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Energetics of interacting magnetized domains
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Many of the pattern forming features of ferrofluids, lipid monolayers, type-l superconductors, and magnetic
bubbles can be understood by treating them as digokiformly magnetized or polarizédiomains. Here, we
investigate the early stages of pattern formation in a system consisting of two quasi-two-dimensional dipolar
domains. We calculate the linearized interaction energy for these domains and find that the lowest energy states
are those for which each drop has an indentation directed toward the other. These theoretically preferred states
compare favorably with results of experiments performed with ferrofluids.
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I. INTRODUCTION We assume that the magnetizatiwhis uniform throughout
the domain and oriented perpendicular to the Hele-Shaw cell.
Dipolar domain energeticsl] has been used as a model A point on the interface of the domain can be described
for the pattern formation process in a wide range of physicaby a vectorr in the xy plane, and a point. The vectorr
systems including Langmuir filmg2,3], magnetic bubbles gives the location along the length of the ribbon arglves
[4], type-I superconductors,6], and ferrofluids[7]. Using the height. After integrating over the height of the ribbon, the
this and other formalisms, a single domain has been exterfPagnetic energy of an arbitrarily shaped simply connected
sively studied8—10 and this has led to a good understand-domain can be writtefil]
ing of the pattern selection mechanism. A hydrodynamic ap-
proach has also proved useful in this contgki] and the Emag=27TM2V—M2h #; ds § ds't-t ®(R/h), (1)
resulting patterns are virtually indistinguishable from those

obtained using the energetic approach. These studies haW?1ereR=|r(s)—r(s’)| is thein-planedistance between two

focused primarily on the fingering instability for a single . ~ =,
domain bFl)Jt havey not investig%tedghow the p)r/esence ofgmu points on the contour, andt” are tangent vectors at these

tiple domains might affect the patterns that form. Those thatwo points, and
have considered multiple domaifik2] have used numerical (&) =sinh (1/g) + é— 1+ & )
simulations to focus on the characteristic distance between
stripes in a highly disordered array. Here, we seek to find thgs a potential function that gives the strength of the interac-
lowest energy configurations for a system of two domains inion between points on the contour. Equatidhis an exact
the earliest stages of the pattern formation process. Thes&pression for the energy of a simply connected
configurations are extremely important because it is from‘cylindrical-type” domain of arbitrary cross sectiofvalid
these early stages that the final state patterns emerge. f§r any heighth). The first term is proportional to the vol-
some sense, the entire structure of the final pattern becomgsgne of the domain and is constant. The second term can be
“frozen in” during these early times. understood as a current-current interaction with coupling
To begin, let us describe one particular physical systemstrengthd. Since a uniformly magnetized domain is equiva-
Consider a ferrofluid drop of volum¥ trapped between two |ent to a current ribbon flowing around the boundary of a
closely spaced glass plates separated by a distateelele-  nonmagnetized domain, this term follows by integrating the
Shaw cell. In this geometry, the motion is essentially two free self-energy of a current ribbon over its height.
dimensional and the boundary of the drop looks like a thin  To extend this to multidomain systems, we note that each

ribbon. We assume throughout this paper that the interface qfomain will contribute an energy as in Eq) but there will
the fluid is perpendicular to the glass plates and thereforg|sg be interaction terms of the form

focus our attention on the shape of the cross section. Incom-

pressibility of the fluid keeps the cross-sectional area fixed ) S

even though the shape can change. When no magnetic field Em=—M*h § ds 3€ ds;ti-t; ®(R;; /h), 3)

is applied, the shape of the drop is determined solely by

surface tension and will take the form of a circle of radiuswhere the subscripts refer to separate contours Bpjd

Ro- If a magnetic field is applied perpendicular to the glass=|r(s;)—r(s;)| is the distance between a point on ttb

plates, the ferrofluid becomes magnetized. This produces atontour and a point on thigh contour. To simplify our work,

outward magnetic force that competes with surface tensiowe make note of the following. First, the constant term in

and results in the domain evolving into a branched patternEq. (1) will have no bearing on the pattern formation process
at all. Second, the self-energy term from a particular domain
will not affect the evolution of any other domain. Since our

*Present address: Dept. of Physics and Astronomy, Dickinsoiinterest lies in how the interactionsetweendomains will
College, Carlisle, PA 17013. affect their evolution, we focus our attention on this interac-
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<I>(R12/h)~<D(A)+(A—\/1+A2)e, (4d)
where we have defined

2

A%= g 1+qzco§<6;—¢)—q(cose+cos¢), (5)

2 6+
e= 57| (0 n)qzcosz(—zd’)—q(gcosewcosqs)},
(6)

and have introduced two dimensionless parameters, the as-
pect ratiop=2R,/h and the separation constaqpt 2R, /a.
We focus our attention on th&imensionlesks interaction
FIG. 1. Schematic representation of two initially circular ferro- integral for the two-drop system, defined by
fluid drops of radiu}, (dashed curveswith arbitrary perturbations .
(solid curve. The angle®) and ¢ are used to parametrize the curves Aa
and are measured with respect to the line joining the centers of the Iint:R_g 35 ds, fﬁ ds; ty -t ®(Ry2/h). (7)
two drops as shown.

Using the approximations given in Edqg), we calculate the
tion energy. In particular, we will use the interaction energylinearized interaction integral to be
to calculate the preferred rotational position for nearly circu-
lar domains.

2w 2m
hmlfﬁhj daf d{[(¢+ m)cod 6+ )+ (¢
0 0

Il. INTERACTIONS BETWEEN TWO DOMAINS )Sin 6+ $)]D(A)+ (A— T+ A2)ecod 8+ ),
To determine the effect of interactions between multiple )
domains, we begin by examining the interaction energy of

the two-domain system shown in Fig. 1. Both domains havgynere

an initial radius ofR, and their centers are separated by a
distancea>2R,. In an applied magnetic field, these two ) 27 2w

domains will acquire the same magnetization, or, equiva- Iint:fo dﬁfo d¢cog 6+ ¢)P(A) 9

lently, will have the same curretinagnitude and directign

flowing around their boundaries. Notice, however, that thes the interaction integral for two perfectly circular domains.
anglesd and ¢ in Fig. 1 are defined in such a way as t0 ynfortunately, the complexity of the integrand precludes our
traverse the two contours oppositedirections. This is done finding a closed form expression even for the relatively
to simplify our later results, but it is important to realize that gimple case of circular domains.

this introduces a minus sign into E) that must be taken To proceed further, we need to impose specific perturba-
into account when calculating the correct energy for oufjons. We choose pure mode disturbances of the f&5(f)
physiqal system. On each surface, we add an arbitrary per= £,co$n(6+@)] and 7( $) = p,cosm(d+ B)]. Here, ¢, and
turbation such that,(6) =Ro[1+{(0)] andry()=Ro[1  , “are positive numbers that give the amplitude of the per-
+7(4)]. Itis assumed that these perturbations are small iyrpationsn andm are mode numbers that specify the num-
the sense thaf<1 and#<1, and that their derivative§"  per of bumps in the perturbation, andand 3 are rotation
=d{/d6 and ' =d7/d¢ are small as well. Our goal is 10 angles for the entire disturbanésee Fig. 2 Our goal is to

expand the interaction energy to first order in terms of thesgyinimize the interaction energy with respect to these rotation
small parameters. We do not need to include the effects ofgjes.

surface tension because the surface energy is constant to first|nserting these pure mode disturbances into @j.and
order. Moreover, the effects of surface tension are local 10 gyaking use of the fact that the interaction energy is invariant
specific drop and therefore play no role in the interactiong;nder a direction change of both rotation angles., «,

between drops. ——a,— B) leads to
The first step is to linearize the elements in E%). This

gives line= 19+ ¢ Ancosna+ A cosMa, (10)
ds;~Ry(1+¢)dé, (4a)  with amplitude coefficients
ds,~Ro(1+7)d¢, (4b) An=fzwdefzwdm[@(m+\1f(A)]cos(a+¢)cosne
0 0
t;-ty~cog 6+ )+ (L' + 5')sin(6+ 7), (40 —n®(A)sin( 6+ ¢)sinn6}. (11)
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FIG. 2. Perturbations of the form{,co§n(6+«)] and
nmcogm(¢p+B)] are supplied to initially circular domainglashed
curves. The mode numbens andm specify the number of bumps FIG. 4. Videotape still frames of ferrofluid drops taken a short

while the anglese and 8 specify the amount of rotation. In this time after a magnetic field has been applied. Although the pertur-
casen=5, m=6, a= /4, andS= /6. bations do not look exactly like pure mode disturbances, there is a

clear tendency for the drops to orient themselves with indentations

Here,® andA are given by Eqs(2) and (5) while directed along the line joining the drops. These configurations are
quite reproducible as long as the drops are fairly close together.

P? [ 5 of 0t ;
W(A)ZW g°cog ——|—acose (A—1+A?). and
(12)
PEm| |2 A (—1)i=0 14D
Ill. PREFERRED ORIENTATIONS B | M= 7mAm(—1)>0. (14b
’B*

Equation(10) is our main result and has a surprisingly
simple form. To find the preferred orientation of each drop,Since {,, and 7,, are positive by construction, solving Egs.
we simply need to find the minimum values for the interac-(14) depends critically on the amplitude coefficiedts and
tion energy. Apart from a non-negative multiplicative con- A . Direct computation reveals that these coefficients are

stant, this interaction energy is positive, which constrainsandj to be odd integers. Notice
) further that, because of the symmetry of our pure mode dis-
Ein=1lin{ + {nAncOSNa+ 7nAnCoSMpB. (13 turbances, these angles are degenerate in the sense that they

all lead to the same physical state. Therefore, without loss of
generality, we can focus our attention on a single rotation
angle for each drop. The simplest casé=ig =1, for which

we obtain preferred angles

Minimizing this energy with respect to the rotation angles
and B will then give the preferred orientations. Differentiat-
ing Eqg. (13) yields extreme values at angles =i«/n and
B*=jm/m, wherei andj are integers. To find the energy
minima, we require

ks o
aozﬁ and ﬁoza (15)

=—n%,An(—1)'>0 (143

a* Figure 3 shows the preferred orientations for four pairs of
nearly circular domains. As is evident in this figure, these
minimum energy states are oriented such that each drop has
an indentation directed toward the other. This makes good
qualitative sense if you recall that these magnetic domains
can be described as current loops. These currents are anti-
aligned where the drops are closest together and this results
in a repulsive force. Thus, the system can lower its interac-
tion energy by increasing this distance. It is reassuring to
note that this indentation alignment can be seen in the nu-
merical simulations of Drikiset al. (Ref. [12]). Although
they examined a more complex arrangement of a disordered
set of drops, there is a clear tendency for indentation align-
FIG. 3. The minimum energy configurations for four sets of MeNt to occur between neighboring drops. There are some
domains with different perturbations. The dashed curves show aR@ses, however, where this alignment is not observed. This
unperturbed circle. Notice that in each case the orientations are su@Ppears to happen when the number of indentations is in-
that an indentation points directly along the line joining the two COmmensurate with the number of neighboring drops. It
domains. This is a general feature that applies regardless of thaould be interesting to examine analytically how these com-
mode number. peting factors affect the pattern formation process.
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