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Energetics of interacting magnetized domains

David P. Jackson* and Brennan Gantner
Department of Physics, Santa Clara University, Santa Clara, California 95053

~Received 21 June 2001; published 26 October 2001!

Many of the pattern forming features of ferrofluids, lipid monolayers, type-I superconductors, and magnetic
bubbles can be understood by treating them as dipolar~uniformly magnetized or polarized! domains. Here, we
investigate the early stages of pattern formation in a system consisting of two quasi-two-dimensional dipolar
domains. We calculate the linearized interaction energy for these domains and find that the lowest energy states
are those for which each drop has an indentation directed toward the other. These theoretically preferred states
compare favorably with results of experiments performed with ferrofluids.
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I. INTRODUCTION

Dipolar domain energetics@1# has been used as a mod
for the pattern formation process in a wide range of phys
systems including Langmuir films@2,3#, magnetic bubbles
@4#, type-I superconductors@5,6#, and ferrofluids@7#. Using
this and other formalisms, a single domain has been ex
sively studied@8–10# and this has led to a good understan
ing of the pattern selection mechanism. A hydrodynamic
proach has also proved useful in this context@11# and the
resulting patterns are virtually indistinguishable from tho
obtained using the energetic approach. These studies
focused primarily on the fingering instability for a sing
domain but have not investigated how the presence of m
tiple domains might affect the patterns that form. Those t
have considered multiple domains@12# have used numerica
simulations to focus on the characteristic distance betw
stripes in a highly disordered array. Here, we seek to find
lowest energy configurations for a system of two domains
the earliest stages of the pattern formation process. Th
configurations are extremely important because it is fr
these early stages that the final state patterns emerg
some sense, the entire structure of the final pattern beco
‘‘frozen in’’ during these early times.

To begin, let us describe one particular physical syst
Consider a ferrofluid drop of volumeV trapped between two
closely spaced glass plates separated by a distanceh ~a Hele-
Shaw cell!. In this geometry, the motion is essentially tw
dimensional and the boundary of the drop looks like a t
ribbon. We assume throughout this paper that the interfac
the fluid is perpendicular to the glass plates and there
focus our attention on the shape of the cross section. Inc
pressibility of the fluid keeps the cross-sectional area fi
even though the shape can change. When no magnetic
is applied, the shape of the drop is determined solely
surface tension and will take the form of a circle of radi
R0. If a magnetic field is applied perpendicular to the gla
plates, the ferrofluid becomes magnetized. This produce
outward magnetic force that competes with surface tens
and results in the domain evolving into a branched patte
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We assume that the magnetizationM is uniform throughout
the domain and oriented perpendicular to the Hele-Shaw c

A point on the interface of the domain can be describ
by a vectorr in the xy plane, and a pointz. The vectorr
gives the location along the length of the ribbon andz gives
the height. After integrating over the height of the ribbon, t
magnetic energy of an arbitrarily shaped simply connec
domain can be written@1#

Emag52pM2V2M2h R ds R ds8 t̂• t̂8 F~R/h!, ~1!

whereR5ur (s)2r (s8)u is thein-planedistance between two
points on the contour,t̂ and t̂8 are tangent vectors at thes
two points, and

F~j!5sinh21~1/j!1j2A11j2 ~2!

is a potential function that gives the strength of the inter
tion between points on the contour. Equation~1! is an exact
expression for the energy of a simply connect
‘‘cylindrical-type’’ domain of arbitrary cross section~valid
for any heighth). The first term is proportional to the vol
ume of the domain and is constant. The second term ca
understood as a current-current interaction with coupl
strengthF. Since a uniformly magnetized domain is equiv
lent to a current ribbon flowing around the boundary of
nonmagnetized domain, this term follows by integrating t
free self-energy of a current ribbon over its height.

To extend this to multidomain systems, we note that e
domain will contribute an energy as in Eq.~1! but there will
also be interaction terms of the form

Eint52M2h R dsi R dsj t̂ i• t̂ j F~Ri j /h!, ~3!

where the subscripts refer to separate contours andRi j
5ur (si)2r (sj )u is the distance between a point on thei th
contour and a point on thej th contour. To simplify our work,
we make note of the following. First, the constant term
Eq. ~1! will have no bearing on the pattern formation proce
at all. Second, the self-energy term from a particular dom
will not affect the evolution of any other domain. Since o
interest lies in how the interactionsbetweendomains will
affect their evolution, we focus our attention on this intera
n
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tion energy. In particular, we will use the interaction ener
to calculate the preferred rotational position for nearly circ
lar domains.

II. INTERACTIONS BETWEEN TWO DOMAINS

To determine the effect of interactions between multi
domains, we begin by examining the interaction energy
the two-domain system shown in Fig. 1. Both domains h
an initial radius ofR0 and their centers are separated by
distancea.2R0. In an applied magnetic field, these tw
domains will acquire the same magnetization, or, equi
lently, will have the same current~magnitude and direction!
flowing around their boundaries. Notice, however, that
anglesu and f in Fig. 1 are defined in such a way as
traverse the two contours inoppositedirections. This is done
to simplify our later results, but it is important to realize th
this introduces a minus sign into Eq.~3! that must be taken
into account when calculating the correct energy for o
physical system. On each surface, we add an arbitrary
turbation such thatr 1(u)5R0@11z(u)# and r 2(f)5R0@1
1h(f)#. It is assumed that these perturbations are sma
the sense thatz!1 andh!1, and that their derivativesz8
5dz/du and h85dh/df are small as well. Our goal is to
expand the interaction energy to first order in terms of th
small parameters. We do not need to include the effect
surface tension because the surface energy is constant to
order. Moreover, the effects of surface tension are local
specific drop and therefore play no role in the interactio
between drops.

The first step is to linearize the elements in Eq.~3!. This
gives

ds1'R0~11z!du, ~4a!

ds2'R0~11h!df, ~4b!

t̂1• t̂2'cos~u1f!1~z81h8!sin~u1h!, ~4c!

FIG. 1. Schematic representation of two initially circular ferr
fluid drops of radiusR0 ~dashed curves! with arbitrary perturbations
~solid curve!. The anglesu andf are used to parametrize the curv
and are measured with respect to the line joining the centers o
two drops as shown.
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F~R12/h!'F~D!1~D2A11D2!e, ~4d!

where we have defined

D25S p

qD 2F11q2cos2S u1f

2 D2q~cosu1cosf!G , ~5!

e5
p2

2q2D2 F ~z1h!q2cos2S u1f

2 D2q~z cosu1h cosf!G ,
~6!

and have introduced two dimensionless parameters, the
pect ratiop52R0 /h and the separation constantq52R0 /a.
We focus our attention on the~dimensionless! interaction
integral for the two-drop system, defined by

I int5
1

R0
2 R ds1 R ds2 t̂1• t̂2 F~R12/h!. ~7!

Using the approximations given in Eqs.~4!, we calculate the
linearized interaction integral to be

I int'I int
(0)1E

0

2p

duE
0

2p

df$@~z1h!cos~u1f!1~z8

1h8!sin~u1f!#F~D!1~D2A11D2!ecos~u1f!%,

~8!

where

I int
(0)5E

0

2p

duE
0

2p

df cos~u1f!F~D! ~9!

is the interaction integral for two perfectly circular domain
Unfortunately, the complexity of the integrand precludes o
finding a closed form expression even for the relative
simple case of circular domains.

To proceed further, we need to impose specific pertur
tions. We choose pure mode disturbances of the formz(u)
5zncos@n(u1a)# andh(f)5hmcos@m(f1b)#. Here,zn and
hm are positive numbers that give the amplitude of the p
turbations,n andm are mode numbers that specify the num
ber of bumps in the perturbation, anda and b are rotation
angles for the entire disturbance~see Fig. 2!. Our goal is to
minimize the interaction energy with respect to these rotat
angles.

Inserting these pure mode disturbances into Eq.~8! and
making use of the fact that the interaction energy is invari
under a direction change of both rotation angles~i.e., a,b
→2a,2b) leads to

I int5I int
(0)1znAncosna1hmAmcosma, ~10!

with amplitude coefficients

An5E
0

2p

duE
0

2p

df $@F~D!1C~D!#cos~u1f!cosnu

2nF~D!sin~u1f!sinnu%. ~11!
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Here,F andD are given by Eqs.~2! and ~5! while

C~D!5
p2

2q2D2 Fq2cos2S u1f

2 D2q cosuG~D2A11D2!.

~12!

III. PREFERRED ORIENTATIONS

Equation~10! is our main result and has a surprising
simple form. To find the preferred orientation of each dro
we simply need to find the minimum values for the intera
tion energy. Apart from a non-negative multiplicative co
stant, this interaction energy is

Eint5I int
(0)1znAncosna1hmAmcosmb. ~13!

Minimizing this energy with respect to the rotation anglesa
andb will then give the preferred orientations. Differentia
ing Eq. ~13! yields extreme values at anglesa* 5 ip/n and
b* 5 j p/m, where i and j are integers. To find the energ
minima, we require

]2Eint

]a2 U
a*

52n2znAn~21! i.0 ~14a!

FIG. 3. The minimum energy configurations for four sets
domains with different perturbations. The dashed curves show
unperturbed circle. Notice that in each case the orientations are
that an indentation points directly along the line joining the tw
domains. This is a general feature that applies regardless o
mode number.

FIG. 2. Perturbations of the formzncos@n(u1a)# and
hmcos@m(f1b)# are supplied to initially circular domains~dashed
curves!. The mode numbersn andm specify the number of bump
while the anglesa and b specify the amount of rotation. In thi
case,n55, m56, a5p/4, andb5p/6.
05623
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]2Eint

]b2 U
b*

52m2hmAm~21! j.0. ~14b!

Sincezn and hm are positive by construction, solving Eq
~14! depends critically on the amplitude coefficientsAn and
Am . Direct computation reveals that these coefficients
positive, which constrainsi and j to be odd integers. Notice
further that, because of the symmetry of our pure mode
turbances, these angles are degenerate in the sense tha
all lead to the same physical state. Therefore, without los
generality, we can focus our attention on a single rotat
angle for each drop. The simplest case isi 5 j 51, for which
we obtain preferred angles

a05
p

n
and b05

p

m
. ~15!

Figure 3 shows the preferred orientations for four pairs
nearly circular domains. As is evident in this figure, the
minimum energy states are oriented such that each drop
an indentation directed toward the other. This makes g
qualitative sense if you recall that these magnetic doma
can be described as current loops. These currents are
aligned where the drops are closest together and this re
in a repulsive force. Thus, the system can lower its inter
tion energy by increasing this distance. It is reassuring
note that this indentation alignment can be seen in the
merical simulations of Drikiset al. ~Ref. @12#!. Although
they examined a more complex arrangement of a disorde
set of drops, there is a clear tendency for indentation ali
ment to occur between neighboring drops. There are so
cases, however, where this alignment is not observed. T
appears to happen when the number of indentations is
commensurate with the number of neighboring drops.
would be interesting to examine analytically how these co
peting factors affect the pattern formation process.
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FIG. 4. Videotape still frames of ferrofluid drops taken a sh
time after a magnetic field has been applied. Although the per
bations do not look exactly like pure mode disturbances, there
clear tendency for the drops to orient themselves with indentat
directed along the line joining the drops. These configurations
quite reproducible as long as the drops are fairly close togethe
0-3
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As an example of how these interactions take place i
real physical system, Fig. 4 shows four pairs of ferroflu
drops a short time after a magnetic field was applied. T
similarity to Fig. 3 is clearly apparent. Interestingly, the
configurations were extremely reproducible as long as
drops were fairly close together initially. Not surprisingl
when the drops were more than a few diameters apart,
interactions had little effect on the pattern formation and t
reproducibility was lost.
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