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Patterns of traveling intrinsic localized modes in a driven electrical lattice
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The emergence of very stable traveling intrinsic localized modes (ILMs) locked to a uniform driver is
demonstrated in a discrete electrical transmission line. The speed of these traveling ILMs is tunable by the
driver amplitude and frequency. It is found to be quite sensitive to the ratio of intersite to on-site nonlinearity.
The number of traveling ILMs can also be selected via the driving conditions and appears to be the result of

a spatiotemporal pattern selection process.
DOI: 10.1103/PhysRevE.77.066601

I. INTRODUCTION

Solitons and kinks of well-defined, nonzero velocities
constitute the quintessential nonlinear excitations in continu-
ous media. It is well-known that in the continuum limit, one
general feature of localized excitations is that they travel [1].
In discrete lattices, the situation is reversed; here, the discrete
soliton, better known as an intrinsic localized mode (ILM) or
discrete breather (DB) tends to be stationary in most circum-
stances. This is not surprising, since in the anticontinuous
limit [2], of course, all excitations must become pinned.

One technique by which a stationary ILM can be made to
move [3,4] involves perturbing the stable (odd-parity) local-
ized eigenvector. Then the instability associated with an an-
tisymmetric perturbation was shown to depin the ILM, caus-
ing it either to move slowly through the lattice or to hop
between neighboring sites.

In another approach, moving ILMs were constructed in an
anharmonic lattice by considering an envelope on top of a
particular plane-wave mode [5-7], and numerical simula-
tions revealed that they were long-lived. Similarly, in spin
systems moving ILMs were initiated via the modulational
instability of a plane-wave mode inside the dispersion curve
[8], but here they were found numerically to quickly slow
down and become trapped at a given lattice site. Most re-
cently, traveling ILMs have been experimentally generated in
a micromechanical system [9]. Nevertheless, studies of trav-
eling ILMs have remained sparse in the literature.

This paper builds on the earlier work of Ref. [10], but
now discusses the experimental generation of slowly travel-
ing ILMs that are locked to a uniform driver, with an empha-
sis on characterizing these modes and their speeds through
the lattice as a function of driver amplitude and frequency.
These slowly propagating ILMs which are produced by a
spatially homogenous driver are different from the broader,
fast-moving envelope solitons also seen in this lattice when a
pulse is injected at either end of an undriven line circuit
[11,12]. Compared to the envelope soliton [11], the ILM is
narrower by roughly one order of magnitude (24 cells versus
2.5 cells), the speed is lower by at least two orders of mag-
nitudes (2500 cell/ms versus 20 cell/ms), and the ILM wings
do not approach zero amplitude due to the presence of the
driver at each cell.

Furthermore, in contrast to the earlier studies on envelope
solitons, the ILMs emerge spontaneously rather than being
seeded by a pulse. We find that no direction of travel through
the ring lattice is preferred, but once the direction is chosen,
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the ILM can continue for as long as the driver persists. We
have empirically mapped out certain regions of driver ampli-
tude and frequency which were found to sustain the traveling
ILMs indefinitely.

In the system studied here, in which the intersite nonlin-
earity is of the same order as the on-site nonlinearity, these
traveling modes are the generic nonlinear excitations. No
sophisticated driving scheme has to be employed in order to
excite these traveling modes. In contrast to the recent experi-
mental studies on micromechanical cantilever arrays [9],
where traveling ILMs were observed when starting the driver
between two plane-wave frequencies and then chirping it
into a nonlinear region, the traveling ILMs here are simply
obtained with a fixed-frequency driver. Their speed is found
to depend strongly on the driver amplitude and it is sensitive
to the ratio of on- and inter-site nonlinearity.

The number of localized features within the lattice can
also be selected via the driving conditions. Patterns with up
to five ILMs within a 24-node lattice were stabilized. More
complex patterns with noninteger numbers of ILMs can also
be generated.

II. EXPERIMENT

The experimental system-a bi-inductive discrete electrical
transmission line was described in some detail in Ref. [10].
Following the approach in Ref. [13], the capacitance of the
nonlinear diode is approximated as C(V)=C,exp(-aV),
where C, is roughly 800 pF for the diodes used here. The
system is driven at each node via large resistors (10 k().
Thus each unit cell contains an in-line inductor, L, a diode
of variable capacitance to ground, second inductor, L,, to
ground, and a resistor connected to the driving signal. Ex-
panding the logarithmic expression for voltage as a function
of charge to third order as in Ref. [13], we arrive at the
following set of differential equations governing the lattice:
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FIG. 1. Surface plot of the voltage response in space and time
depicting one ILM completing three “laps” around the ring lattice.

Soft nonlinearity results from the quadratic terms, and
these dominate the cubic terms (hard nonlinearity) for the
amplitudes attained in this study. Furthermore, Eq. (1) con-
tains both on-site nonlinear terms as well as an intersite non-
linear term. Their ratio is evaluated as

= L_1 (2)

intersite (w1>2 L,

on-site g

Therefore this ratio is controlled only by the inductance val-
ues of the in-line inductor, L;, and the inductor to ground, L,.
In this study, L;=680 wH and L,=330 wH. In order to test
for a dependence on the ratio in Eq. (2), we also show data
for L,=150 uH toward the end of the paper. Note that Eq.
(1) contains a damping term due to the 10 k() resistors used
to couple the driving signal to the lattice; in fact, 1/RC,
=~ 1/15w,y. Another source of damping not accounted for in
Eq. (1) derives from the ohmic resistance of the inductors,
which is around 2().

As in Ref. [10], the lattice is arranged in the shape of a
ring, so as to eliminate boundaries. The ring lattice consists
of 24 nodes each of which is monitored by a fast analog-to-
digital converter. Since simultaneous sampling at each node
is essential, three eight-channel digitizing cards of 3 MSPS
throughput were synchronized to the same time-base and
triggered simultaneously. The data was then streamed to a
computer equipped with a PCle interface card. The ring lat-
tice was driven uniformly using a digital signal generator
with pulse modulation capabilities, as well as frequency key
shifting (FSK).

III. RESULTS AND DISCUSSION

The basic phenomenon of traveling ILMs locked to the
driver is easily obtained in this system. Figure 1 illustrates a
typical voltage response at each node as a function of time. A
sharply localized feature is clearly seen to travel through the
lattice. Since the lattice loops back on itself, the localized
mode emerges at the opposite end of the lattice immediately
after leaving it at one end. It should be noted that Fig. 1
represents the steady-state response of the system to a driver
that was switched on a very long time prior to this measure-
ment. The surface plot reveals ridges along the trajectory of
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FIG. 2. Detailed look at the ILM transition from one node to the
next. Note that this site-hopping occurs over many periods, 7.

the ILM as it transitions from one node to the next. Here the
amplitude of the driver was set at 1.5 V and the frequency at
288 kHz.

It is straightforward to show that the ILM center main-
tains a constant phase relationship with the driver. In fact, the
nodes in the wings of the ILM are 90° out of phase in volt-
age. Since according to Eq. (1) the driving term appears in
the form of the first derivative of the driver voltage V,, it
follows that the ILM wings respond in phase with the driving
term. This conclusion would be expected for a driver set
below the uniform mode in a system with soft nonlinearity,
and it is also in agreement with results recently reported for
ILMs in a system of coupled pendulums [14]. For lower
driving amplitudes, the ILM center is somewhat less than
90° out of phase with the driving term, but this phase differ-
ence decreases with larger driver amplitude.

Let us examine the transition from one node to the next
more closely. Figure 2 shows traces of the traveling ILM at
five different times separated by multiples of the ILM period
(labeled T in the figure). The lowest trace shows the ILM
centered on node 12, and in the uppermost trace the ILM has
fully moved to node 11 after ten complete ILM oscillations.
The intermediate traces depict the ILM in transition.

We observe that after about four periods a noticeable
asymmetry develops in the ILM profile, and after six periods
the two neighboring nodes are at equal amplitude. Inciden-
tally, this progression explains the ridges seen in Fig. 1. The
ILM attains its largest amplitude when it is momentarily cen-
tered on one particular node and a minimum amplitude when
it is centered on two neighboring nodes. The ILM-wing am-
plitude is seen to vary somewhat over the course of one
hopping cycle.

It should be pointed out that the duration of the transition
from one node to the next is not a precise constant of the
motion. Thus on a fine time scale the hopping speed can vary
noticeably perhaps due to small random fluctuations in com-
ponent properties. Nevertheless, on a larger scale, the ILM
speed is constant to remarkable precision and reproducibility.

The question now arises as to the driving conditions that
can sustain the traveling ILM. Figure 3(a) depicts the empiri-
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FIG. 3. (a) Hatched regions indicate driving conditions which
lead to stable moving ILMs. The dotted line (2) indicates the bot-
tom of the linear dispersion curve. (b) ILM speed (solid, left axis)
and phase difference between driver and ILM center (dotted, right
axis) versus driver amplitude along the dashed line (1) in (a).

cal regions for which locked ILMs were obtained. The axes
are driver amplitude and frequency, and the hatched areas
indicate regions in this parameter space where stable locked
patterns of localized modes are produced. In the lower re-
gion, the resultant pattern is formed simply by one traveling
ILM. The threshold driver amplitude is about 1.4 V; here the
frequency has to be precisely tuned to 288 kHz. As the driver
amplitude is increased, a band of frequencies opens up. At an
amplitude of 5V, the frequency can be set as low as 276 kHz
and as high as 296 KHz—a range of 20 kHz.

A second region is observed at somewhat higher frequen-
cies in which the driver locks on to two ILMs moving side
by side. The amplitude threshold for this pattern is close to 3
V and thus roughly twice that of the lower band. Interest-
ingly, this region falls above the bottom of the dispersion
curve indicated in the figure by the dotted line (2), but it is
still below the inflection point in the dispersion curve at 442
kHz.

The speed of these localized modes through the lattice is
found to depend strongly on the driver amplitude, as seen in
Fig. 3(b). Here, the speed measured in lattice constants a per
ms (left axis) is plotted as a function of driver amplitude at a
fixed frequency of 288 kHz. Thus the data points in Fig. 3(b)
were collected by moving along the dashed line (1) in Fig.
3(a). It is evident that the speed increases fairly linearly with
amplitude. The speed is also somewhat dependent on the
driver frequency, but here the frequency shifts are much finer
with lower frequencies giving rise to slightly faster ILMs. A
similar dependence of ILM speed on amplitude and fre-
quency of the driver is found within the 2 ILM region as
well.

This speed dependence may seem somewhat counterintui-
tive, as larger driving is usually associated with sharper
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FIG. 4. The energy density plots corresponding to four different
driving conditions are shown. (a)—(c) are for an amplitude of 3.5 V
and show the transition from one to two traveling ILMs, whereas
for (d) the driver amplitude was lowered to 1 V.

ILMs, and sharper ILMs are known to be less mobile. In this
low-Q system, however, the ILM width is limited by the
damping so that the ILM cannot become too narrow, and
hence the barrier to translation cannot appear. Indeed, higher
driving amplitudes do not seem to make the ILM signifi-
cantly sharper. Instead, in this large damping regime, the
driver amplitude changes the relative phase of the ILM with
respect to the driver. As seen in Fig. 3(b) on the right axis,
the phase relationship between the driving voltage and the
response of the ILM center increases with amplitude, and it
correlates with the velocity increase.

Let us now characterize the emergence of traveling ILMs
more closely by examining the response when the driver is
abruptly switched on. In the density plots of Fig. 4, the gray-
scale indicates the energy, dark referring to higher energy.
Energy at each node is computed by squaring the response
voltage and then averaging over one period. The driving con-
ditions corresponding to the panels of Fig. 4 are marked in
Fig. 3(a) by the symbols “x.” In Fig. 4(a), the driver is inside
the lower hatched region (see lowest “x”). Here we see that
after the driver is turned on, many localized features are
launched in both directions. Out of this fluctuating state, the
driver quickly selects and locks onto a particular traveling
ILM. This ILM then persists indefinitely, as seen in the fig-
ure. In Fig. 4(b), the driver frequency is raised into the gap
between the two hatched regions in Fig. 3(a). No single
stable ILM emerges from the initial instability. Instead, the
pattern of localization seems to switch between one and two
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FIG. 5. Two stable patterns in the region between three and four
ILMs. In (a), the driver frequency is 472 kHz, and in (b) 475 kHz.
Both patterns are characterized by a switching between three and
four simultaneous ILMs.

localized modes at any given time. In Fig. 4(c), the driver
frequency is raised again and now falls within the 2ILM
region. This time the system chooses the stable pattern of
two ILMs traveling in tandem through the lattice.

In Fig. 4(d), the driver amplitude was lowered from 3.5 to
1.0 V. The frequency of 310 kHz was chosen to lie just
below the uniform mode. Here the motion of the ILMs is not
coherent but characterized by fairly random hops from site to
site. Nevertheless, the driver does maintain this random walk
without forcing the system into a coherent pattern. Interest-
ingly, the three localized features produced by the initial
modulational instability meander in unison for roughly the
first 7 ms.

In order to test the effect of changing the ratio of inter- to
on-site nonlinearity, we now replace the inductors to ground,
changing L, from 330 to 150 uH. Thus the ratio decreases
from 0.49 to 0.22. Besides raising w,, this change causes a
drastic decrease in the speed of the propagating ILMs. For
instance, at a driver amplitude of 2.5 V, the speed decreases
from about 20 a/ms to anywhere between 3.5 to 1.9 a/ms,
depending on the driver frequency and number of ILMs pro-
duced.

Furthermore, concurrent with the reduction in ILM speed
is an increase in the number of ILMs comprising a stable
driving pattern. We observe stable patterns involving be-
tween two and five ILMs as the driving frequency is in-
creased. The driving regimes, in which these patterns char-
acterized by different numbers of ILMs are stable, are again
separated in frequency. One remarkable observation is that in
between these regions stable patterns of localized features
can also be found. Figure 5 illustrates the frequency region
between three and four ILMs at a driver amplitude of 2.5 V.

In Fig. 5(a), the frequency is 472 kHz and in Fig. 5(b) it is
raised to 475 kHz which is closer to the 4ILM region (start-
ing at 481 kHz). Notice that in both panels, the pattern shifts
back and forth between three and four ILMs in a repeatable
fashion. At 472 kHz (left), we start out with four ILMs, the
middle two close together initially. As time progresses, those
two ILMs move apart, and one of them then merges with the
lowest ILM. At this point, three ILMs remain. The middle of
the three then travels at a somewhat larger speed, creating
space for another ILM to be created later.

At 475 kHz, the pattern is a bit more complex. In Fig.
5(b), we start off with three ILMs. Since one ILM moves in
the opposite direction, a gap opens up into which a forth
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FIG. 6. The effect of abrupt frequency increases of the driver to
investigate the transition from one ILM pattern to another. (a) Tran-
sition from a three to four ILM regime and (b) transition from a
three to six ILM regime.

ILM is created. Contrary to Fig. 5(a), here the pattern spends
more time in the four ILM state than in the three ILM state,
which is consistent with the larger driver frequency.

It is well-known that the transition from one pattern to
another of different spatial periodicity is often facilitated by
the emergence of defects [15]. In order to investigate the
pattern selection process in this experimental system further,
we made use of the FSK capabilities of the signal generator
that provided the driving signal. More specifically, the driv-
ing frequency was first set to a value consistent with a par-
ticular number of ILMs, and then abruptly raised to produce
a larger number of ILMs. The question is how one pattern
that has become unstable due to the change in driving con-
ditions gives way to another pattern.

Typical results are shown in Fig. 6; the driver amplitude is
2.5 V. In Fig. 6(a), the driver is abruptly changed at around
30 ms from 464 to 484 kHz. The former frequency is in the
3 ILM region and the latter in the 4 ILM region, and indeed
these two patterns are observed at the beginning and the end
of the graph. In the transition region, however, we see that
defects play a pivotal role in transforming the pattern glo-
bally.

In Fig. 6(b), the driver again starts out at 464 kHz but is
then increased to 502 kHz, which is consistent with 6 ILMs.
Here the transition can happen more smoothly by simply
inserting additional rows. Notice that the initial traveling
ILMs can now continue undisturbed, albeit at a lower speed,
and new ILMs are simply created in between.

IV. CONCLUSIONS

We have demonstrated that traveling ILMs can be gener-
ated in this nonlinear electrical lattice by a uniform driving
signal. The speed of these localized modes is precisely tun-
able by adjusting the driver amplitude and frequency. Fur-
thermore, the driver can excite and lock onto different num-
bers of ILMs propagating side by side depending on the
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exact driving conditions. From a larger perspective, these
ILMs should be understood in terms of the selection of
driven patterns comprised of sharply localized features. In
regions of phase space in which discrete wavelengths com-
pete, more complex patterns can emerge for which the num-
ber of ILMs is not constant in time. By changing the driving
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frequency abruptly, we find that defects play an important

role in the pattern selection mechanism.

ACKNOWLEDGMENTS

This research was supported by the Research Corporation.
Discussions with Professor A. J. Sievers were very helpful.

[1] M. Remoissenet, Waves Called Solitons, 3rd ed. (Springer-
Verlag, Berlin, 1999).

[2] R. S. MacKay and S. Aubry, Nonlinearity 7, 1623 (1994).

[3] K. W. Sandusky, J. B. Page, and K. E. Schmidt, Phys. Rev. B
46, 6161 (1992).

[4] D. Chen, S. Aubry, and G. P. Tsironis, Phys. Rev. Lett. 77,
4776 (1996).

[5] S. Takeno and H. Kazunari, J. Phys. Soc. Jpn. 59, 3037
(1990).

[6] S. R. Bickham, S. A. Kiselev, and A. J. Sievers, Phys. Rev. B
47, 14206 (1993).

[7] S. R. Bickham, A. J. Sievers, and S. Takeno, Phys. Rev. B 45,
10344 (1992).

[8] L. Q. English, M. Sato, and A. J. Sievers, Phys. Rev. B 67,
024403 (2003).
[9] M. Sato and A. J. Sievers, Phys. Rev. Lett. 98, 214101 (2007).
[10] R. Stearrett and L. Q. English, J. Phys. D 40, 5394 (2007).
[11] P. Marquie, J. M. Bilbault, and M. Remoissenet, Phys. Rev. E
49, 828 (1994).

[12] P. Marquie, J. M. Bilbault, and M. Remoissenet, Phys. Rev. E
51, 6127 (1995).

[13] M. Sato er al., EPL 80, 30002 (2007).

[14] R. Basu Thakur, L. Q. English, and A. J. Sievers, J. Phys. D
41, 015503 (2008).

[15] M. C. Cross and P. C. Hohenberg, Rev. Mod. Phys. 65, 851
(1993).

066601-5



