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Abstract
Experimental evidence for the generation of intrinsic localized modes
(ILMs) in a nonlinear electrical transmission line is presented both via
modulational instability of the uniform mode and via driving the lattice
locally. The spatial profiles of these modes localized on the order of the
lattice spacing can be directly measured in this macroscopic lattice, in
contrast to most other systems where ILMs have so far been detected.

1. Introduction

Intrinsic localized modes (ILMs) are stable, nonlinear
excitations in perfectly periodic lattices which are spatially
localized on the order of a few lattice constants. ILMs,
also called discrete breathers or lattice solitons, have attracted
enormous attention in many areas of physics since they were
first postulated in the late 1980s [1, 2], and they have been
extensively studied in theoretical, computational and (more
recently) experimental settings [3]. Historically, the small
class of integrable nonlinear lattices, such as the Toda lattice [4]
was tackled first, where exact ILM solutions could be obtained
analytically. Soon thereafter, ILMs were found numerically
in more realistic atomic lattice models [5–9], and since then,
the class of systems for which ILMs have been discovered
numerically has greatly expanded.

On the experimental side, efforts can generally be
classified according to the scale of the system. In nanoscale
systems, ranging from antiferromagnetic spin-lattices [10,11]
to atomic vibrations in bcc 4He [12], spectroscopic evidence
of ILMs has been reported but must necessarily remain
somewhat indirect. In mesoscopic systems, such as arrays of
Josephson junctions [13, 14] and micromechanical cantilever
arrays [15,16], ILMs have been seen more directly with some
spatial resolution. Even here, however, a time-resolved image
of the ILM profile cannot be achieved.

In this paper, we present experimental evidence of ILMs
in a macroscopic lattice—a discrete electrical transmission
line. The advantage of this system is that its spatial scale
allows for the detailed characterization of ILM profiles, which
is usually only possible in numerical simulations. Its resonance
frequencies (of a few hundred kilohertz) are comparable to the
micromechanical oscillator system.

Conceptually, ILMs are akin to impurity modes in crystals
with defects. It is well known that an impurity can act as
a localization centre, giving rise to modes that fall outside
of the spectrum of extended solutions. In pure lattices, an
effective impurity can be self-generated in a region of large
oscillation amplitude via the nonlinearity of the medium.
Loosely speaking, the ILM creates its own effective impurity in
a self-consistent way, relying on the nonlinearity of the lattice.
The ILM is also conceptually related to the soliton, which is
a nonlinear localized excitation in a continuous medium, with
the important distinction that ILMs exist and depend upon the
discreteness of the lattice. For this reason, ILMs are sometimes
referred to as lattice solitons.

Generally speaking, ILMs have proven to be so ubiquitous
precisely because they are fairly generic excitations in
nonlinear, discrete systems. It is plausible, therefore, to
expect the electrical lattice of this study to support ILMs
as well, in particular because it exhibits similar dispersive
and nonlinear characteristics as other systems in which they
have been detected. Indeed, localized excitations have
recently been theoretically predicted as solutions to the discrete
nonlinear Schrödinger equation to which the equations of
motion governing the electrical transmission line can be
approximated [17].

Previous studies of discrete electrical transmission lines
[18–21] have focused on travelling solitons generated from
a pulse inputted at either end of the transmission line. For
single-inductance lattices, the pulse was shown to deform into
the characteristic soliton profile as it travelled along the line,
and for bi-inductance lattices, envelope solitons were similarly
generated.

This paper focuses on sharply localized, non- or slowly
propagating ILMs, instead of the broader, travelling solitons.
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Figure 1. Schematic circuit diagram of the electrical transmission
line.

For this purpose, the geometry is modified to a ring structure
with no boundaries. First, we consider a homogeneous
driver initiating ILMs via modulational instability (MI) of the
uniform mode [22]; thereafter, the effect of local driving and
direct coupling to ILMs is investigated.

2. Experimental details

A schematic diagram of the bi-inductance transmission line
used in these experiments is shown in figure 1. Each unit cell
of this lattice consists of two inductors, L1 = 680 µH and
L2 = 330 µH, a varactor diode (NTE 618) characterized by a
voltage-dependent capacitance C, and a dc-blocking capacitor
of a comparatively large capacitance (1 µF). Each unit cell or
node can be driven via a resistor, R = 10 k�, by a sinusoidal
signal with the possibility of a dc offset for reverse-biasing the
diode. The capacitance of the varactor diode is found to be
450 pF at 1 V bias, and it decreased to 140 pF at 4 V. Even at
no bias voltage, the effective capacitance is around 800 pF. It
is this dependence of the capacitance on voltage that imparts
nonlinearity to the circuit. It should be noted that the resistors
are technically not part of the circuit to be investigated, but are
necessary for driving the circuit.

The low-amplitude plane-wave dispersion curve for the
bi-inductance lattice is given by

ω2 = 1

L2C
+ 4

(
1

L1C

)
sin2 κ

2
, (1)

where κ is the wavenumber of the voltage wave. Thus,
the zero-bias frequencies of the uniform mode (κ = 0) and
zone boundary mode (κ = π ) are computed as 320 kHz and
540 kHz, respectively, in good agreement with experimental
data. Note that the second harmonic of the uniform mode is
above the zone boundary and thus falls outside the plane-wave
spectrum. If this were not the case, the uniform mode could not
undergo MI and ILMs—appearing below the uniform mode—
would not be stable excitations.

Equation (1) yields the familiar S-shaped dispersion curve
with a gap below the uniform mode. For small wave numbers,
κ , the sign of the curvature of the dispersion curve and that of
the nonlinear coefficient render MI possible in this region.

In contrast to previous studies on nonlinear bi-inductance
transmission lines, we consider here a closed lattice of 32 unit
cells. The geometry of the lattice is a ring, which eliminates
the boundaries and makes all nodes equivalent. The system
can then be driven as a whole, rather than inputting a signal at
the first node of a line-circuit and observing it propagate to the
last node [19].

The basic experimental setup is illustrated in figure 2. The
sweep generator (BK Prec 4017A) serves as the sinusoidal
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Figure 2. The basic experimental setup.

driver of the system; its frequency is controllable via a voltage
input. Thus, in order to take spectra, we incorporate a second
function generator with a triangular voltage output. The
response at a particular node can then be displayed against
frequency on an oscilloscope, if it is set to XY display mode
and the y-axis turned to envelope display. To stay at a particular
frequency, we flip the switch and connect a dc power supply
to the sweep generator.

The ring circuit was built on a standard breadboard, and
the driving signal is inserted along a vertically connected strip
on the breadboard into which each unit cell can tap. When
driving the ring circuit in this manner, the spectrum obtained
is independent of the node that is being probed, demonstrating
the equivalence of all nodes. The voltage probes do not
introduce an impurity into the circuit since they have high input
impedance and low capacitance.

3. Results and discussion

We start by examining the uniform mode excitation supported
by the lattice. This is best done by driving the system uniformly
with all nodes connected to the sweep generator, as explained
in the last section. In this way, the only mode visible is the
uniform mode, the driver being unable to couple to the rest of
the plane-wave spectrum. Figure 3 shows the results for three
different driver amplitudes. At low amplitudes, we observe a
fairly symmetric response peak centred at 325 kHz. The width
of the peak indicates that damping due to energy dissipation is
significant in our circuit, yielding a Q-factor for this resonance
of around 10. The source of the dissipation is most likely the
ohmic resistance of the inductors of around 2 �.

As the driving amplitude is increased, the response curve
is seen to bend towards the left, as expected for a system
characterized by soft-nonlinearity. Note that all traces shown
here represent increasing frequency sweeps and that for the
intermediate trace, slight hysteresis can already be observed
when comparing up- and down-sweeps. At the largest driving
amplitude in figure 3, the response amplitude has crossed the
MI threshold, as indicated by the black region in the up-most
trace. Here the response is not single-valued but varies rapidly
over a large voltage interval.
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Figure 3. Spectra showing the uniform mode at various driving
amplitudes. At large amplitudes, MI is observed (dark region).

It is well known that the initial MI of a plane-wave mode
can give rise to fully nonlinear localized modes at longer times
in a wide variety of physical systems [23–26]. In order to
investigate whether localized modes are produced by the MI
in this system, we probe the lattice at four successive nodes
simultaneously, while driving the lattice uniformly at large
amplitude.

The amplitude and frequency of the driver are adjusted
to place the uniform mode in the modulationally unstable
region. The oscilloscope was triggered by the driving signal.
Figure 4 shows the data from the four successive nodes in the
lattice. Note that the x-axis measures time in microseconds.
Localization of energy has clearly been initiated in figure 4(a),
where the peak response occurs at around 125 µs. At the next
three nodes, figures 4(b)–(d), this peak shifts to larger times,
indicating that the localized mode is travelling from left to
right. The speed of this ILM in these frames is on the order
of 0.02 cell µs−1, which is about 50 times less than the speed
reported for envelope solitons [21].

To ascertain the spatial extent of this particular excitation,
figure 5 expands the time axis to zoom in on a few oscillations
at the neighbouring nodes. The centre node attains a peak
voltage of 8 V at 7.4 µs, whereas the nearest neighbours reach
only about 3V, and the next-nearest neighbour (lowest trace)
has decreased to 1.6 V at that time.

We conclude that at a given instant in time, the spatial
profile is localized on the order of the lattice spacing. This
observation justifies calling the excitation an ILM or discrete
breather as compared with a soliton.

One characteristic of these ILMs produced via MI of the
uniform mode is that they are numerous in the lattice and
hop fairly randomly from node to node. The role of the
homogeneous driver, it seems, is mainly to perpetuate the MI.
No evidence of ILMs that are phase-locked to the driver was
found, which is perhaps not surprising given that the driving
frequency was not chirped but held constant [15]. More work
on the pattern formation initiated by the MI in this system
remains to be done, which will necessitate a greater number of
simultaneous voltage probes.

Since the lattice can evidently support ILMs, the question
arises of whether a local driver can directly couple to them.
Thus, we examine the effects of driving the lattice at one
particular (but arbitrary) node. The sweep generator of output
impedance 50 � is introduced into the circuit via a large (5 k�)

6

4

2

0

8

6

4

2

0

6

4

2

0

6

4

2

0R
es

po
ns

e 
[V

]

5004003002001000
time [µs]

(d)

(c)

(b)

(a)

Figure 4. A localized excitation travelling to the right. The
individual panels display the time-dependent response at four
neighbouring nodes.

resistor. The 10 k� resistors connected to the other nodes are—
in the absence of the driver—connected directly to ground and
could potentially be removed altogether. In the results shown
here, we have left the 10 k� resistors in place, but we obtain
qualitatively similar results when they were removed.

With this local driving in place, all the plane-wave modes
consistent with the periodic boundary conditions should be
visible in the spectrum even in the linear driving regime,
and indeed when the driving frequency is swept over a large
frequency interval, we now see a multitude of modes starting
with the uniform mode at 312 kHz and extending to the zone
boundary at 535 kHz. For this reason, the discrete transmission
line can be used as a band-pass filter.

Figure 6 depicts the various spectra obtained at increasing
amplitudes of the local driver. The lower panel, figure 6(a),
displays the lower three amplitudes, whereas the upper panel,
figure 6(b), shows the response at the largest driving amplitude
for scanning up in frequency (solid line) and scanning down
(dotted line).

Starting with the lower panel, it is evident that the uniform
mode is characterized by soft-nonlinearity as in the case of
homogenous driving, bending to the left on the frequency axis
and finally becoming unstable against modulations. At the
high-frequency end of the spectrum, one noteworthy feature is
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Figure 5. Similar to the previous figure 4, but with the time-axis
expanded. By comparing values at a particular time, the spatial
profile is ascertained.
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Figure 6. Spectrum obtained from a local driver. (a) Spectra of
increasing driver amplitude. MI appears in the third trace. (b) For
largest driving amplitude, large hysteresis. ——: up-sweep; · · · · · ·:
down-sweep.

the sudden appearance of a peak/shoulder around 620 kHz in
the third trace of figure 6(a).

We interpret it as the parametric resonance of the uniform
mode at twice its frequency, which is borne out by spatial
profile studies. In figure 6(b), we can clearly detect hysteresis
near the zone boundary and—to a lesser degree—at the zone
centre.

Next, we set the driving frequency to 294 kHz, i.e. to
the left of the linear uniform mode resonance and in the
unstable region. This frequency was selected because of the
large response at the centre node it elicits; the upper trace in
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Figure 7. Spatial profiles of the ILM in the frequency gap at two
different times illustrating the minimum and maximum extent of the
ILM’s motion.

figures 6(a) and (b) indicate that at slightly lower frequencies
the response amplitude abruptly diminishes. Figure 7 shows
two time snapshots of the voltage response at 13 neighbouring
lattice nodes, with node 6 connected via the resistor to the
driver. The excitation is clearly seen as localized in space,
extending no farther than about three or four lattice constants
in either direction. By the fifth node away from the centre, the
signal has almost completely vanished.

Since there is some dissipation in this lattice, we would
expect the response to a local driver to gradually diminish with
distance from the driving node. Thus, we need to demonstrate
that the localized nature of the excitation at 294 kHz cannot
be explained by dissipation but is truly a nonlinear effect. For
this purpose, we now compare the node-by-node response as
a function of time of two identifiable modes in the spectrum,
each driven at the highest amplitude.

Figure 8 depicts the resulting density plot. The x-axis
displays time and the y-axis node number. The colour indicates
response amplitude, with black corresponding to the largest
and white the smallest voltage. Both panels in the figure use
the identical voltage-to-colour scheme.

The upper panel depicts the ILM whose profile is given
in figure 7. The energy is clearly localized at the 6th node;
interestingly, at that node, the energy is also periodically
localizing in time. We compare this distribution of energy
to that of the lower panel in figure 8(b). There the frequency
is set to 351 kHz which places the driver inside the dispersion
curve, thus exciting a plane-wave mode to large amplitudes.
Indeed, we notice that the signals from the various nodes
are no longer in phase with one another, as expected for a
nonzero wavenumber. The important observation, however,
is that the response amplitude does not exhibit the sharp
localization evident in the upper panel. Instead, the signal
strength decreases much more gradually due to the dissipation
in the lattice.

Alternatively, it is possible to compare the spatial profiles
of the ILM with those obtained in the linear regime at low
driving amplitudes. In figure 9, the dotted lines represent the
node-by-node response at low driving amplitudes (see right
axis), whereas the solid line is the localized mode at the
largest driving amplitude. The filled squares correspond to
the uniform mode at 312 kHz. Again, the voltage gradually
diminishes due to ohmic losses. When the amplitude is
significantly increased (see left axis) and the frequency lowered
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(a)
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Figure 8. Density plots illustrating the ILM and plane-wave
signatures in space (y-axis) and time (x-axis). Colour indicates
node voltage, black representing high voltage. (a) Localized mode
at 294 kHz and (b) plane-wave mode at 351 kHz.
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Figure 9. Comparison of the response versus node number at large
driving amplitude (——, left axis) and at low amplitude (· · · · · ·,
right axis). The emergence of an ILM at lower frequency is
observed.

to 294 kHz, the spatial response is considerably more localized
about the central node.

The dotted line with open squares (right axis) depicts the
low-amplitude response at 294 kHz—below the linear plane-
wave spectrum. In this low-amplitude regime, the lattice can
be considered harmonic and thus no modes should exist at this
frequency. Indeed, the exponentially decaying spatial response
is indicative of an evanescent wave. Note that its shape and
width distinguish it from the ILM at large amplitude.

Figures 8 and 9 present data that, when taken together,
point quite conclusively to nonlinear self-localization in this
system.

4. Conclusions

In this paper, we have experimentally verified the existence
of ILMs in a nonlinear electrical transmission line for the first
time and directly mapped out the spatial and temporal profile of
the ILM solution. We have shown that ILMs can be produced
by a homogeneous driver via the MI of the uniform mode
which spontaneously emerges beyond a particular amplitude
threshold. ILMs can also be created more directly via a
local driver which can couple to and excite these localized
modes.
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