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Renormalized Resonance Frequencies of a
Ferrite Sphere Coupled to an LR Circuit;
Comparison of Theory and Experiment
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ABSTRACT: We derive a formula for the AC susceptibility of a ferrite spherical resonator
coupled to an LR circuit by formulating the problem in terms of a feedback mechanism. Thig
technique allows us to find an analytical expression for the dependence of the shift in
resonance frequency on the loop-crystal coupling strength, the circuit parameters, and the
saturation magnetization of the ferrite. Finally, we compare these predictions to experi-
mental results on YIG and Ga:YIG spheres. This coupling provides a simple way of tuning

the uniform mode frequency relative to the spin-wave spectrum.
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INTRODUCTION

Yttrium iron garnet (YIG) is a ferromagnetic insulator
with a large room-temperature saturation magnetiza-
tion and a sharp ferromagnetic resonance. These prop-
erties make it ideal in many microwave applications.
Over the last half-century, YIG and other ferrites have
played a crucial role in communications systems and
microwave. engineering; they are the central compo-
nent in everything from wideband tunable microwave
filters and oscillators to nonreciprocal devices, such as
circulators, isolators, and phase shifters (I, 2).

YIG has also been of much interest from a funda-
mental science perspective. In the late 1950s, it was
one of the early materials in which nonuniform mag-
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netic resonance was observed, and it was thus instru-
mental in the development of the theory of magneto-

- static modes (3, 4). Around the same time, it served as

a convenient experimental systema for the study of
nonlinear processes and instabilities in magnetic sys-
tems (5). More recently, thin films of YIG have
proved ideal for the generation and detailed study of
envelope solitons (6).

It has long been known that the resonance fre-
quency and effective Q-factor of a cavity change

when a ferrite is placed in it (I, 7-9). Analytical

expressions for such shifts in the resonance frequency
of a microwave cavity can be derived using a cavity
perturbation approach. In that problem, one finds that
many experimental factors influence the shift, such as
electric and magnetic field magnitude and configura-
tion in the cavity, the position of the sample in the
cavity, and external coupling to the cavity (8, 9).
Here we present another look at the well-studied
problem of external coupling to the ferromagnetic
resonance- of a ferrite. Instead of treating the cavity
problem, we examine the coupling of a ferrite sample
to.a nonresonant loop antenna and derive an exact
relationship without recourse to a perturbative
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method. In the past, the analysis of this problem was
formulated within the framework of scattering theory.
Consequently, that work focused on the calculation of
scattering parameters and impedances in microwave
networks, which included ferrite components (I, 10,
11). In this study we develop an alternative, more
direct approach to the coupled ferromagnetic reso-
nance problem for a specific geometry by mapping it
to a feedback diagram. This formulation of the prob-
lem in terms of a feedback mechanism, which should
be easily accessible to advanced undergraduates, al-
lows us to compute coupled AC susceptibility curves
and to quantify the phenomenon of frequency renor-
malization. These results are then compared to exper-
imental measurements, and good overall agreement is
found.

THEORETICAL CONSIDERATIONS

The Model and Analytical Results

Let us start by recapitulating the standard spin reso-
nance experiment: a ferrite sample is placed inside an
external constant (DC) magnetic field and is exposed
to an alternating (AC) magnetic field oscillating at
microwave frequencies. If the two magnetic fields are
mutually perpendicular and if the frequency of the AC
field is near the natural ferromagnetic resonance of the
ferrite (determined by the DC field), an oscillating
magnetic moment is induced in the sample precessing
about the static field, and part of the microwave
energy in the AC field is absorbed. The magnitude of
the induced magnetization depends on the AC field
strength and the susceptibility of the sample.

The dynamic susceptibility is generally described
by a tensor quantity that relates two vectors to one
another, the applied AC magnetic field H,~ and the
resultant magnetization vector M.

M = XH [1]

In this study, only the diagonal entry of the suscepti-
bility along the direction of the applied AC field will
come into play. This quantity, which we call simply ¥,
measures the magnetic response of the sphere to an
applied AC magnetic field along that field direction.
Applying the Bloch equations to the ferromagnetic
resonance, it can be shown (72) that the susceptibility
takes the approximate form of

x=x" —Jjx", with

, T (wo — )
X' = (YM,) 1+ (0, — 0)° and 21

X' = OMIT T — o

M, is the saturation magnetization and 7T is a phenom-
enological decay time. The more sophisticated
Landau-Gilbert damping expression results in a
slightly more complicated expression for the suscep-
tibility (/3) but is also phenomenological in nature.
Here we choose the simpler form of Eq. [2].

Now consider the following modification to the
standard spin resonance setup. In addition to the mi-
crowave excitation structure generating the alternat-
ing field at the sample, let us surround the sample with
a copper loop terminated by a resistor, as shown in
Fig. 1. It is apparent that the alternating field pene-
trates the loop structure as well as the ferrite crystal.
Current will thus be induced in the terminated loop by
the changing magnetic flux of the applied AC field
and by the magnetic response of the ferrite. A detailed
analysis of the resulting effect on the measured sus-
ceptibility of the system is given in the remainder of
this section.

Applying Kirchhoff’s loop rule to the loop in Fig.
1, it is apparent that

L2y gi= -2 3
7 i=-— [3]

where the magnetic flux through the loop derives from -

the applied AC field and the magnetization of the
crystal. Accordingly,

D, = wo(AH + AM), [4]

where A; and A refer to the loop area and cross-
sectional sample area, respectively, H is the applied
AC field, and M is the AC magnetization of the
crystal. The second part of Eq. [4] is not exact but a
good approximation.

The right-hand side of Eq. [3] can be thought of as
a voltage driver giving rise to some current i in the

Figure 1 Basic schematic of the coupled ferromagnetic
resonance model. The YIG sphere is exposed to both a DC
and an AC field and surrounded by a loop of inductance L
connected to a resistor R.
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Figure 2 The diagrammatic feedback mechanism. An ap-
plied field A, enters on the left side and a certain magne-
tization M is induced on the right. The magnetization causes
an emf in the loop, which drives a current i. This, in turn,
creates a field at the YIG sphere.

loop. The current in the loop structure then is simply
determined by the impedance of an RL circuit, via, i
= 1/ZV = x,V, with

_ R ) Lo s
XC_R2+ (Lw)z J R2+ (L(J.))z. [ ]

Here, ¥, denotes the inverse impedance, or admit-
tance, of the RL circuit of Fig. 1.

Qualitatively, we can describe the situation as fol-
lows: the applied magnetic field H produces an alter-
nating magnetization in the sample, M, which induces
‘an emyf in the loop surrounding the sample. This emyf

" then gives rise to an alternating current in the loop,
which in turn produces a magnetic field at the sample.
It is clear that this sequence of processes naturally
lends itself to a feedback description.

The schematic diagram in Fig. 2 encapsulates the
feedback mechanism. We start in the left upper cor-
ner, with an applied field, H(r) = H(w) ¢/*’, produc-
ing a magnetization M(¢) = M(w)e’®’, where M(w)
= xH(w) is complex. By Egs. [3] and [4], M(¢)
produces a voltage, via

1
Vi) = —kzc%M(t), or Vi(w) = —kyjuM(w). 6]

Comparison with Eq. [4] yields k, = oA, = pomre.
The other part of the voltage in the loop comes from
the oscillating field H(z) itself and yields V,(w) =
—ksjoH(w), where ky = oA, = pomis. Thus, the
effective driving voltage is the sum of those two
terms, V(w) = V,(w) + V,(w), as indicated by the
“+” sign in Fig. 2. The resultant cwrent is given by
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i{w) = %[V (w) + V,(w)], which in turn will give
rise to a magnetic field, i{w) = k,i(w), with k, =
1/2r;. This magnetic field A(w) adds to the applied
field H(w), again indicated by the “+” symbol in the
figure.

Following these steps in reverse, we can now write
the magnetization as M = x [H + h] = x [H + k,i]
= y,[H — kjox (ksH + k,M)]. Collecting terms
and solving for M yields the central equation,

M(0) = Xl (@), with

_ Xs _jwklkiix.\‘Xc [7]
Xeowal =74 Jok kXX

Here, X,,,.; denotes the susceptibility of the combined
system of ferrite sphere and loop structure. Equation
[7] is the main analytic result of this article. In the
next section, we use Mathematica (I14) to plot this
expression for realistic parameter values with no free
parameters. In the experimental chapter of this book,
these numerical results will be compared to experi-
mental measurements.

Numerical Evaluation

To numerically evaluate ¥,,,.;, we first have to con-
sider the constants appearing in Eq. [7]. The three
geometric constants contained in ¥,,,,; are k, ko, k ks,
and L. The first one (k;k;) characterizes the mutual
inductance of the coil and sample and can be approx-
imated by /2 o(r2/r,), although the actual value
should be slightly higher. The second constant (k;k;)
is exactly @/2 pgr,. The last constant (L) is the
self-inductance of a simple loop and is given (I15) by
the approximation por,(In 8r/a — 2), where a de-
notes the radius of the copper wire (here ~0.14 mm).

The important constants characterizing the spin
resonance are yM,, wy, and T. The latter two are
assigned the experimental values of 27 (3.49 GHz) .
and 300, respectively, to yield a Q-factor of around
6,600. M, is the saturation magnetization; for YIG,
4mwM, at room temperature is 1,750 G, and the
gyromagnetic ratio vy is 1.76*107 rad/Oe s (6). The
radius of the YIG sphere, 7, is 0.45 mm in all exper-
iments.

Figure 3(a) displays plots of X,,,,, for several dif-
ferent values of r, , the loop radius, and R, the termi-
nating resistance. The solid line at Jow frequencies
corresponds to the intrinsic resonance of the YIG
sphere with no surrounding loop present (i.e., where
either L = O or R — ). For the other traces, R was
set to a small number (~0.1 {)); the precise value is
not crucial here. The dotted trace to somewhat higher
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Figure 3 (a) The coupled susceptibility curves for differ-
ent values of the circuit parameters. The left (solid) line
depicts the uncoupled (intrinsic) resonance, the dotted line
is for a loop radius of 1.75 mm and small resistance, and the
dot-dashed line is for a loop radius of 0.825 mm. The broad
solid line represents the resistive case (R = 17 Q). (b) The
coupled susceptibility for different values of the saturation
magnetization of the sample. The dashed vertical line indi-
cates the uncoupled resonance frequency. The curves are for
different values of yM,, starting from 2.45/4 and increasing
in equal steps to 2.45.

frequency represents the YIG sphere with a loop of
radius 1.75 mm around it. In the dot-dashed trace, the
loop radius was decreased to 0.825 mm. Finally, the
solid line is for a loop of the same radius, 0.825 mm, but
now terminated by a 17 () resistor. Since some energy
can now be dissipated in the resistor, the width of the
response curve is seen to significantly increase. As the
resistance is further increased, the resonance line con-
tinuously shifts to lower frequencies, approaching w,
(from above) at very large values of R. The main point,
however, is that the coupling to the coil has the effect of

shifting the ferromagnetic resonance to higher frequen-
cies for all parameter values.

In Fig. 3(b), the loop radius is fixed at 0.825 mm, but
the value of M, is varied. The leftmost trace corresponds
to yM, = 2.45/4; its value is then incremented by this
value up to 2.45 in the subsequent traces to the right. The
dashed vertical line indicates the position of the uncou-
pled YIG resonance. The frequency shift induced by the
coil is seen to increase linearly with M.

The main qualitative results from the numerical
evaluation of the analytical ¥,,,,, can be summarized
as follows: (1) The resonance line shifts to higher
frequencies when the YIG sphere is coupled to an LR
circuit; (2) The shift is a monotonically decreasing
function of coil radius and is surprisingly insensitive
to the number of turns of the coil; (3) A terminating
resistor acts to broaden the line and to shift the fre-
quency somewhat lower relative to the closed loop
resonance line; and (4) The shift in resonance fre-
quency is strongly dependent on the saturation mag-
netization M, determining the maximum AC suscep-
tibility of the magnetic mode. As expected, the larger
the M, the larger the resultant frequency shifts.

EXPERIMENTAL DATA

The Experimental Setup

Figure 4 illustrates the basic experimental setup. The
local oscillator output of the spectrum analyzer is
mixed with a fixed frequency microwave signal to
produce the probe signal. The mixing stage ensures
that the probe signal is swept in synchrony with the
center frequency of the spectrum analyzer, and it
effectively turns it into a scalar network analyzer.
This signal is transmitted via SMA coaxial cables and
passes through the nonresonant excitation structure
patterned on a PC board. It consists of a microstrip
line on both ends bent around in the shape of a
circular loop of radius 4 mm at the center. The YIG
sphere is placed on the PC board dielectric inside this
loop structure, which produces the AC magnetic field
exciting the ferromagnetic resonance. The microwave
signal transmitted through this system then enters the
spectrum analyzer for detection. The resultant spec-
trum displayed on the spectrum analyzer screen is sent
to a digitizing oscilloscope and transmitted to the
computer via GPIB cables. In this setup, it is easy to
place an external coil, either closed or attached to a
coaxial cable, around the YIG sphere. One can de-
scend the coil from above toward the sample and, for
maximum coupling strength, the coil can simply rest
on the PC board around the YIG sphere. Care has to
be taken to center the coil with respect to the sample.
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Figure 4 The experimental setup. The local oscillator output of a spectrum analyzer is used to
excite the ferromagnetic resonance of the YIG sphere placed in a patterned PC-board loop structure.
The transmitted microwave signal ‘is detected by the spectrum analyzer and sent to a digital

oscilloscope.

‘Within the framework of the theoretical model
outlined in the previous section, the larger excitation
loop on the PC board provides the alternating field
probing the resonance, whereas the removable outside
coil represents the external coupling structure. In the
model the excitation loop is not included because the
origin of the alternating field is not specified. Thus,
one simplifying (but somewhat crude) approximation
is made when comparing theory and experiment,
namely that the applied field generated by the PC
board loop is not affected by currents in the external
coil. It is clear that this cannot be exactly true, as the
two are coupled via their mutual inductance. It can be
shown that when the excitation loop is explicitly
included in the model, the complexity of the feedback
diagram quickly grows. As demonstrated in the next
section, however, this simple model is already suc-
cessful in describing many of the observations.

Measurement Results

We now compare each of the four predictions listed at
the end of the theory section with experimental data.
Figure 5(a) shows the transmission spectra for the
isclated YIG sphere and the YIG sphere surrounded
by closed coils of two different radii, 1.75 mm and
0.825 mm, respectively. The applied field was set to
about 1200 G so as to shift the resonance to 3.49 GHz,

where it is characterized by a small line-width (~1
MHz). The observed upward frequency shifts of 7.8
MHz and 44.6 MHz and their ratio are close to the
values predicted by our model, as seen in Table 1
below. The difference arises most likely from the
uncertainty in the values of some experimental pa-
rameters. In further agreement with the model, it is
shown experimentally that the number of turns in the
coil has no measurable effect on the frequency shift.
Incidentally, this coupling provides a means to tune
the resonance frequency of YIG very finely by simply
varying the height of the coil above the YIG sphere.

We next examine the case where the leads of an
open coil are connected to a coaxial cable that is
terminated at the other end with a 50 Q resistor. This
method is the easiest way of attaching a resistor to the
coil inductor. The value of 50 £} is chosen because it
matches the impedance of the coaxial cable and there-
fore produces no reflections that would modify the
effective impedance as seen from the coil (2). The
effect of the resistor is illustrated in Fig. 5(b). Here,
the low-frequency line is again the uncoupled ferro-
magnetic resonance; the sharp line to the right is
obtained by placing a closed coil around the sample.
The broad line corresponds to an open coil of the
same diameter as the closed one connected to a 50 {}
resistor via a coaxial cable. The dramatic reduction of
the effective Q-factor is apparent. Qualitatively
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Figure 5 (a) Experimental transmission lines for a YIG
sphere surrounded by a simple copper loop. The solid line
(left) gives the result without the presence of a loop, the
dotted line is for the larger loop (1.75 mm radius), and the
dot-dashed line is for the smaller loop (0.825 mm). (b) The
effect of adding a resistor. The dotted line is the uncoupled
resonance, the dot-dashed line (right) corresponds to the
YIG surrounded by a loop, and for the solid line a 50 O
resistor was added. This was done by attaching the loop to
a terminated coax-cable.

speaking, it arises because another pathway for the
dissipation of energy in the magnetic mode has
opened up, namely via electrical dissipation at the
resistor. Comparing Figs. 3(a) and 5(b) we find qual-
itative agreement between experiment and theory;
both the predicted broadening and the small red-shift
are observed. However, for a quantitative match the
excitation loop has to be included in the analysis.

In another test of the model, we now turn to the
influence of the intrinsic properties of the magnetic
resonance on the shift in the coupled resonance fre-
quency. For this purpose, we can substitute the pure
YIG sphere considered so far (r, = 0.45 mm) with a
slightly smaller Ga:YIG sphere of radius r, = 0.41

Table 1
Predicted and Measured Renormalized Frequency
Shifts

Model Experiment
Resonance shift for
YIG
r; = 1.71 mm 9.4MHz 7.8MHz
r; = 0.83 mm 49.0MHz 44,6MHz
Ratio 5.2 5.7
Resonance shift for
Ga: YIG 8.7MHz 7.4MHz
(r, = 0.83 mm)
Ratio (YIG/Ga:YIG) 5.6 6.0

mm. When doping YIG with Ga, the nonmagnetic
gallium ions replace some of the iron ions, thus re-
ducing the saturation magnetization M, of the crystal.
For a 20% doped crystal, (Y3Fe, 0sGag 95015), M, is
reduced from 141.6 kA/m to 31.8 kA/m (I). Reducing
vM,, by this ratio, we can compare the measured shift
for the Ga:YIG resonance with the model predictions.

Figure 6 shows the ferromagnetic resonance of
Ga:YIG. The DC magnetic field was chosen to place
the Ga:YIG resonance near the prior resonance fre-
quency, at 3.5 GHz. The dotted line displays the
uncoupled resonance, the dot-dashed line the resultant

_ resonance with the 1.75 mm radius coil, and the solid

line the resonance with the 0.825 mm radius coil
surrounding the sample. Note that the decrease in
absorbed power (the y-axis scale) relative to the mea-
surements on the pure YIG sphere also indicates the
lower experimental coupling. In fairly good accord
with theory (see Table 1), the frequency shift attained

transmission [dB]

3 T T T T T

3.49 350 351 352 353 354
frequency [GHZz]

Figure 6 The transmission lines for the Ga:YIG sphere of
slightly smaller diameter. The lines again correspond to no
loop, large and small loop, respectively. Notice that the
frequency shifts are all reduced by a large factor due to the
decreased magnetization of the sphere.



with the smaller coil decreases from 44.6 MHz for the
pure YIG sphere to 7.4 MHz, a ratio of 6.

Another way of modifying the effective magnetic
moment involved in the resonance is to examine a dif-
ferent magnetostatic mode from the uniform ferromag-
netic resonance. Such magnetostatic modes represent
additional solutions to the boundary value problem of
the magnetized ferrite sphere in vacuum and are char-
acterized by a spatial dependence of the 111agnetiZation
vector inside the sample. The excitation of magnetostatic
modes (other than the uniform mode) usually requires a
spatially nonuniform AC magnetic field. In the stripline
coupling scheme employed here, such nonuniformity
can best be achieved by simply drilling a small hole into
a straight microstrip line and placing the YIG sphere in
it (J). This geometry will strongly couple to a particular
magnetostatic mode, the (2,1,1) mode, the resonance of
which appears at significantly lower frequency (or
higher DC fields at the same frequency). Using such a
coupling structure, the magnetostatic mode was clearly
identified in the transmission spectrum as an absorption
line of 7 dB depth at 3.02 GHz.

Despite this strong coupling, no frequency shift was
observed upon placement of a closed coil around the

" sample for all but the smallest coil radii. It should be
emphasized that this experiment really goes beyond the
applicability of our model. The simple addition of the
current-induced field to the external field, as prescribed
by the model (see Fig. 2), is no lohger valid as the
applied AC field is now spatially nonuniform.

Nevertheless, this null result seems intuitively rea-
sonable as the magnetostatic mode carries no net mag-
netic moment, which is the source of the feedback mech-
anism described. Only for the smallest loop radii could a
resonance-fréquency shift be discerned. For a loop radius of
0.825 mm, a shift of 1.5 MHz at 3.02 GHz was measured,
which is less than the line width of about 2 MHz.

CONCLUSION

We have shown experimentally that by coupling the

uniform magnetic mode of a ferrite to an LR circuit,

the resonance frequency of the combined system

moves higher. Because this coupling mechanism acts

only on the uniform ferromagnetic resonance, it ad-

justs the position of the uniform mode relative to the
~ magnetostatic and spin-wave spectrum.

We have characterized the resonance shifts in
terms of both the circuit parameters (L and R) and the
spin parameter (M,). The observed frequency shifts
are in good agreement with the feedback model we
have developed. In particular, we find that the simple
experimental procedure described here can be used to
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ascertain M, and thereby the magnitude of the diag-
onal element of the susceptibility tensor.

The off-diagonal element may in principle be ac-
cessible as well via a simple modification of the
experiment. Instead of aligning the external coil along
the direction of the AC field, it is rotated by 90° so
that it is sensitive to the perpendicular component of
the magnetization. Here the excitation and probe coils
are decoupled, but the associated magnetic field now
have to be added as vectors, necessitating a reformu-
lation of the theoretical model.
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