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Inexpensive experimental techniques now exist for indirectly measuring forces within the moving
human body. These techniques involve nontrivial applications of basic physical principles, have
practical uses, and are appropriate for undergraduate experimentation. A two-dimensional video
motion analysis is used to find the accelerations of various parts of the body, and anatomical
geometry is used to determine specific biomechanical forces and torques. The simple movement of
a dancer landing from a vertical jump is analyzed through the use of a theoretical model of the leg
to find the forces in the tendons attached to the knee. It is shown that these forces can be sufficiently
large to lead to injury if jumps are performed repetitively. © 2006 American Association of Physics Teachers.
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I. INTRODUCTION

Some new tools have recently become available that allow
for additional insight into the internal forces in the living
human body, gained without the invasive procedures that are
most appropriately performed on cadavers.

People control their positions and movements by means of
the tensions in muscles and tendons and by compressive and
bending forces in bones and joints. What magnitudes of
forces occur in the body during various activities? For in-
stance, what is the tensile force in the calf muscles, the quad-
riceps muscles, and the various connecting tendons when a
person jumps or lands from a jump?

The purpose of this paper is to describe techniques to de-
termine the magnitudes of these types of forces indirectly
and noninvasively using video analysis. These techniques
can be used to analyze a variety of movements with varying
complexity. As an example of the technique we consider a
dancer landing from a vertical jump. Because we analyze
jumps of only two dancers, our results may not generalize to
all dancers. However, our main purpose is to develop the
method that can be used as a model for undergraduate re-
search.

II. BACKGROUND

There are many studies of body mechanics using cadavers
for experimental study and mathematical and computer mod-
els for movement amalysis.l_4 Cadavers cannot create their
own movement, and there is no way to ensure that computer
simulations provide quantitative determinations of the forces
in living, moving human bodies. Present technology has al-
lowed movement analysis to be done on live human perfor-
mances through video recordings. Biomechanics research
employs digitized recordings to determine biomechanical
forces (for example, resultant joint forces in the knee of a
skier landing from a jumpS). The computer calculates the
center of mass of the body or garts of the body by dividing
the body into known segments.” The equations of motion are
then solved using the segment masses, the calculated accel-
erations, and the external forces and moments.’
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The video analysis equipment used in sophisticated re-
search facilities is expensive, and ranges to over $250,000.7
The technique described here uses live human subjects and
similar methodology to measure internal forces, using rela-
tively simple and inexpensive equipment. The more expen-
sive systems have built-in three-dimensional capabilities and
can automatically compute the joint forces. These capabili-
ties are more powerful than the method described here, but
the process of creating a physical model of an anatomical
system and applying the laws of physics to solve for the
internal forces allows students to use their physical insight
and problem-solving skills instead of letting a computer do
most of the analytical work. This process is an ideal type of
project for an undergraduate physics student and is an oppor-
tunity to develop physical insight into how the body works
and how certain stresses may result in injury.

The method can be easily implemented in the undergradu-
ate physics classroom or laboratory and involves a digital
video recording of the moving body, the use of video analy-
sis software for finding the centers of mass of the various
body segments of interest as functions of the time, an analy-
sis of the position data to find the acceleration of the centers
of mass of the body segments of interest, and the determina-
tion of the forces acting on those body segments from their
accelerations and from anatomical geometry.

The modest equipment needed includes a digital movie
camera and a computer with video analysis software such as
VIDEOPOINT, currently available from Vernier Software and
Technology. Undergraduate physics students have utilized
similar but more basic techniques for quantifying human
body movement using tools such as VIDEOPOINT.

A simple example of a problem for which this technique
provides a valuable method of measurement and analysis is
the determination of the compressive force at the top of the
spine that supports the head when a person lands from a
vertical jump. The video recording of such a landing may be
analyzed to find the position of the center of mass of the
head in each frame. The second time derivative of the verti-
cal position gives the acceleration of the head. The total
force acting on the head, which consists of the downward
gravitational force and the upward force F of the top of the

© 2006 American Association of Physics Teachers 102



spine, equals the mass of the head times its acceleration,
F—-mg=ma. For a landing from a vertical jump, the upward
vertical force at the neck must exceed the weight of the head
by an amount sufficient to produce the upward acceleration
that results in the necessary decrease in the downward veloc-
ity.

There are some inherent difficulties with this technique. It
is difficult to determine accurately the lengths and masses of
the various body segments and the lengths and moment arms
for various muscles acting at the joints. Fortunately, prior
measurements and modeling have determined averages for
specific populations (for example, female college-aged gym-
nasts), which give us a reasonable estimate of body segment
pararneters.gf1 Also small errors in the position measure-
ments are magnified considerably when time derivatives are
calculated, because time derivatives involve finding small
differences between the positions of adjacent points. So tech-
niques must be found for smoothing the data without losing
significant information.

ITII. DESCRIPTION

Our goal is to determine the force in the patellar tendons
during a dancer’s landing from a vertical jump. Those ten-
dons and the quadriceps tendons are responsible for transmit-
ting the force from the quadriceps muscles to the lower legs
via the kneecaps, in order to cause the legs to straighten. This
mechanism is employed as the descent is slowed upon land-
ing from a vertical jump.

Obtaining the magnitudes of biomechanical forces by a
physical analysis not only leads to a greater comprehension
of how our bodies work. The magnitude of the tensile stress
can be determined given the force in the patellar tendon from
the results of this study and knowledge of the cross-sectional
area of the tendon. This stress can be compared to the ulti-
mate tensile strength of tendons, the amount of force per unit
cross-sectional area a tendon can withstand before
rupturing.13 If a tendon is repetitively subjected to a substan-
tial fraction of the ultimate tensile strength, overuse injury is
possible.

Knee problems sustained in dance, most of which are due
to overuse,14 can jeopardize a dancer’s health and career, and
can be extremely costly to performing companies. For ex-
ample, one study reported that a single season’s injuries had
cost the Boston Ballet $250,000 in health care and related
costs."”” The patellar tendon is a commonly mentioned site
for overuse problems such as patellar tendonitis.'®'” Deter-
mining the magnitudes of internal body forces can provide
useful information about a dancer’s vulnerability to injury
and ways of adjusting technique to help alleviate the vulner-
ability.

From the position of the centers of mass of various body
parts we wish to indirectly determine the stress in the patellar
tendon. To do so we need to do the following: (1) Find the
vertical position of the center of mass of the whole body as a
function of time using VIDEOPOINT. To test the accuracy of
locating the center of mass, the acceleration of the center of
gravity during free fall is compared to the theoretical value
of g, the acceleration due to gravity. (2) To validate the use
of the acceleration to find the forces acting on individual
body parts, the force acting on the whole body determined by
the acceleration of the dancer’s center of mass during land-
ing from a jump is compared to the force exerted on a force
plate on which the dancer landed. (3) These two steps were
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Fig. 1. The force N exerted by one foot on the force plate as a function of
time (Ref. 18). The plot begins with a constant force equal to one-half of the
dancer’s body weight. The force begins to decrease (A) as she bends her
knees, accelerating the body downward, and then starts to increase (B) as
she slows her descent and straightens the legs, pushing on the ground to
accelerate the body upward. The maximum force (C) she exerts during
preparation for the jump quickly drops to zero (D) when she leaves the
ground. From D to E the dancer is in the air; then the force quickly peaks at
F (about 3.3 times half of her body weight) as the dancer’s feet hit the floor.
As she bends her knees, the force decreases until it plateaus (from G to H)
as the body accelerates upward from plié (a bending of the knees to lower
the upper body) to a standing position. Finally it settles back to one half of
the body weight.

repeated for a second dancer’s jumps to increase confidence
in the procedure. (4) A theoretical model of a leg was con-
structed so that the forces and torques acting in the upper and
lower leg could be identified. These forces were related to
anatomical characteristics of the human body and the equa-
tions of motion were established and solved for the forces in
the tendons of interest. We then compare the results with the
known magnitudes of tensile force that could cause rupture
of the tendons.

IV. EXPERIMENTAL METHODS

NM and TSN collected data for two advanced female bal-
let dancers from the Central Pennsylvania Youth Ballet. The
dancers performed a series of vertical jumps in ballet first
position (rotating the legs such that the heels are together and
the toes and knees point outward in the frontal plane), land-
ing on a force plate (obtained from Vernier Software and
Technology), which was interfaced to a computer with
LOGGERPRO software. Simultaneously the dancers were
video taped in the frontal and sagittal planes. (The sagittal
plane is the plane of symmetry that divides the body into
right and left sides.)

One jump per dancer was chosen for analysis based on the
jump’s smoothness, symmetry, and quality. The recording of
the vertical force between dancer 1’s feet and the floor as a
function of time is shown in Fig. 1. (Dancer 2’s graph dis-
played the same properties.) The various identifying points
described in the caption explain the relation between the
graph and the physical processes. The landing phase of the
vertical jump starts at point E in the graph and shows a peak
shortly after landing (point F), when the deceleration is most
pronounced.
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Fig. 2. Frontal plane view of the dancer landing a vertical jump with her feet
in a turned out ballet first position. This view is one frame of the video that
was analyzed to find the locations of all the body segments and the total
body center of mass.

A. Free fall phase

The videos of the two dancers’ jumps were uploaded from
the original tape to a computer using VIDEOPOINT software
and a video camera IEEE1394 interface. The videos were
formatted to 60 frames/s from the original 30 by using
QUICKTIME PRO.

The locations of the centers of mass of 12 body segments
of each dancer were determined and recorded for each video
frame during the flight and landing of the jump (see Fig. 2).
The segments of the body and their relative masses ex-
pressed as a percentage of the total body mass are shown in
Table I. Table IT was used to determine the locations of each
segment’s center of mass along a reference line. The end

Table 1. Masses (as percentage of total body mass) of body segments for
female college-age gymnasts (Ref. 19).

Segment Relative mass
Head 9.4
Trunk 50.8
L/R lower arm 2.1
L/R upper arm 2.7
L/R foot 1.2
L/R lower leg 5.5
L/R thigh 8.3
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Table II. Locations of centers of mass of each segment expressed as a
percentage of total distance between two end points of a reference line
(Ref. 20).

Segment c.m. Location

Trunk 65% from neck base to waist
Lower arm 50% from elbow to fingers
Upper arm 40% from shoulder to elbow

Foot 20% from ankle to toe
Lower leg 40% from knee to ankle
Thigh 40% from hip to knee

points of the reference lines (neck base, waist, left and right
shoulders, elbows, fingers, hips, ankles, and toes) were
manually tracked as points in each frame along with the cen-
ter of mass of the head (assumed to be at its geometric cen-
ter). Designated points for each segment in Table I (for ex-
ample, trunk and lower arm) were created from these
reference points at the appropriate location along the refer-
ence line.

The first step in the analysis is to validate the accuracy of
the center of mass location and the use of center of mass
positions for finding accelerations. When the free-fall phase
of the dancers was investigated, the acceleration of the whole
body center of mass was found to be within 2% of g for both
dancers.

B. Comparison of direct and indirect measurements
of force

We now focus on the landing phase of the jump when the
body’s downward velocity decelerates to zero. We test if the
force acting on the body determined by means of the accel-
eration of the body’s center of mass agrees with the force
measured directly with the force plate. When the two force
measurements were compared, the differences could be mini-
mized by judicious smoothing. The vertical velocities of the
center of mass were found by VIDEOPOINT, which uses sev-
eral adjoining points when taking the derivative. The accel-
eration was found by similarly finding the slope of the ve-
locity using several adjacent points to smooth the variations
without losing much information.?' Because the total force
acting on the body is the sum of the gravitational force Mg
and the force F from the floor, the constant Mg must be
subtracted from the force plate reading to compare with the
acceleration data (that is, Fiu,=F-Mg=Ma). Figure 3
shows the graphs for the two dancers’ jumps.

The similarity between the two graphs validates the use of
the center of mass technique for finding biomechanical
forces on parts of the body. The error bars are a statistical
estimate of the uncertainties in the calculated accelerations of
the center of mass.”> The manufacturer’s uncertainty in the
force measured by the force plate (4.8 N) is smaller than the
size of the data points.

C. Determination of the internal biomechanical forces

We now extend this technique to find the magnitude of
forces in the body that cannot be measured with a force plate.
We will determine the acceleration of the part of dancer 1’s
body above her hips to determine the forces acting on her
knee joints. Then we will determine the torques in her knee
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Fig. 3. (a) Total force acting on dancer 1 and (b) dancer 2 as a function of
time during landing from a vertical jump as measured directly by a force
plate and indirectly using VIDEOPOINT.

joints and therefore the forces in the tendons connecting the
quadriceps muscle in the thigh with the lower leg via the
kneecap or patella. These forces are of interest because a
sufficiently large repetitive tensile force in the tendons can
be potentially damaging to the dancer’s knee joints. Those
forces are at a maximum when a dancer lands from a jump,
after the heels arrive at the floor.

How does the body use its muscles to cushion the landing
from a vertical jump? There are three mechanisms: (a) Be-
fore the heels touch the floor, the calf muscles help slow the
descent by trying to keep the feet extended; the Achilles
tendon plays an important role in this action. (b) After the
heels touch down, the quadriceps muscles contract as the
legs bend to prevent rapid bending of the knees, thereby
distributing the deceleration over a duration that prevents
large destructive forces. (c) As the legs bend, there is a
torque acting on the femur generated by the hip extensor
muscles, largely the gluteus maximus, to rotate it downward
around the hip joint. This torque compresses the tibia longi-
tudinally, contributing to the vertical force against the floor
that helps slow the descent.

The following analysis involves a careful examination of
the force diagram and equations of motion for the lower and
upper leg segments and the patella. The force diagram is
shown in Fig. 4. We assume a simplified model of the legs in

105 Am. J. Phys., Vol. 74, No. 2, February 2006

m3g

112Mg

Fig. 4. Force diagram of the leg (frontal plane) as a dancer lands from a
vertical jump with perfect turnout. The arrows representing the forces are
not necessarily to scale.

which the entire process takes place in the frontal plane. This
assumption is valid for a dancer with perfect turnout (legs
bending in the frontal plane). The fact that the legs bend a bit
forward out of the frontal plane is accounted for by a geo-
metrical argument that we discuss later. The legs are as-
sumed to be rigid bars with a known length. These bars are
free to rotate about a frictionless pivot axle at the knee on
which there is a frictionless pulley representing the patella,
to which are attached the quadriceps tendon and the patellar
tendon. The hip end of the upper leg is also free to rotate
around a frictionless axle at the hip joint, while one end of
the lower leg rests on the ground. For this purpose we will
ignore the feet, because their mass is small, and their motion
is small compared to the movement of the two leg segments.

In this idealized model all possible forces, many of which
could be distributed in various ways around the body seg-
ment being investigated, can be combined into just a few
generalized forces. For instance, at the hip joint, we identify
the total vertical force that supports and later also decelerates
the upper body, the sum of the forces that effectively act on
the femur at the axle on which the femur rotates, and the sum
of the forces that contribute to a torque on the femur, acting
at that axle in the frontal plane. Forces that result in a torque
around the longitudinal axis of the femur do not affect this
analysis. Thus all relevant forces have been included in the
generalized forces.

MRI scans of the dancer’s knee showed that the line of
action of the quadriceps tendon force is significantly farther
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from the pivot axis of the knee than that of the patellar ten-
don force. (See Sec. V A for some numerical results.) There-
fore, the respective moment arms for the torques are differ-
ent. One implication of this difference is that because the net
torque on the patella is assumed to be zero, the force in the
patellar tendon is significantly greater than that in the quad-
riceps tendon. According to the MRI information, the quad-
riceps tendon has a cross-sectional area more than twice that
of the patellar tendon, so the stress in the patellar tendon will
be comparatively even larger. This fact helps explain the ob-
servation of the orthopedic surgeon in our group (Mira) that
tendonitis and other tendon afflictions in the knee are more
prevalent in the patellar tendon than the quadriceps tendon.

We make the following assumptions about this system
model: (1) The horizontal friction force at the floor is zero.
(The dancer lands as if the floor were slippery.) (2) The
lower leg and upper leg have the same length, make the same
angle with the vertical at all times, and each has a center of
gravity located 40% of the way from the upper end to the
lower end (see Table II). (3) The patella has insignificant
mass, so the total force and torque acting on it in this ideal-
ized model must be zero, even if the patella accelerates. We
will also assume that a force from the hamstring muscle act-
ing to make the leg bend is negligible, because such a force
would create a torque in the opposite direction to that of the
quadriceps and patellar tendons, thereby being counterpro-
ductive to the aim of cushioning the descent. (4) The quad-
riceps and patellar tendon forces act along lines parallel to
the bars that represent the upper and lower legs. (5) The mass
of the foot and its role in slowing the descent of the body
upon landing are ignored; we look only at the use of the
quadriceps muscle acting on the tibia via the patella to exert
leg-straightening forces and the rotation of the femur down-
ward against the tibia. (6) We will also assume that the body
is stationary; later we will adjust the model to incorporate the
accelerations of the various body parts.

From the force diagram and these assumptions we can
obtain the vertical and horizontal force equations and the
torque equation for the lower leg, the upper leg, and the
patella. The equations of motion are as follows. Equation (1)
represents the vertical y force, the horizontal x force, and the
torque 7 about the knee pivot for the lower leg. Equation (2)
represents the same for the upper leg, and Eq. (3) applies to
the patella.

Lower leg:

%Mg—mlg + F,cos 0—Fy;sin =0 (vertical), (la)
F,sin - F;; cos =0 (horizontal), (1b)

%MgL sin #—m;galL sin 6— F|R, =0 (torque), (1¢)

where M is the total body mass, m; is the mass of the lower
leg, L is the length of the upper leg from hip pivot to knee
pivot, which also equals the length of the lower leg from the
knee pivot to the point of contact of the lower leg with the
floor. We also have that F is the patellar tension force, F,
is the force acting from the knee axle on the lower leg, 6 is
the angle of the lower leg with the vertical (which is equal to
the angle of the upper leg with the vertical), « is the ratio of
the distance between the pivot at the upper end of the leg
segment and the leg segment’s center of mass to the total
length of the leg segment, assumed to be the same for the
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upper leg and lower leg, and ¢ is the angle between F; and
the horizontal.
Upper leg:
%m3g+m2g+F2 cos §— Fy, sin y— Fj, cos O+ F5 cos B

:O’ (221)
F, sin - F), cos y— F), sin @+ F5 sin B=0, (2b)

FyR, + F,R, + F5L sin(8— 6) — 3msgL sin 0
—myg(1 —a)Lsin =0, (2¢)

where m, is the mass of the upper leg, m5 is the mass of the
body above the hips, R, equals the moment arm of the line of
action of the quadriceps tendon force on patella to the pivot
axis in the knee, F, is the quadriceps tendon tension force,
and F, is the force acting from the knee axle on the upper

leg.
Patella:
Ficos —F,cos 80— Fy sin ¢+ Fiysin =0, (3a)
F,sin 6+ F, sin 60— F; cos ¢p— Fy, cos =0, (3b)
FlRl—F2R2=0. (30)

Note from Eq. (3¢) that because R; <R,, F, will be greater
than F,, and thus F; is the interesting quantity to be investi-
gated.

The only unknown in Eq. (Ic) is the patellar tendon force
F, so that it can be easily obtained. The result is expressed
as a ratio of the force to body weight to make it generalizable
to different sized bodies:

Fl L . 1 my
—=—sinf| -—a—|. 4)
Mg R, 2 M

What is the effect of the deceleration of the body while it
comes to rest after landing? The center of mass of all body
segments is now undergoing upward acceleration, decreasing
its downward velocity if the total positive force is greater
than Mg. The various forces acting on the body segments
must be modified. To do so, we assume that the forces that
determine all the other forces are those representing the
gravitational force acting at the center of mass of the body
segments. How do these forces differ when the body is un-
dergoing a vertical acceleration upward? We know that the
total upward force that must be exerted at the feet to support
the entire mass of the body and cause a deceleration of the
entire body of magnitude @ must be

Flotale(g+a)- (5)

The effective total vertical force acting on the lower leg is
a little trickier. Note that the vertical acceleration of the knee
is just one-half of the vertical acceleration of the hip and all
of the body above the hip, which we will call a;. But the
gravitational force acts on the lower leg at a distance alL
from the knee. The acceleration of the center of mass of the
lower leg is (1 — ) times the acceleration of the knee. Hence
we perform the following replacement for the gravitational
force acting on the lower leg:

myg — my[g +as(1 - a)/2]. (6)
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To find the effective acceleration of the upper leg, note
that the acceleration of the center of mass of the upper leg is
the same as if the lower leg were a parallel extension of the
upper leg, so the acceleration is (2—a) times the acceleration
of the knee. Hence, we have

myg — my[g +az(2 — a)/2]. (7)

We have assumed the nonzero acceleration of the upper
body (everything above the hips), so the adjustment in Egs.
(2a) and (2c¢) is

myg — ms(g +as). (8)

With these changes, the resulting equation for the patellar
tendon force as a proportion of total body weight, taking into
account the upward acceleration, becomes

F L 1

—lz—sinﬁ—(l+g)— 1+ 80028 (9
Mg R, 2 g 2g M

For typical values of @ and m,/M, the term in brackets [...]

is of the order of 2% of the first term. If these terms are
ignored, Eq. (9) reduces to

Fl L . 1 a
—=—sinf| —(1+—]]. (10)
Mg R, 2\ ¢
Note that Eq. (10) could be obtained by multiplying the
right-hand side of Eq. (4) for the static case by (1+a/g) for
the dynamic landing situation.
The other equations of motion can be solved for the other

unknowns for the static or accelerating cases, providing rich
information about other stresses in the body.

V. RESULTS

A. Patellar tendon forces in dancer 1

From Eq. (10), F, depends on the measurable parameters
L and R; and the variables 6 and a. The leg length L was
measured directly for dancer 1. The value of L=0.45 m used
in the calculations was the average of measurements from
the knee pivot to the hip pivot, to the ball of the foot, and to
the heel.

An analysis of the MRI scans of her knee allowed us to
determine the location of its pivot axis, from which we could
determine the moment arm of the forces, the perpendicular
distance from the pivot axis to the line of action of the force.
The moment arm for the patellar tendon force was deter-
mined to be R;=4.2 cm; the moment arm for the quadriceps
tendon was R,=5.4 cm.

By tracking the vertical position of the dancer’s total cen-
ter of mass in each frame of the video, the dancer’s vertical
acceleration a was determined using the smoothing methods
described in Sec. IV B. Finding the angle 6 that the upper leg
makes with the vertical requires careful analysis. Because
dancer 1 did not land with perfect turnout, this angle could
not be measured directly using VIDEOPOINT. The angle that
the leg seems to make with the vertical as viewed on the
video, €', is a projection onto the frontal plane of the true
angle 0 (see Fig. 5).

From Fig. 5(a), 6 can be found through the following
trigonometric calculation, where y is the vertical component
of the distance from the hip pivot to the knee pivot:
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Fig. 5. (a) The actual angle the dancer’s leg makes with the vertical as
viewed in the plane, where L is the true length of the leg. (b) The projection
of the triangle in (a) onto the frontal plane because the dancer’s legs were
rotated inward (away from the viewer in Fig. 2) as she landed from the
jump. The quantities 6’, L', L, and y can be measured using VIDEOPOINT.

6=cos™'(y/L). (11)

The value of y varied with each frame as the amount of bend
in the knees changed. Because y is the same in both Figs.
5(a) and 5(b), y could be tracked in each frame of the video
to find # as a function of time using Eq. (11).

By knowing L and R; along with 6 and a (determined by
a VIDEOPOINT analysis) for each video frame, it is possible to
calculate the tension in the patellar tendon as a fraction of
body weight throughout the dancer’s descent using Eq. (10).
The maximum force in the patellar tendon was 11.1 times
dancer 1’s body weight, when a=18.6 m/s? and §=43°.

B. Ultimate tensile strength and vulnerability to injury

Is this magnitude of stress tolerable? Based on studies of
cadavers it has been reported that a tendon will undergo a
traumatic ru3pture at a force per cross-sectional area of about
108 N/m2."* The minimum cross-sectional area of dancer 1’s
patellar tendon was measured with an MRI scan to be
1.05 cm?. For this cross-sectional area, and a body weight of
380 N (86 Ib), the stress of 11 times body weight on this
tendon is about 4 X 107 N/m?, which is about half of the
rupture magnitude. This stress level, if repeated often, could
lead to problems in some people. Patellar tendonitis, com-
monly referred to as “jumper’s knee,” is one such affliction
due to overuse. Dancers who repeatedly practice jumps and
use their quadriceps muscles instead of hip external rotators
and adductors when bending the knees can develop patellar
tendonitis.'”

VI. CONCLUSIONS

We have reported the process of determining the magni-
tude of the internal forces in a dancer’s legs during landing
from a vertical jump. We found that the centers of mass of
the various body segments can be accurately determined by a
video analysis of the motion, and the accelerations of the
centers of mass accurately represent the total forces acting on
these body segments.

Interesting information can be obtained about the stresses
in the human body from those center of mass determinations.
In particular, by analyzing the total forces acting on the leg
segments and measuring the moment arms of the forces act-
ing around the pivot axes of the body segments, the tensile
force in the tendon can be determined. This force can be
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greater than ten times body weight, a magnitude that, if ex-
perienced repetitively, could produce damage to the knee
area.

Because this study involves inexpensive equipment that is
simple to use and a careful analysis of the physical processes
involved in body movement, this type of study is ideal for an
undergraduate research project. The physics is not beyond
the level of an introductory course. However, the complexity
of the problem and level of insight and analysis required can
become quite challenging. Many subtleties can increase the
level of sophistication. Making judicious assumptions (for
example, ignoring the motion of the foot) can make the prob-
lem more manageable. The possibilities for undergraduate
research are significantly enhanced by the techniques de-
scribed here, which allow also for increased insight about the
internal workings of the human body.
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