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Abstract

We present a generative model for repre-
senting and reasoning about the relation-
ships among events in continuous time. We
apply the model to the domain of net-
worked and distributed computing environ-
ments where we fit the parameters of the
model from timestamp observations, and
then use hypothesis testing to discover de-
pendencies between the events and changes
in behavior for monitoring and diagnosis.
After introducing the model, we present
an EM algorithm for fitting the parame-
ters and then present the hypothesis test-
ing approach for both dependence discovery
and change-point detection. We validate
the approach for both tasks using real data
from a trace of network events at Microsoft
Research Cambridge. Finally, we formal-
ize the relationship between the proposed
model and the noisy-or gate for cases when
time can be discretized.

1 Introduction

The research described in this paper was motivated
by the following real life application in the domain of
networked distributed systems: In a modern enter-
prise network of scale, dependencies between hosts
and network services are surprisingly complex, typi-
cally undocumented, and rarely static. Even though
network management and troubleshooting rely on
this information, automated discovery and monitor-
ing of these dependencies remains an unsolved prob-
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lem. In [2] we described a system called Constella-

tion in which computers on the network cooperate
to make this information available to all users of the
network. Constellation takes a black-box approach
to locally (at each computer/server in the network)
learn explicit dependencies between its services using
little more than the timings of packet transmission
and reception. The black-box approach is necessary
since any more processing of the incoming and outgo-
ing communication packages would imply prohibitive
amounts of overhead on the computer/server. The
local models of dependency can then be recursively
and distributively composed to provide a view of the
global dependencies. In Constellation, computers
on the network cooperate to make this information
available to all users in the network.

Constellation and its application to system wide
tasks such as characterizing a networking site ser-
vice and hosts dependencies for name resolution, web
browsing, email, printing, reconfiguration planning
and end-user diagnosis are described in [2]. This pa-
per focuses on the probabilistic and statistical build-
ing blocks of that system: the probabilistic model
used in the local learning, the EM algorithm used
to fit the parameters of the model, and the statistics
of the hypothesis testing used to determine the local
dependencies. The model, which we call Contin-

uous Time Noisy Or (CT-NOR), takes as input se-
quences of input events and output events and their
time stamps. It then models the interactions be-
tween the input events and output events as Poisson
processes whose intensities are modulated by a (pa-
rameterized) function taking into account the dis-
tance in time between the input and output events.
Through this function the domain expert is able to
explicitly encode knowledge about the domain. The
paper makes the following contributions:



1. Develops an EM algorithm for fitting all the pa-
rameters of this model and an algorithm for de-
pendence discovery and change point detection
based on statistical hypothesis testing.

2. Evaluates the performance of the model and the
inference procedures both on synthetic data and
on real life data taken from a substantial trace
of a large computer network.

3. Formalizes the relationship between CT-NOR
and the noisy-or (NOR) gate [11] when the time
between the events can be discretized.

This paper is organized as follows: Section 2 de-
scribes the model and Section 3 describes the EM
algorithm for fitting the parameters. Section 4 is
concerned with the relation to the NOR gate. The
algorithms and framework for applying the model to
dependency discovery and change point detection is
described in Section 5. That section also contains
validation experiments with synthetic data. Sec-
tion 6 contains experiments on real data and results.
Finally, Section 7 has some conclusions and future
work.

2 The CT-NOR model

In this section we formally describe the CT-NOR
model with the objective of building the likelihood
equation. First, we provide some background on
Poisson Processes, and then we use them to con-
struct the model (Eq. 4).

A Poisson Process1 can be thought of as random
process, samples from which take the form of a set
of times at which events occurred. A Poisson Pro-
cess is defined over a mean (base) measure f(t) and
is characterized the property that for any interval
(t1, t2), the number of events that occur in that inter-
val follows the Poisson distribution with the param-
eter

´ t2
t1

f(t)dt. Furthermore, the number of events
that occur on two disjoint intervals are independent.

Let us use “channel” to denote a sequence of events.2

The CT-NOR model considers a single output chan-
nel and a set of input channels. Let ol denote the

1This overview is very informal. The more general
and formal measure-theoretic definition can be found in
[5].

2In the domain of computer networks, a channel refers
to a unidirectional flow of networked packets. Thus a
channel will be identified by the service (e.g., HTTP,
LDAP, etc) and the IP address of the source or destina-
tion. In this paper we identified the packets with events
as it is only their time stamp that matters.

time of the lth output event and i
(j)
k the time of

the kth input on channel j. Furthermore, let n
denote the number of output events and n(j) the
number of input events on channel j. Then event
k in input channel j generates a Poisson process

of output events with the base measure p
(j)
k (t) =

w(j)fθ(t − i
(j)
k ).

The term w(j) represents the average number of out-
put events that we expect each input event on chan-
nel j to be responsible for, and fθ(t) is the distribu-
tion of the delay between an input and the output
events caused by it, taking as its argument the delay
between the time of the output ol and the time of

the input i
(j)
k . The mathematical structure of the

intensity makes intuitive sense: the probability that
a given input event caused a given output event de-
pends on both the expected number of events it gen-
erates and the “distance” in time between them.

We recall that given multiple independent Poisson
processes (denoted as PP ) we can use the sum of
their intensities to construct a “global” Poisson pro-

cess and write {ol} ∼ PP (
∑

j

∑n(j)

k=1 p
(j)
k (t)) as the

probability of the set of n outputs {ol}, 1 ≤ l ≤ n.
The double sum runs over all the channels and over
all input events in the channels. Intuitively, and sim-
ilar to the NOR gate in graphical models [11], the
independence between the between input channels
translates into a model where the events in the out-
put channel are “caused” by the presence of any (a
disjunction) of input events in the input channels
(with some uncertainty). The formal relation with
NOR is presented in Section 4.

We now proceed to write the likelihood of the data
given the model and the input events. Let λ =
∑

j n(j)w(j), the total mass of the Poisson base mea-
sure. The number n of outputs is distributed as a
Poisson distribution

n ∼ Poisson(λ), (1)

and the location of a specific output event ol is dis-
tributed with the probability density

ol ∼

∑

j

∑n(j)

k=1 p
(j)
k (ol)

λ
for l = 1 . . . n (2)

=

∑

j

∑n(j)

k=1 w(j)fθ(ol − i
(j)
k )

λ
(3)



The likelihood of observing a set {ol} of outputs is3:

L(o|i) = λn · e−λ
n
∏

l=1

∑

jk

w(j)fθ(ol − i
(j)
k )

λ
(4)

Before concluding this section, we expand a bit on
the function fθ as it is an important part of the
model. This function provides us with the oppor-
tunity of encoding domain knowledge regarding the
expected shape of the delay between input and out-
put events. In our experience using CT-NOR to
model an enterprise network we used two specific
instantiations: a mixture of a narrow uniform and
a decaying exponential and a mixture of a uniform
and Gaussian. The uniform distribution captures
the expert knowledge that a lot of the protocols in-
volve a response within a window of time (we call
this co-occurrence). The Gaussian delay distribu-
tion extends the intuitions of co-occurrence within
a window to also capture dependencies that can be
relatively far away in time (such as with the printer).
The left tail of the Gaussian corresponding to neg-
ative delays is truncated. The exponential distri-
bution captures the intuition that the possibility of
dependency decays as the events are further away in
time (this is true for the HTTP protocol). We will
not explicitly expand these functions in the deriva-
tions as they tend to obscure the exposition. Need-
less to say that the parameters of these functions are
all fitted automatically using EM as described in the
next section.

Groups of channels may have different delay distribu-
tions, in which case the delay distribution can be in-
dexed by the channel group and all the derivations in
this paper remain the same. For example, channels
can be grouped by network service, where all HTTP
channels have the same delay distribution (thus al-
lowing data from multiple channels to assist in pa-
rameter fitting), but the DNS channels are allowed
a different delay distribution. All the experiments in
the paper use a leak — a pseudo-channel with a sin-
gle event at the start of the observation period and
a delay distribution that is uniform over the length
of the observations. This leak captures events which
are not explained by the remaining channels.

3Since the Poisson Process produces unordered out-
puts but the events are considered to be sorted, a per-
mutation factor of n! is required. It cancels out the n! in
the Poisson density.

3 Fitting a CT-NOR model

We perform inference and estimation on the model
through the EM algorithm. We first set the stage
by finding a suitable bounding function B(z) for the
likelihood. The EM algorithm iteratively chooses a
tight bound in the E step and then maximizes the

bound in the M step. Let z
(j)
kl be some positive vector

such that
∑

jk z
(j)
kl = 1 for each l. For a fixed l, z

(j)
kl

is the probability of the latent state indicating that
packet k on channel j caused output l. Then from
Eq. 4:

log L(o|i) = −λ +

n
∑

l=1

log
∑

jk

w(j)fθ(ol − i
(j)
k )

= −λ +

n
∑

l=1

log
∑

jk

z
(j)
kl

w(j)fθ(ol − i
(j)
k )

z
(j)
kl

= −λ +

n
∑

l=1

log Ez
w(j)fθ(ol − i

(j)
k )

z
(j)
kl

Now, by Jensen’s inequality, log L(o|i) ≥ B(z)
where:

B(z) = −λ +
∑

l

Ez log
w(j)fθ(ol − i

(j)
k )

z
(j)
kl

3.1 E-Step

For a particular choice of θ (the parameters of the fθ

function) and w(j), the bound above is tight when

z
(j)
kl =

w(j)fθ(ol − i
(j)
k )

∑

j′k′ w(j′)fθ(ol − i
(j′)
k′ )

because in that case,
w(j)fθ(ol−i

(j)
k

)

z
(j)
kl

is a constant for

a fixed l and E log C = log EC = log C. Therefore,

we use these choice of z
(j)
kl .

3.2 M-step

For a fixed choice of z
(j)
kl , we need to maximize the

bound with respect to w(j) and θ.

Optimizing with respect to w(j), we notice that the
derivative is

∂B

∂w(j)
= −n(j) +

∑

l

∑

k

z
(j)
kl

1

w(j)

yielding

ŵ(j) =

∑

kl z
(j)
kl

n(j)



With respect to θ, we can say that

θ̂ = argmax
θ

∑

jkl

z
(j)
kl log fθ(ol − i

(j)
k )

which is simply the parts of the objective function
that depend on θ. This can be a very easy opti-
mization problem for a large class of distributions,
as it is of the same form as maximum likelihood pa-
rameter observation given observed data points and
corresponding counts. For example, for the expo-
nential family, this simply requires moment match-

ing: µ(θ̂) =
P

jkl z
(j)
kl

T (ol−i
(j)
k

)
P

jkl z
(j)
kl

where µ(θ̂) is the mean

parameterization of the estimated parameter θ̂ and
T (·) are the sufficient statistics for the family.

4 Relation to Noisy Or

As an alternative model, consider binning the ob-
served data into windows of width δ and modeling
the presence or absence of output events in a partic-
ular bin as a NOR [11]. The possible explanations
(parents) are the presence of input events in preced-
ing windows. We will show that a particular, natural
parameterization of the NOR model is equivalent to
CT-NOR in the limit, as the bin width approaches
zero. This relationship is important because it pro-
vides a nontrivial extension of NOR to domains with
continuous time and provides insight into the inde-
pendence structure of the two models.

Let Oδ
t be an indicator of presence of output events

between the times tδ and tδ + δ and I
(j)δ
t be the in-

dicator for input events from channel j in that same
time period. We will use PNOR to denote the proba-
bility under the NOR model and PCT-NOR for prob-
ability under CT-NOR.

PNOR(Oδ
t = 0|Input) =

∏

j

∏

s<t

(1 − p
(j)
(t−s)I

(j)δ
s )

The p
(j)
(t−s) is the weight associated with the possible

explanation I
(j)δ
s . To prevent the number of param-

eters from increasing as the bin size becomes small,
reparameterize with

p
(j)
(t−s) = w(j)fθ(δ(t − s))δ

for any distribution fθ that satisfies some technical
conditions.4 Since fθ may be a very flexible family

4It is sufficient for the density to exist and be Lips-

of distributions, this parameterization imposes only
minor constraints on the weights, but will be useful
for reasoning about NOR models which model the
same data but with differing bin widths. When the
bin width is halved, the probability that one of the
sub-bins has an output event must be equal to the
probability that the large bin has an output event
plus a second-order term. This condition is required
for a coherent parameterization of a family of NOR
distributions and follows from the technical condi-
tions placed on fθ.

We argue that as the bin width δ decreases, this
model becomes equivalent to a CT-NOR with a suit-
able choice of parameters. Choose a δ sufficiently
small that each bin contains at most one input event
per channel, and at most one output event. We will
use P t

NOR
to denote PNOR(Oδ

t = 0|Input), the prob-
ability that the tth bin has no output events falling
into it.

P t
NOR =

∏

j

∏

s<t

(

1 − w(j)fθ((t − s)δ)I(j)δs

)

=
∏

j

∏

k

(

1 − w(j)fθ(tδ − i
(j)
k )δ + o(δ2)

)

= 1 − δ
∑

j

∑

k

(

w(j)fθ(tδ − i
(j)
k )
)

+ o(δ2)

Under a CT-NOR model which uses the same w(j)

and the same fθ, the probability of not observing
any outputs is very similar. We use π to denote the
parameter of the Poisson random variable governing
the number of outputs in the interval.

π =
∑

j

∑

k

w(j)

ˆ tδ+δ

tδ

fθ(x − i
(j)
k )dx

= δ
∑

j

∑

k

w(j)fθ(tδ − i
(j)
k ) + o(δ2)

P t
CT-NOR = P [Poisson(π) = 0]

= exp(−π)

= 1 − π + o(δ2)

= P t
NOR + o(δ2)

chitz, which means that there exists a constant C such
that |fθ(a) − fθ(b)| ≤ C|a − b| for any a, b. Any contin-
uously differentiable function with a bounded derivative
satisfies this condition. It is easy to extend this proof to
any bounded density with a finite number of discontinu-
ities which has a bounded derivative everywhere except
for the discontinuities.



These results can be combined to demonstrate that
the probability assigned to any set of output events
by the two models is equal up a factor of (1+ o(nδ))
which converges to 1 as δ decreases to zero. The
asymptotics are in terms of bin width δ decreasing
to zero for a fixed set of observations, so n and T are
constant.

PNOR(Out|In)

PCT-NOR(Out|In)

=

T/δ
∏

t=0

(

P t
NOR

P t
CT-NOR

)1−O
δ
t
(

1 − P t
NOR

1 − P t
CT-NOR

)O
δ
t

= (1 + o(δ2))T/δ−n · (1 + o(δ))n

= (1 + (T/δ − n)o(δ2)) · (1 + no(δ))

= (1 + (T + n)o(δ))

= (1 + o(δ))

CT-NOR and NOR with an increasingly small bin
size assign equivalent probability to any sequence
of output events, indicating that the two classes of
models are closely related, and that CT-NOR is the
model that emerges as the limit when the NOR’s bin
size is decreased toward zero.

5 Dependence discovery and change

point detection

With the probabilistic framework described in the
previous section, we can use statistical machinery
to perform inference for two applications: a) input-
output relation discovery and b) change-point de-
tection. The next two subsections describe the algo-
rithms in detail and also validate the main assump-
tions using synthetically generated data. The final
subsection (5.3) describes a computationally efficient
approximation to the hypothesis test procedures.

5.1 Dependence discovery

For the purposes of network management, a crucial
problem is dependence discovery. For each computer
in the network, we are interested in automatically
finding out from observations which input channels
have a causal effect on an output channel.

We can frame the dependency discovery task as hy-
pothesis testing. Specifically, testing whether an in-
put channel j causes output events corresponds to
testing the hypothesis that w(j) = 0. One way of
testing this hypothesis is through the likelihood ra-
tio test [14]. We fit two models: Mfull, under which,

all the parameters are unrestricted, and Mres, un-
der which w(j) is constrained to be zero. The test
statistic in this case is

−2 logΛ = −2 log
LMres

(Data)

LMfull
(Data)

The asymptotic distribution of this test statistic is
called a χ̄2 and is a mixture of χ2 with different de-
grees of freedom. The weights depend on the Fisher
information matrix and are difficult to compute[7],
but the significant terms in the mixture are χ2

1 and
χ2

0 which is a delta function at zero. The χ̄2 emerges
as the null distribution instead of the more famil-
iar χ2 because the weight parameters w(·) are con-
strained to be non-negative, and when an estimated
ŵ(j) is zero in the unconstrained model, imposing
the constraint does not change the likelihood. If a
set of true null hypotheses is known, the mixture co-
efficients can be trivially estimated, with the weight
of χ2

0 being the proportion of test statistics that are
0. When no ground truth is available, the propor-
tion of null hypotheses can be estimated using the
method described in [13] and then used to estimate
the mixture proportions.

To demonstrate that the model efficiently recovers
the true causal channels and has the proper test-
statistic distribution under the null hypothesis, we
first test the model on synthetic data that is gener-
ated according to some instantiation of the model.
10 input channels are generated; half of them have
no causal impact on output events and half produce
a Poisson(0.01) number of output events with the de-
lay distribution of Exponential(0.1). Note that the
causality is weak – very few input events actively
produce an output. For each hour, 500 input events
per channel, the corresponding output events, and
100 uniformly random noise events (which are not
caused by any input activity) are produced. The
resulting p-values are plotted in Figure 1.

Observe that the null p-values (conditioned on the
test statistic being non-zero) are distributed uni-
formly. This is evidenced by the p-values following
the diagonal on the quantile-quantile plot. The alter-
native p-values (without any conditioning) for chan-
nels which exhibit causality are mostly very low, with
88% being below 0.1. Furthermore, the specific pa-
rameter estimates (the delay distribution parameter
and w(j)) are in line with their true values.

5.2 Changepoint Detection

When the relationship between events is altered, it
can be an indication of a significant change in the



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Uniform

P
−

V
al

ue
s

Figure 1: Quantile-quantile plot of dependency dis-
covery p-values for 2 hours of synthetic data. The
red circles are the distribution of p-values for the
null hypotheses, and are uniform. The blue trian-
gles show p-values of the alternative hypotheses and
are small, indicating power.

system; in the case of Constellation, this is of in-
terest to the system administrators. We describe
a building block for identifying whether the param-
eters w(j) change between two time periods and
demonstrate its correct functionality. Changepoint
algorithms have long been studied in machine learn-
ing and statistics, and our test for whether the be-
havior of a parameter is altered between two time
periods can be plugged into one of many existing al-
gorithms. Furthermore, the simple two-period test
described here is sufficient for many monitoring ap-
plications.

We again use the log-likelihood ratio test methodol-
ogy. In order to do that, it is necessary to extend the
model to allow the parameters to depend on time.
The model can be written as

{o} ∼ PP





∑

j

∑

k

w
(j)

i
(j)
k

fθ(ol − i
(j)
k )



 .

Detecting changepoints is accomplished by testing
two hypotheses. The null is that the weights do not
change between two time periods, and can be written

as w
(j)
t = w(j). Under the alternative, for a particu-

lar channel of interest m and an interval of time S,
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Figure 2: Quantile-quantile plot of the p-values for
changepoint detection on synthetic data. The red
circles are null hypotheses (no changepoint), the
green diamonds are a weak alternative (w(j) in-
creases from 0.01 to 0.02) and the blue triangles are a
strong alternative (w(j) increases from 0.01 to 0.05).

the weight changes:

∀j 6= m w
(j)
t = w(j)

w
(m)
t = w(m) if t ∈ S, w′(m)otherwise.

The existence of a changepoint is equivalent to re-
jecting the null hypothesis. Fitting the alternative
model is a simple modification of the EM procedure
described for the null model; for fast performance, it
is possible to initialize at the null model’s parameter
values and take a single M step, reusing the latent
variable distribution estimated in the E step. The
test statistic in this case will again be −2 logΛ and
its null distribution will be χ2 if the true w(m) > 0
and χ̄2 otherwise.

Figure 2 shows a quantile-quantile plot of the p-
values (computed using the χ2 distribution) under
the null hypothesis, computed for causal channels of
the same synthetic data as in section 5.1; there are
two hours of data with 500 input events per chan-
nel per hour. As expected, the quantile-quantile plot
forms a straight line, demonstrating that on the syn-
thetic dataset, the null test statistic has a χ2 distri-
bution. When a strong changepoint is observed (w(j)

changes from 0.01 to 0.05) , the p-values are very low.
When a weak changepoint is observed (w(j) changes



from 0.01 to 0.02) the p-values are lower than under
the null distribution but power is significantly lower
than when detecting the major changepoint.

5.3 Bounding the log-likelihood ratio

Computing the log-likelihood ratio requires refitting
a restricted model, though only a small number of
EM steps is typically required. However, it is possi-
ble to bound the log likelihood ratio for dependency
discovery very efficiently.

For the restricted model testing channel m’s causal-
ity, we must compute the likelihood under the con-
straint that w(m) = 0. Take the estimates of w of the
unrestricted model and let α = λ

λ−w(m)n(m) . Instead
of computing the ratio with the true maximum like-
lihood parameters for the restricted model, we pro-
pose a set of restricted parameters, and compute the
ratio using them. We produce a restricted version of
parameters w(·) by setting w(m) to zero and inflating
the rest by a factor of α. That simply corresponds
to imposing the restriction, and redistributing the
weight among the rest of the parameters, so that
the expected number of output packets remains the
same. In that case,

−2 logΛ = −2 log
LMres

(Data)

LMfull
(Data)

≥ −2 log
∏

l

∑

j 6=m,k αw(j)fθ(ol − i
(j)
k )

∑

jk w(j)fθ(ol − i
(j)
k )

= −2 log
∏

l

α

(

1 −

∑

k w(m)fθ(ol − i
(m)
k )

∑

jk w(j)fθ(ol − i
(j)
k )

)

= −2 log
∏

l

α

(

1 −
∑

k

z
(j)
ml

)

As a reminder, zj
ml is the latent variable distribution

estimated in the E-step of EM. Since the numerator
of the log-likelihood ratio is a lower bound and the
denominator exact, this expression is a lower bound

on Λ. Intuitively, log
∏

l

(

1 −
∑

k z
(j)
ml

)

corresponds

to the probability that channel m has exactly 0 out-
put events assigned to it when causality is assigned
according to the EM distribution on the latent vari-
ables . The log α term corresponds to the increase
in likelihood from redistributing channel m’s weight
among the other channels.
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Figure 3: ROC for CT-NOR and competing algo-
rithms on data from a real enterprise network. Both
the exact an approximate CT-NOR tests produce de-
tection results superior to the alternative methods.

6 Results

We describe the results of applying the algorithms
of the previous section to a subset of a real dataset
consisting of a trace comprising headers and partial
payload of around 13 billions packets collected over
a 3.5 week period in 2005 at Microsoft Research in
Cambridge, England. This site contains about 500
networked machines and the trace captures conver-
sations over 2800 off-site IP addresses. Ground-truth
for dependence discovery and change point detection
is not readily available and it has to be manually gen-
erated. We took 24 hours of data at the web proxy
and manually extracted ground truth for the HTTP
traffic at this server by deep inspection of HTTP
packets. It is with this part of the data that we vali-
date our algorithms, as it provides us with objective
metrics, such as precision and recall, to assess the
performance of our algorithms.

6.1 Dependency Discovery

First, we are interested in assessing the performance
of the dependence discovery capabilities of our model
and hypothesis testing algorithm. In the applica-
tion of diagnosis and monitoring of networked sys-
tems it is crucial to maintain a consistent map of all
the server and services inter-dependencies and their
changes. Finding dependencies at the server level is
the main building block used by Constellation [2] in
building this global map. We compare our method
to two other alternatives. One is a simple binomial
test: for each input channel, we count the number of
output packets falling within a W width window of



an input packet, and determine whether that num-
ber is significantly higher than if the output packets
were uniformly distributed. We call this “standard
co-occurrence.” The second alternative considers an
input and output channel to be dependent only if
there is a unique input packet in the immediate vicin-
ity of an output packet. The reason we select these
two alternatives is that a) they reflect (by and large)
current heuristics used in the systems community [1]
and b) they will capture essentially the “easy” de-
pendencies (as our results indicate).5

As can be seen on the ROC curve in Figure 3,
CT-NOR successfully captures 85% of the true cor-
relations with a 1% false positive rate. In total, the
model detects 95% of the true correlations at 10%
of false positives. We want to additionally point
out that some of correlations present are very sub-
tle; 13% of the correlations are evidenced by a sin-
gle output packet. We also point out that CT-NOR
performs significantly better than both alternatives
based on co-occurrence of input packets, providing
even more conclusive evidence that CT-NOR is cap-
turing nontrivial dependencies. The approximation
error from using the bound of section 5.3 is minimal,
while the computation savings are significant. On a
relatively slow laptop, the bounds on log-likelihood
ratio test for a hour of traffic on a busy HTTP proxy
can be computed in 7 seconds; exact computations
take 86 seconds.

6.2 Changepoint Detection

Since the true presence or absence of a changepoint
is unknown, we estimate it from the actual packet
causes, obtained through deep inspection of HTTP
packets. We collect a set of input and output chan-
nel pairs for which there is no evidence of change.
We regard these as coming from the null hypothesis.
A set of pairs for which the ground truth provides
strong evidence of a change are collected, and con-
sidered to be from the alternative hypothesis.

We apply our changepoint test to that population,
and report the results in Figure 4. The CT-NOR
changepoint detection algorithm produces uniformly
distributed p-values for channels which come from
the null hypothesis and do not exhibit a changepoint,
confirming that our null hypothesis distribution is
calibrated. On the other hand, the test on alterna-

5As sometimes an input package generates more than
one output packet, we enabled our model to account for
this by allowing “autocorrelations” to take place. Namely
a packet in an output channel can depend on an input
channel or on the (time-wise) preceding output packet.
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Figure 4: Quantile-Quantile plot of changepoint p-
values. The red circles are channel pairs which, ac-
cording to the ground truth, not exhibit a change-
point. The blue triangles represent channel pairs ex-
hibiting change according to the ground truth.

tive hypothesis channels produces a large proportion
of very small p-values, indicating confidence that a
changepoint occurred.

7 Conclusions and Future Work

We presented a generative model based on Poisson
processes called CT-NOR, to model the relationship
between events based on the time of their occur-
rences. The model is induced from data only con-
taining information about the time stamps for the
events. This capability is crucial in the domain of
networked systems as collecting any other type of in-
formation would entail prohibitive amounts of over-
head. Specific domain knowledge about the expected
shape of the distribution of the time delay between
events can be incorporated to the model using a pa-
rameterized function. The EM algorithm used to fit
the parameters of the model given the data also in-
duces the parameters of this function. The combina-
tion of knowledge engineering and learning from data
is clearly exemplified in the application we presented
to the domain of computer systems, where we used
a mixture model consisting of an exponential and a
uniform distribution.

In terms of applying the model we focused on pro-
viding building blocks for diagnosis and monitoring.



We provided algorithms based on statistical hypoth-
esis testing for (a) discovering the dependencies be-
tween input and output channels in computer net-
works, and for (b) finding changes in expected be-
havior (change-point detection). We validated these
algorithms first on synthetic data, and then on a
subset (HTTP traffic) of a trace of real data from
events in a corporate communication network con-
taining 500 computers and servers.

The relationship presented in Section 4 between
CT-NOR and the NOR gate is interesting for mul-
tiple reasons. First, as the NOR gate has been ex-
tensively studied in this community in modeling and
learning environment and in causal discovery [4], the
immediate benefits are a) increasing the applicabil-
ity to continuous time, and b) augmenting its model-
ing capabilities using the time delay functions used
in this work. Second, this correspondence provide
us with another intuition on the independence as-
sumptions behind the Poisson process, as applied to
the characterization of the relationship between the
events in various inputs to the events in a specific
output.

For the particular application of dependency discov-
ery between channels in a computer network we ex-
plored a varied set of alternative approaches. They
all failed miserably. Among these, we briefly discuss
two: We cast the problem as one of classification,
and tried a host of Bayesian network classifiers [6].
The idea was to first discretize time into suitable
periods, and then have as features the existence or
absence of events in the input channels and as the
class the existence or absence of events in the out-
put channel. The accuracy was abysmal. The main
problem with this approach is that the communica-
tion in these networks is bursty by nature with rela-
tively large periods of quiet time. Once we started to
look at Poisson as the appropriate way to quantify
the distributions in these classifiers the choice of the
Poisson process became clear. We also explored the
use of hypothesis testing comparing the inter-time
between events in the input and output channels to
the inter-time between the input and a fictitious ran-
dom channel. The accuracy in terms of false posi-
tives and true positives was worse than those based
on co-occurrence. The main problem here is that we
are considering pairwise interactions and there are
many confounder in all the other channels.

With regards to related approaches, both the work
on continuous time Bayesian networks [10] and in
general about dynamic Bayesian networks (e.g., [9])
are obviously very different in terms of the param-
eterization of the models, the assumptions, and the

intended application. The work that is closest to
ours is contained in the paper by Rajaram et al [12]
where they propose a (graphical) model for point
processes in terms of Poisson Networks. The main
difference between their work and ours is the trade-
off between representation capabilities and complex-
ity in inference that the different foci of our respec-
tive papers entails. Due to the distributed nature of
our application domain, we concentrate on modeling
the “families” (local parent/child relationship) and
basically assume that we can reconstruct, in a dis-
tributed manner based on the local information, the
topology of the network. This enables us to induce
families with large numbers of parents, and with rel-
atively complex interactions as given by the delay
function fθ, while performing inference efficiently. In
the Poisson Networks paper [12], the number of par-
ents of each node are restricted, and the rate function
is parameterized by a generalized linear model. Even
with these (relatively benign) restrictions inference
is non-trivial in terms of finding the structure of the
Bayesian network and indeed this is a contribution of
that paper. Obviously, future work includes merging
both approaches: an immediate benefit would be to
decrease the vulnerability of our approach to spuri-
ous causal dependencies due to ignoring the global
structure in the estimation.

There are other three threads that we are currently
investigating for future work. The first one involves
recasting the fitting and inference procedures de-
scribed in the model in the Bayesian framework. An
advantage of the Bayesian approach will be on the
inclusion of priors. As channels differ greatly on the
number of events this can further increase the accu-
racy of discovery. A second direction is that of in-
corporating False Discovery Rates [3] calculations in
order to accurately estimate false positives when we
don’t have ground truth regarding the relationship
between the channels. As we are performing a large
number of hypothesis tests, this becomes a necessity.
In [2] we experimented with the basic approach de-
scribed in [3], and we verified that the approach is
very conservative in the context of the HTTP and
DNS protocols where we do have ground truth. We
plan to explore less conservative approaches such as
the one described in [13] or adapt the one explored
in [8]. Finally we are in the process of getting suit-
able data and plan to apply this model to biologi-
cal networks such as neurons that communicate with
other neurons using spikes in electrical potential.
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