final goal does not require mathematical rigor. We
need to construct an energy whose minimization results in pleasing resolution-
independent images; constructing that energy via plausible physical reasoning is
a perfectly acceptable approach. Hence, in the remainder of the paper, we will
appeal to physical intuition whenever necessary without attempting to inject
additional rigor.

4 Curvature-related extensions of the elastica energy

This section describes the main theoretical contributions of the paper. It first
gives details of how to compute the contribution to the elastica energy due to
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(a) step (b) 2-prong corner (c) 3-prong corner

Fig. 3. Computing the elastica energy of steps and corners.

corners (Sections 4.1). Section 4.2 then unifies the preceding calculations into
a single generalized elastica energy. Finally, Section 4.3 describes the variant
of the generalized elastica energy appropriate for the triangle meshes used in
the present paper. To the best of our knowledge, all three subsections present
primarily novel material.

4.1 Computation of the corner contribution

For the reasons given in Section 3.1, we use the pliable rod model to compute the
energy of a sharp corner point, such as the one in the right-most panel of Figure 2.
It can be shown [6] that every corner lies at the endpoint of two or more prongs:
smooth curves in the jump set. The right-most panel of Figure 2 has five prongs,
for example. The image intensity is, by definition, smooth between prongs. Some
mild additional assumptions (essentially Lipschitz conditions, as described in
the technical report [6]) guarantee that the intensity tends to sensible limits
as we approach the prongs and the corner point itself. Thus, by considering
a sufficiently small neighborhood of the corner, the intensity function can be
approximated arbitrarily well by using prongs that are straight lines and an
intensity that is constant between prongs.

Let us first examine the simplest possible case: a two-prong corner (see Fig-
ure 3(b)), whose prongs meet with interior angle θ, with constant intensity values
u1 and u2 on the inside and outside of the corner respectively. How would we
build this geometric shape using horizontal pliable rods? As shown in Figure 3(b),
each rod must be bent through angle |π− θ|, and the rods are stacked vertically
(using our standard vertical spacing, δl).

Here we encounter an apparent difficulty: the construction requires sharp
corners in the rods, but this leads to infinite energies if we insist on an elastica
energy of the form (1). Two easy solutions to suggest themselves. One solution
is to take p = 1. In this particular case, the energy remains finite (and is easily
seen to be b|π − θ|). The other solution is to adopt a more general physical
model of our rods: simply declare that the rods are made of some material that
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can be bent into a sharp corner using finite energy. For example, this energy
could be b|π − θ|p for some p, or the energy could also incorporate robustness
by employing, say, bmin(τ, |π−θ|p) for some threshold τ . Later experiments use
the non-robust version, which performs well for our applications.

Adopting this (literally) more flexible definition of a rod, the energy of each
rod is b|π−θ|p δl, and the total height of the stack of rods is |u2−u1|. Integrating
over l, we obtain the total corner energy for a two-pronged corner as b|π−θ|p|u2−
u1|.

Now let us turn to the general case of a multi-pronged corner, with N prongs.
(See Figure 3(c) for a 3-prong example.) For concreteness, label the prongs from 1
to N in an anti-clockwise direction. As before, we may assume the prongs are
straight lines and the image takes on constant values u1, u2, . . . , uN on the wedges
between each consecutive pair of prongs. So u1 is the value of the image on
wedge 1 between prongs 1 and 2, and so on up to uN , which is the value on
wedge N between prong N and prong 1. The angle of wedge i is θi. In what
follows, subscripts are computed modulo N . In particular, uN+1 means the same
thing as u1, and similarly for θN+1.

We can think of this simplified geometry as a circular pie cut into wedges,
where each wedge happens to be of a different height and angle. We need to
calculate the energy required to build this multi-level pie out of pliable rods, as
in Figure 3(c). One simple approach uses recursion: find the lowest wedge, and
build up the sides of the wedge to the height of the lowest adjacent wedge. At
this point, the lowest wedge has effectively been removed from the structure, and
the problem has been reduced to building a new pie that possesses one fewer
wedge. The recursion can bottom out at two wedges, which is the two-prong case
considered above. Alternatively, we can make our final formula (4) a little more
elegant by bottoming out at one wedge, which is a degenerate “corner” of zero
energy.

More formally, let i∗ be the index of the lowest wedge, so i∗ = arg mini∈{1,...,N} ui.
Let j∗ be the index of the lowest wedge adjacent to i∗, so j∗ = arg mini∈{i∗−1,i∗+1} ui.

Let C = (ui, θi)
N
i=1 denote the N -prong corner, and Ecnr(C) the desired elastica

energy of this corner. Write Ĉ for the (N − 1)-prong corner that results from
filling in wedge i∗ up to height uj∗ . Then compute Ecnr(C) recursively according
to

Ecnr(C) =

{
0 if N = 1,

Ecnr(Ĉ) + b|π − θi∗ |p|ui∗ − uj∗ | if N > 1.
(4)

Later, we will consider a generalization of this formula in which | · | is replaced
by a robust function ρτ (·) ≡ min(τ, | · |) and raised to a power α. We also make
explicit the dependence on parameters b, p by writing

Ecnr(C; b, p, α) =


0 if N = 1,

Ecnr(Ĉ; b, p, α, τ)

+b|π − θi∗ |pρτ (ui∗ − uj∗)α
if N > 1.

(5)
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4.2 A generalized elastica energy for all resolution-independent
images

The elastica energy (2) decomposes into integrals over four regions: differentiable
(D), step (Jstep), ridge (Jridge), and corner (Jcorner). Our technical report [6]
gives details for Jridge, and this term is omitted here and in the remainder of the
paper, since our focus is on the corner energy. Hence, by substituting (3) and (5)
into (2), (and making some further generalizations described shortly) we obtain
a generalized elastica energy EG (where “G” stands for “generalized”):

EG(u) = λ1

∫
x∈D

(a+ bκLL(x)p1)|∇u(x)|α1 dx

+ λ2

∫
Jstep

(a+ bκ̂p2)|uL − uR|α2 ds+ λ3
∑

corners C

Ecnr(C; b, p3, α3)
(6)

Here we have allowed an arbitrary exponent αi for the gradient factor, an arbi-
trary coefficient λi, and an arbitrary curvature exponent pi in each term. The
generalization to arbitrary αi, λi, pi is not justified by any physical or theoretical
reasoning. Rather, we appeal to the fact that we are seeking a regularizer that
works well in practice. The generalization is justified if, by generalizing a phys-
ically realistic expression to one that is not physically realistic, we can obtain
better performance when analyzing real images. As we shall soon see, numerous
previous authors have taken exactly the same approach. But it should be noted
that the natural (i.e. physically realistic, according to the pliable rod model)
values for the αi, λi are all 1, and for the pi the natural value is 2.

Let us now examine how the generalized elastica energy (6) relates to previous
work. By taking λ1 = λ2 = α1 = α2 = 1, and λ3 = b = 0, we recover the total
variation [21], up to a constant multiplier. By taking λ3 = b = 0, we obtain
an expression similar to the regularizer used by Viola et al. [20]—which, as
previously noted, is the direct inspiration for the present work. Hence, the high-
level claim that the present work adds a notion of curvature to Viola et al.
can now be made more explicit: this paper incorporates the corner energy, by
permitting λ3 6= 0 in (6).

4.3 Elastica energy for images on a triangle mesh

We are particularly interested in computing the generalized elastica energy EG
for images that are piecewise linear on a triangle mesh. These images have zero
curvature on the interiors of all the triangles, so κLL ≡ 0 on D. Moreover, the
mesh edges (which are all straight lines between triangle vertices) have zero
curvature too, so κ̂ ≡ 0 on Jstep. It is easy to see that this renders irrelevant the
values of p1, p2, a, b in (6). These observations result in a simplified form of the
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elastica energy for triangle meshes, ET (where the “T” stands for “triangle”):

ET(u) = λ1

∫
x∈D
|∇u(x)|α1 dx

+ λ2

∫
Jstep

|uL − uR|α2 ds+ λ3
∑

corners C

Ecnr(C; b, p3, α3, τ)
(7)

Previous work [19] has shown some benefits from taking α1 = 2, pi = 1. The
experiments in this paper also adopt these settings, and set all other constants
(λi, αi) to their physically realistic value (1.0), except where stated otherwise.
The robustness parameter τ is set to 10% of the dynamic range in the input
image.

5 Algorithmic details

The algorithm used here for computing resolution-independent images is mod-
eled closely on Viola’s work [19, 20], where the reader can find many additional
details. First, we need a data term that expresses the affinity between u and some
input image I. This input I is a standard, discrete set of grayscale pixel values
denoted Ii. We assume pixel i of I was formed by blurring the true (continuous)
intensity function with some kernel κi. This leads to a data term D(u, I) of the
form

D(u, I) = λ0
∑
i

‖Ii −
∫
Ω

κi(x)u(x) dx‖. (8)

Here, λ0 is the data gain expressing the relative importance of the data and
regularization terms. Experiments in this paper take λ0 = 10 (unless stated
otherwise), a value that was determined by trial and error to yield reasonable
performance on a variety of inputs. For the norm ‖ · ‖, we use the square of the
standard Euclidean norm. Ideally, the kernel functions κi would be estimated
from the point spread function of the camera used to capture I, but this lies
outside the scope of the present paper. We take the pragmatic and simple choice
of setting κi to be a 2D square box function, equal to 1 on the unit square
centered at pixel i and zero elsewhere.

The computation of a resolution-independent image û is achieved by min-
imizing the total energy E(u, I), which combines the triangle mesh energy (7)
and data term (8):

û = arg min
u

E(u, I) = arg min
u

(ET (u) +D(u, I)). (9)

Recall that u is a piecewise linear triangle mesh, parameterized by: (i) the 2D
locations of each vertex in the mesh (two real parameters per vertex); and (ii) the
height and slope of each triangle in the mesh (three real parameters per trian-
gle). The average density of the mesh is application-dependent. In experiments
reported here, the typical distance between neighboring vertices is 1–3 pixels.
Even on modest-sized images, this leads to tens of thousands of triangles and
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vertices, and hundreds of thousands of parameters. For example, the 256× 256
input of the segmentation result in Figure 7 leads to a mesh with over 42,000
triangles, 21,000 vertices and a resulting total of 170,000 parameters.

All experiments in this paper perform the minimization (9) over these pa-
rameters by first initializing the mesh to a reasonable estimate, then applying an
off-the-shelf nonlinear optimizer. Specifically, the initialization is done by using
a regular grid of vertices spaced 1.5 pixels apart, augmented by further vertices
placed at subpixel locations identified as edgels by a Canny edge detector. The
intensity values are initialized by assigning each triangle the constant intensity
obtained by integrating I over the triangle.

Minimization is performed in Matlab via Schmidt’s minFunc3, using the
LBFGS algorithm [11] with default options. Note that LBFGS is a quasi-Newton
method, requiring the objective function’s derivative but not its Hessian. The
derivative of non-corner terms is taken from Viola [19]; the derivative of the
corner energy (5), although tedious to implement and debug, requires only ele-
mentary geometry and calculus.

The experiments described here require hundreds or thousands of iterations
to reach convergence (as defined by the default minFunc criteria). The approach
is thus rather computationally expensive. The computational cost of the exper-
iments reported here, all employing Matlab implementations on a 2012 desktop
PC with an Intel Core2 Q9400 CPU, range from several CPU-core-minutes (for
the results of Figure 5) to nearly 50 CPU-core-hours (for the results of Figure 7).

As previously stated, the above approach follows Viola in many respects.
There are two important differences, however. First, we perform joint optimiza-
tion over all parameters simultaneously. This contrasts with Viola’s approach,
which alternates between optimizations over the vertex location variables and
the intensity height/slope variables, and also employs so-called N/Z flip moves,
which make global changes to the mesh structure.

Second, we take a simpler approach to the problem of degenerate triangles—
triangles that become excessively narrow slivers as the optimization proceeds.
If the mesh contains one or more problematic slivers, we remove a vertex from
each sliver, and re-triangulate the resulting hole using a constrained Delauney
triangulation [13]. Each new triangle’s intensities must then be initialized based
on the nearest undisturbed triangle, and the entire minimization restarted. In
principle, this could lead to extremely slow convergence. In practice, however,
we find that running sliver-removal just once before beginning any minimization
is typically sufficient.

Figure 6, discussed in more detail below, demonstrates that our joint min-
imization approach has similar performance to the more elaborate alternating
approach of previous work. Moreover, the joint approach is simpler to implement
and appears to encounter fewer problems with degenerate triangles. (Note that
this discussion compares optimization approaches only. So in this experiment,
both the joint and alternating approaches incorporated the corner energy, and
therefore required the corner energy derivative also.)

3 Mark Schmidt, http://www.di.ens.fr/~mschmidt/Software/minFunc.html, 2012
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6 Results

6.1 Qualitative assessment of incorporating curvature

Figure 4 demonstrates the main qualitative result of this paper: incorporat-
ing curvature into the energy functional leads to modest improvements in the
quality of resolution-independent images. Given the input (a), we run our exper-
iments twice with identical settings—except for the parameter λ3 of (7) which is
switched from 0 (corresponding to “without curvature”) to 1 (corresponding to
“with curvature”) between experimental runs. Panels (b) and (c) are renderings
of the resolution-independent images produced by the two runs. To the human
eye, panels (b) and (c) outputs appear extremely similar, with excellent recon-
structions in some regions (e.g. the M, the two 7 s, and the C ) and imperfect
ones in others (e.g. the P and the 3 have their interiors incorrectly filled).

But as shown in panels (d)–(g), which zoom in on some particular regions of
interest, there are some subtle but important differences between the two out-
puts. (Note that these panels represent extreme super-resolution, showing regions
that are 11× 7 pixels in the input image.) Specifically, panels (d) and (e) show
the letter C derived from the input, without and with curvature respectively. In
both cases, the curved shape of the C has been recovered surprisingly well, albeit
imperfectly. More importantly, the output computed with curvature shows some
improvement over the without-curvature output: in panel (e), the outline of the
C represents a smoother curve, and the grayscale values in the interior of the
C are also smoother. Panels (f) and (g) show a portion of a straight specular
edge. Again, the extreme super-resolution performs well in both cases, recovering
boundaries that are nearly straight despite the blocky, staircase-like input. And
we again see artifacts of the triangle mesh in both outputs: a few triangles with
incorrectly-inferred grayscale values protrude from the main strip of high inten-
sity. But the more important point is that panel (g), computed with curvature,
produces a straighter boundary for the high-intensity strip, when compared with
panel (f) (which was computed without curvature).

Although we have shown outputs for only one image here, the results are typ-
ical. It is reasonable to conclude that incorporating curvature produces modest
improvements in the detailed structure of resolution-independent images.

6.2 Quantitative assessment of incorporating curvature

In this subsection, we confirm the previous qualitative results with a quantitative
assessment based on peak signal-to-noise ratio (PSNR). The experiment involves
the task of simultaneous denoising and upsampling, as shown in Figure 5. The
ground truth image in panel (a) is a 64× 64 detail of the well-known “peppers”
image. Panel (b) is a blurred, noisy version of the ground truth. It was created
by first averaging 4× 4 blocks of (a), then adding Gaussian noise with standard
deviation equal to 5% of the image’s dynamic range. This results in a 16 × 16
image to be used as input to the algorithm for estimating resolution-independent
images (Section 5). As with the previous experiment, outputs were produced
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(a) 60 × 46 input image (b) output without
curvature energy

(c) output with curvature
energy

(d) detail without
curvature energy

(e) detail with
curvature energy

(f) detail without
curvature energy

(g) detail with
curvature energy

Fig. 4. Comparison of resolution-independent images computed with and
without curvature energy.

without and with curvature energy, shown in panels (c) and (d) respectively. A
subjective assessment seems to confirm the previous experiment, since the with-
curvature result appears to have smoother object boundaries, and smoother
grayscale values within objects.

Because we have the ground truth for this experiment, we can also assess
these outputs quantitatively, by computing their PSNR with respect to the
ground truth. The left panel of Figure 6 shows the results. This graph also
demonstrates the sensitivity of the computation to the data gain parameter, λ0,
in Equation (8). The data gain is varied on the horizontal axis, with the corre-
sponding PSNRs for the computations with and without curvature shown on the
vertical axis. A higher PSNR corresponds to a higher-quality reconstruction, so
it is clear that the with-curvature results are superior to the without-curvature
results for each value of the data gain. A further experiment demonstrated that
these results are typical, on average. A 64×64 patch was selected uniformly at
random from each of the first 40 images of the Berkeley Segmentation Dataset [7],
and the above experiment was run with identical settings on all 40 patches. The
mean improvement in PSNR after switching on curvature energy was 0.17 dB;
further details are in the technical report [6].

As discussed at the end of Section 5, this paper employs a simple joint op-
timization approach, contrasting with the more elaborate alternating approach
of previous work. The right panel of Figure 6 shows the computational expense
of these two approaches for the experiment described above (i.e. simultaneously
denoising and upsampling the “peppers” image). It is clear that the energy
minimization proceeds at roughly the same rate for both approaches, but the
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(a) ground truth
image (64 × 64)

(b) input image:
noisy, subsampled,

16× 16 version of (a)

(c) output without
curvature energy

(d) output with
curvature energy

Fig. 5. Simultaneous denoising and super-resolution.
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Fig. 6. Left: Estimating a resolution-independent image with curvature energy pro-
duces superior PSNR. Right: The simple joint optimization approach of this paper has
similar computational expense to the more elaborate alternating approach of previous
work.

alternating approach is less smooth since it encounters degenerate triangles more
often. The resulting retriangulation can also lead to an increase in the energy
value.

6.3 Comparison with alternative curvature regularization

A comprehensive comparison with other curvature regularization techniques is
beyond the scope of this paper, since our main objective is to enhance the theory
and practice of resolution-independent images. Here, we provide here a compar-
ison with one recent state-of-the-art approach: the technique of Strandmark and
Kahl [17]. The Strandmark-Kahl (SK) approach minimizes a particular choice
of elastica energy over an adaptive mesh, but the precise form of the energy and
the methodology for adapting the mesh are quite different to the present paper.

In addition, the SK approach is targeted at regularizing curvature in binary
output images, which can therefore be regarded as foreground-background seg-
mentations. So that our results can be compared directly with SK, we obtain a
binary image by thresholding a rendering of the resolution-independent output.
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input image
(256 × 256)

binarized resolution-
independent image

SK output [17]

Fig. 7. Resolution-independent segmentation.

More precisely, given an input image I, we run the minimization algorithm of
Section 5 to obtain a resolution-independent image u. Each triangle in the mesh
of u is assigned a new constant intensity of 1 or 0 according to whether the
triangle’s mean intensity is above a given threshold. The resulting u′ is a binary,
resolution-independent image, and can be rendered at any desired resolution for
comparison with other algorithms.

Figure 7 shows the results of this comparison on the well-known “camera-
man” image. The bottom row comprises details from the top row, and the final
column shows the best SK output on this image. (Here, “best” simply means the
most visually pleasing result appearing in SK [17]; the image was kindly provided
by the first author of that paper.) Comparing the middle and right columns of
Figure 7, we see that the approach of this paper has segmented many more
thin, elongated regions than SK. But this difference is of little interest—without
specifying a particular application and associated error metric, one cannot say
whether it is preferable to include elongated regions in the foreground or not.
Of much more interest is the qualitative nature of the cameraman’s boundary.
We see that this paper’s approach yields boundaries that are considerably more
smooth and visually appealing than the SK output. This is particularly notice-
able on the coat, right arm, and legs.

7 Conclusion

The key contribution of the paper was the derivation of a novel corner energy (5),
used to regularize curvature in resolution-independent images modeled by piece-
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wise linear triangle meshes. Experiments showed qualitative and quantitative
improvements in the accuracy of resolution-independent images inferred using
the new curvature regularizer. The technique also compared favorably with a
state-of-the-art approach for binary segmentation. The clearest opportunity for
future work is to incorporate an energy term for the ridge set. It may also be
possible to reduce the computational expense of the approach by employing
different techniques for mesh generation (e.g. [1, 14, 18]).
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Appendix: Euler’s definition of elastica

Numerous papers cite Euler’s work on elastica, but it is surprisingly difficult
to track down the relevant excerpt. It appears in Euler’s 1744 publication [3],
Methodus inveniendi lineas curvas . . . , Appendix I (“Additamentum I”), para-
graph 2 (p247):

. . . ut inter omnes curvus eiusdem longitudinis, qua non solum per
puncta A & B transeant, sed etiam in his punctis a rectis positione
datis tangantur, definiatur ea in qua sit valor huius expressionis

∫
ds
RR

minimus.

This can be translated as:

. . . that, of all curves of the same length, which not only pass through
points A and B, but also are touched at these points by given tangents,
it is defined by that in which the value of the expression

∫
ds
R2 is the

smallest.


