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A soap bubble on the end of a cylindrical tube is seen to deflate as the higher pressure air inside the
bubble escapes through a tube. We perform an experiment to measure the radius of the slowly
deflating bubble and observe that the radius decreases to a minimum before quickly increasing.
This behavior reflects the fact that the bubble ends up as a flat surface over the end of the tube.
A theoretical analysis reproduces this behavior and compares favorably with the experimental
data. © 2010 American Association of Physics Teachers.
�DOI: 10.1119/1.3442800�
I. INTRODUCTION

Soap bubbles have long fascinated kids and adults alike.
Most people have enjoyed at one time or another the beauty
and splendor of a well formed soap bubble glistening in the
sunlight. This beauty must have been evident to many 17th
and 18th century artists who included bubbles in their
paintings.1 Some individuals have developed exquisite con-
trol over soap bubbles and can construct beautiful “sculp-
tures,” including such exotic shapes as tetrahedrons, cubes,
octahedrons, and dodecahedrons.2 Soap films have been used
to demonstrate minimal surfaces, solutions to Laplace’s
equation, and many other mathematically interesting
structures.3 Beyond that, soap films have been studied in new
and interesting ways, including the study of two-dimensional
fluid dynamics,4 soap films in electric fields,5 and magnetic
soap films.6

A collapsing spherical soap bubble is fairly straightfor-
ward to analyze and has been used to determine the surface
tension of the soap film.7 Although this type of experiment is
a good project for introductory students, we describe here a
similar but more sophisticated experiment that is appropriate
for upper-division students. The main difference with previ-
ous studies is that the bubble is placed on a hollow tube with
a relatively large radius. As a result, instead of the bubble
radius decreasing monotonically to zero, the radius first de-
creases and then increases as the bubble flattens to cover the
end of the tube. When carefully performed, the agreement
between experiment and theory is very good, adding a
“wow” factor that gives students a strong sense of accom-
plishment and a positive overall experience.

Depending on the amount of assistance provided, this
project can take students from a week—if the experiment
is already set up and students are provided with the theory to
a semester—if the project is open-ended and students are
expected to set up the equipment and derive all the equations
on their own. In our case the project was open-ended so that
the students were responsible for dealing with all the diffi-
culties that inevitably arise when doing research.

II. EXPERIMENTAL DETAILS

The basic experiment is qualitatively very simple—a
spherical soap bubble of radius r�t� is blown on the end of a
hollow cylindrical tube and videotaped as it deflates. As
mentioned, the hollow tube has a relatively large radius R,
which significantly alters the results compared to previous

studies. In this configuration the bubble radius decreases and
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reaches a minimum when the bubble is a hemisphere with
r=R. After this point, the radius increases without bound.

The experimental setup is shown in Fig. 1. A syringe is
connected via flexible tubing �through a rubber stopper� to
the bottom of a hollow cylindrical tube approximately
2.5 cm in diameter. We use a 50 ml glass syringe, but a
plastic syringe should work just as well. The flexible tubing
acts as the inflation tube and also connects to a precision
manometer used to measure the pressure difference between
the inside and outside of the bubble. Air escapes from the
bubble through a small diameter deflation tube �radius s
�1 mm� inserted through the rubber stopper. The bubble
can be held at a fixed radius by inserting a small plug on the
end of the deflation tube; this is important when measuring
the surface tension of the soap film as discussed in the
following.

A. Preliminary details

As shown in Fig. 1, our setup has the bubble sitting on top
of the tube rather than hanging from the bottom. This setup is
chosen to prevent liquid from collecting on the bubble and
causing it to deform. This orientation is stable for reasonably
sized bubbles �r�5R�. Because the liquid will drain down
the inside and outside of the tube, care must be taken to
prevent the liquid from entering the inflation and deflation
tubes by inserting these tubes all the way through the rubber
stopper so that they protrude into the interior of the large
diameter tube. Paper towels wrapped around the outside of
the tube prevent the experiment from getting too messy.

Measuring the bubble radius as a function of time is ac-
complished by videotaping the deflating bubble and carefully
analyzing the images. Because the deflation tube is so nar-
row, the entire deflation process can take several minutes
even for a modest-sized bubble. Such a lengthy deflation
time makes it essential that our soap solution produce long
lasting bubbles. Numerous recipes for soap bubble solutions
can be found on the web, and we experimented with many
different types. Without going to heroic measures,8 a good
starting formula for producing long lasting bubbles is a mix-
ture of �approximately� one part glycerine, one part water,
and one part Dawn Ultra.9 This solution remains satisfactory
even when adding much more water.

To quantitatively compare the experimental data to a the-
oretical prediction, we need to know the surface tension of
the soap film. The surface tension can be easily measured

using the same apparatus.
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B. Measuring the surface tension

Measuring the surface tension of soap solutions using the
apparatus shown in Fig. 1 has been discussed,10 and we fol-
low a similar procedure. The pressure difference of the gas
across a spherical soap film is given by the Young–Laplace
equation

�P = Pin − Pout =
4�

r
, �1�

where � is the surface tension of the soap film, Pin and Pout
are the gas pressures inside and outside the bubble, and r is
the radius of the bubble.

To determine the surface tension, we inflate a soap bubble
and allow it to deflate in stages, plugging the deflation tube
between each stage.11 A high-resolution digital photograph is
taken for a series of static bubble sizes. The manometer scale
is included in each photograph so that both the pressure dif-
ference and the bubble radius can be determined from the
image. Although finding the pressure difference is as simple
as reading the manometer scale, determining the bubble ra-
dius is more difficult. We analyzed these images using the
VISION ASSISTANT software program developed by National
Instruments.12 This program fits a circle to a user-defined
annular region of interest. Such a tool is extremely useful
when only a small portion of the circle is visible.

Figure 2 shows a plot of �P versus 4 /r for a typical ex-
periment; the linearity of the data is evident. The value of the
surface tension obtained from the slope of the best-fit line is
�=0.0258 N /m.
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Fig. 1. A schematic diagram of the bubble deflation experiment. A syringe is
used to inflate the bubble, and a precision manometer is used to measure the
pressure difference between the interior and exterior of the bubble.
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Fig. 2. Typical experimental data for determining the surface tension of a
soap film. As shown in Eq. �1�, the surface tension is given by the slope of

the best fit line.
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C. Laminar flow

Before discussing the actual bubble deflation experiment,
we discuss the size of the deflation tube. Our theoretical
analysis depends on the flow through the deflation tube being
laminar. This flow can be verified experimentally by filling
the soap bubble with smoke and watching the flow pattern
emanate from the deflation tube. Alternatively, we can esti-
mate the deflation tube radius by examining the Reynolds
number Re. The latter is a dimensionless number that com-
pares inertial to viscous forces for given fluid flow condi-
tions. Laminar �smooth and stable� flow occurs at low Rey-
nolds numbers when viscous forces are dominant, and
turbulent �chaotic and unstable� flow occurs at large Rey-
nolds numbers when inertial forces dominate.

Laminar flow through a tube is governed by Poiseuille’s
equation13

Q =
�s4

8�

��P�
L

, �2�

where Q is the �volumetric� flow rate through the tube, � is
the �dynamic� viscosity of the fluid, s and L are the radius
and length of the tube, and �P is the pressure difference
from one end of the tube to the other. To estimate the Rey-
nolds number for flow through a pipe, we take �v2 as the
inertial force and ��v��v / �2s� as the viscous force, where
� is the mass density and v is the characteristic velocity of
the fluid. The Reynolds number for flow through a pipe is

Re �
�v2

�v/�2s�
=

2�Q

��s
, �3�

where we have used v=Q / ��s2� as the characteristic veloc-
ity of the fluid. For a deflating bubble the pressure difference
across the deflation tube is given by the Young–Laplace con-
dition �1�. Combining Eqs. �1�–�3� gives the radius of the
deflation tube as a function of the Reynolds number as

s = � rL�2 Re

��
	1/3

. �4�

For fluid flow through a pipe, turbulent flow usually oc-
curs for Re�4000, while laminar flow occurs for
Re�2300; in between, either flow is possible.13 Thus, to
safely guarantee laminar flow, we require that the Reynolds
number be less than 2000 for the entire deflation process. We
use our measured value of the surface tension, a minimum
bubble radius of 1 cm, a deflation tube length of 15 cm, and
room temperature air properties. From Eq. �4� we find that
the radius of the deflation tube must be less than �3 mm.
Although this value is only an estimate, it demonstrates that
the deflation tube must be relatively narrow. The real justifi-
cation for assuming laminar flow comes from observing the
flow using a smoke-filled bubble.

D. Bubble deflation

We measure the bubble radius as a function of time by
using a standard video camera to record the deflation. Be-
cause pressure data are not needed for the deflation experi-
ment, the camera is zoomed so that the bubble fills the entire
screen. Commercial video cameras take data at 30 frames/s,
and we need to analyze only a small portion of the resulting
video frames to obtain a reasonable set of data. As men-

tioned, determining the radius of the bubble is not trivial,
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particularly when the bubble radius has begun increasing. A
good image analysis program is essential to obtain accurate
data. Figure 3 shows a typical set of raw data. The data
behave as expected: A slowly decreasing bubble radius fol-
lowed by a rapid increase.

III. THEORETICAL ANALYSIS

The theoretical analysis is complicated by the fact that the
deflating bubble is not a perfect sphere. Where the bubble
intersects with the large tube, the bottom of the sphere is cut
off, leaving only a partial sphere. Because the analysis pro-
ceeds along the same lines in either case, it is instructive to
first analyze the much simpler case of a deflating full sphere.

A. Full sphere

If a full sphere deflates through a tube such that the flow is
laminar, the pressure difference is given by Eq. �1�, and the
�volume� flow rate is given by Eq. �2�. We combine Eqs. �1�
and �2� to find the volumetric flow rate out of the sphere

Q =
�s4�

2�Lr
= −

dVs

dr

dr

dt
, �5�

where Vs is the volume of a sphere. The minus sign arises
because Q is a positive quantity and the change in volume of
a deflating sphere is negative. Equation �5� is a separable
differential equation, which is solved by integrating

�r
dVs

dr
	dr = −

�s4�

2�L
dt . �6�

We let Vs=4�r3 /3 and integrate both sides of Eq. �6� to yield

r�t� = r0
1 −
�s4t

2�Lr0
4�1/4

, �7�

where r0 is the radius of the bubble at t=0. As is often the
case, it is convenient to rewrite the solution in terms of di-
mensionless variables. We define r̃�r /r0, s̃�s /r0, and
t� t /	, where 	�2�L / ��s̃4�, and see that

r̃�t̃� = �1 − t̃�1/4. �8�

One advantage of the dimensionless formulation is that
any combination of the parameters �, s, �, L, and r0 pro-
duces the same graph, which makes it convenient to compare
multiple experiments performed with different parameters.
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Fig. 3. Raw data for a deflating soap bubble. A slow decrease in the bubble’s
radius is followed by a rapid increase.
According to Eq. �8�, r drops to zero at t=1, or when t=	.
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This collapse time has been used to estimate the surface ten-
sion of a soap film.7,14 To put it another way, 	 represents a
characteristic time for a spherical bubble to go from r=r0 to
r=0 when the escaping air flows through a tube of length L
and radius s according to Poiseuille’s law. Note that 	 is
proportional to r0 to the fourth power. Thus, if we double the
initial radius, the bubble will take 16 times longer to deflate.
This important information would be missed if we looked
only at a graph of Eq. �8�. When using dimensionless vari-
ables, it is important to think physically about what they
actually mean.

B. Partial sphere

Although the analysis for a full sphere is straightforward,
it breaks down as the radius of the sphere approaches the
radius of the deflation tube. At this point, Eq. �7� ceases to be
valid. To find an equation valid for all times, we repeat the
analysis and replace the volume of a full sphere with that of
a partial sphere Vps.

The main difficulty is finding the volume of a partial
sphere. This quantity is straightforward to calculate in terms
of the quantity h �see Fig. 4�. We take advantage of the
cylindrical symmetry and integrate horizontally sliced vol-
ume elements dV=��2dz along the z-axis. Here, � is the
distance from the z-axis to the surface of the sphere. Carry-
ing out the integration gives

Vps = 

h−r

r

��2dz = 

h−r

r

��r2 − z2�dz �9a�

= 2
3�r3 − ��h − r��r2 − 1

3 �h − r�2� . �9b�

Equation �9b� holds for any sized partial sphere, from a full
sphere �h→0� to a flat surface �h→2r�.

We would like to simply substitute Vps for Vs in Eq. �6�.
But first we must eliminate h from Eq. �9b� and express Vps
solely in terms of r. To do so, we make use of the constraint
imposed by the large diameter tube �see Fig. 4� and write
�h−r�= 
�r2−R2, where the upper �lower� sign corresponds
to a bubble that is larger �smaller� than a hemisphere. Sub-
stitution into Eq. �9b� gives

Vps =
�

3
�2r3 � �2r2 + R2��r2 − R2� . �10�

Although a bit tedious, replacing Vs with Vps in Eq. �6�

dz

r

z

ρ

2R

h

Fig. 4. A partial sphere results when a plane cuts through a sphere of radius
r leaving a flat circular face of �fixed� radius R. The volume of such a partial
sphere is found by integrating slices of thickness dz along the z-axis.
leads to an integrable equation. In this case, it is convenient
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to first make the equation dimensionless by scaling all
lengths by R instead of r0 as we did in the full sphere case.
The resulting equation is integrated to give

t̃��r̃� = I+�r̃0� − I��r̃� , �11�

where

4I��x� � 2x4 � ��2x2 + 1�x�x2 − 1 + ln�x + �x2 − 1�� ,

�12�

and t̃� t /	 with the characteristic time given by
	�2�L / ��s̃4�. In this case it is important to realize that s has
been scaled by R instead of r0. Thus, the characteristic time
tells us how long it takes a �full� spherical bubble of initial
radius R to deflate through a tube of length L and radius s. In
Eq. �11�, t̃+�r̃� is used when the bubble is larger than a hemi-
sphere and t̃−�r̃� is used when the bubble is smaller than a
hemisphere. Although Eqs. �11� and �12� cannot be inverted
analytically to yield r̃�t̃�, it is simple to splice t̃+ and t̃− to-
gether and plot t̃ as a function of r̃.

To compare theory to experiment, we first need to rescale
the experimental data. It is not obvious what value to use for
R—the inner radius, the outer radius, the average, or some-
thing else? By looking carefully at the images from the ex-
periment, it appears that the bubble is “pinned” to the outer
radius when it is larger than a hemisphere and then becomes
pinned to the inner radius when it is smaller than a hemi-
sphere. Thus, it might seem like the average radius would be
a good choice to use. However, during the deflation process,
the bubble is mostly larger than a hemisphere and spends
little time smaller than a hemisphere, making it reasonable to
choose a value halfway between the average and the outer
radius �R=1.093 cm�. As it happens, it matters little which
value we use for R.

In addition to R, we need a number of other values to
rescale the time. We measure all these values except the vis-
cosity, which is found using the gas viscosity calculator.15

We find L=15.1 cm, �=0.0258 N /m �from Fig. 2�,
r0=2.04 cm, and s=0.165��0.01� cm and use
�=1.837�10−5 N s /m2. Unfortunately, if these values are
used as is, the fit is not very good. The problem is that 	
depends on s /R to the fourth power and is extremely sensi-
tive to small changes in either of these two parameters. Be-
cause s is the least accurate of our measured values, we treat
everything else as fixed and adjust s to obtain a good fit to
the data. �This procedure is why choosing a slightly different
value for R does not really matter.�

Figure 5 shows the partial sphere prediction using Eqs.
�11� and �12� after fine-tuning s for the best fit; we find
s=0.1688 cm, well within the measured uncertainty. �Be-
cause the results depend so sensitively on s, four decimal
places of accuracy must be used to obtain such a good fit.�
The agreement with experiment is impressive and is exciting
for students. For comparison purposes, we also plot the full
sphere prediction using an appropriately scaled version of
Eq. �7� for the same value of s.16 Note that the full sphere
prediction is indistinguishable from the partial sphere predic-
tion until the bubble radius is within �20% of the tube ra-
dius, at which point the two models diverge.

A quick glance at Fig. 5 suggests that a partial sphere will
collapse in approximately the same amount of time as a full

sphere. In fact, a partial sphere takes infinitely long to com-
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plete its deflation, as can be verified by approximating t̃ for
large r̃: t̃−�r̃→
�� 1

4 ln�2r̃�. Because of this logarithmic de-
pendence, the concept of a “collapse” time for a partial
sphere is not well defined. The concept of a collapse time for
a full sphere is also suspect because any deflating sphere
must be connected to a deflation tube of some sort. To be
truly accurate, the collapse time should be defined as the
time it takes a bubble to go from an initial radius to some
final �nonzero� radius. As long as the final radius is moder-
ately larger than the deflation tube radius, such a collapse
time will be nearly indistinguishable between the full sphere
and partial sphere models.

IV. CONCLUSION

We have described a soap bubble deflation experiment that
makes a wonderful undergraduate project. This project has
strong experimental and theoretical components that can be
understood by physics majors, yet is challenging enough to
maintain the interest of the brightest students. The basic ex-
periment is fairly straightforward with the exception of the
precision manometer, which might be unfamiliar to students.
A manometer can be purchased for less than $100, and stu-
dents should not have much difficulty getting it working. The
most difficult part of the experiment is analyzing the images.
A good image analysis program is critically important. Stu-
dents will likely have much more difficulty with the theoret-
ical analysis, which can be overwhelming if not handled
carefully. Breaking down the analysis into small pieces and
assigning them one at a time are essential to helping students
make timely progress.

If appropriate care is taken to analyze the data, the results
�as displayed in Fig. 5� are impressive enough to make stu-
dents feel like the project was a success. Because it is pos-
sible for students to become frustrated before everything
comes together, it is essential for the faculty advisor to pro-
vide appropriate guidance, particularly during the more chal-
lenging phases of the project. Nevertheless, we believe that
this type of open-ended project provides a valuable learning
experience for undergraduate majors, and we encourage oth-
ers to incorporate such project-based learning into the phys-
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Fig. 5. The partial sphere model of Eq. �11� and an appropriately dimen-
sionless version of the full sphere model of Eq. �7� are compared to the
experimental data.
ics curriculum.
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