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An investigation of a symmetrical arrangementbfjuasi-two-dimensional magnetic domains in an external
field is carried out. By minimizing the linearized interaction energy for this arrangement using a nearest-
neighbor approximation, an orientationally preferred state of the system is found. This orientational preference
leads to a large degree of predictability in the final patterns as demonstrated by some experiments using
ferrofluids. The final state patterns are also investigated by carrying out a series of numerical simulations.
These simulations exhibit a similar predictability and the final patterns bear a strong resemblance to those
obtained experimentally.
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When a ferrofluid drop is placed in a Hele-Shaw cell andary of theith domain is parametrized kgy, then a point on
subjected to a perpendicular magnetic field, it undergoes this boundary can be described by a two-dimensional vector
fingering instability that can lead to a complex, labyrinthiner;=(X(s;),y(s;)) that gives the location along the ribbon,
pattern[1,2]. This same kind of pattern has been observed irind a pointz; that gives the height. When considering a
a number of different systems, including amphiphilic mono-multidomain system, each drop will contribute a self-energy
layers, garnet films, chemical reaction-diffusion systems, anéerm, but there will also be interaction terms of the form
type-l superconductorg3]. To understand this process, a
number_of resear_chers have_undertaken analytic and numeri- &=— M2h i; ds % def--f-CI)(Rij /h) (1)
cal studies of a single domain syst¢-8|, and the results
have been applied to both monolayg®s-11] and supercon- o . . .
ductors[12]. In all of these studies, no effort was made to Wherei#j. Here,R;; =|ri—r;| is thein-plane distance be-
incorporate the effects of multiple domains. Since there ar&Veen a point on théth contour and a point on thith
typically manyinteracting domains in these pattern forming contour t; andt are unit tangent vectors at these two points,
systems, it is of interest to study how the multidomain inter-and
actions can affect the pattern formation process. N 5

Two basic approaches have been used to study these in- O(§)=sinh H(1/§)+ - V1+ € v

teractive effects. In one, a highly disordered array of ferrof-, . . . .
luid drops was studied numerically as the system evolvedt @ potential function that gives the strength of the interac-

into the labyrinthine phaskL3]. In the other, a two-domain tion between these points. Since we are only interested in the
configuration was used to analytically determine the Orlentamteractwe effects of the pattern formation process, the self-
tional preference of the domains early in the pattern forma- energy terms need not be included in the analysis. This
tion proces$14]. In this paper, the analytic two-domain cal-
culations are extended to include Brdomain configuration

in which the drops are arranged symmetrically at the vertices
of a regular polygon. As in Refl4], the linearized interac-
tion energy for the system is minimized with respect to drop-
let rotations to find the energetically preferred orientations.
In addition, a series of numerical experiments are performed
to explore this system far into the nonlinear regime and the >

YA

results are compared to experiments.
The physical system to be investigated consistsNof N
equal-sized ferrofluid drops with initial radi, contained in
a Hele-Shaw cell consisting of two closely spaced glass
plates separated by a distarfteThese drops are symmetri-
cally arranged at the vertices of a regulasided polygon as
shown in Fig. 1. When a magnetic field is applied perpen- !
dicular to the Hele-Shaw cell, each drop undergoes a finger- |<_ &
ing instability that leads to a branched structure. If these
structures are close enough together, the interactions betweengg, 1. Sketch showing the geometric arrangement of, in this
them can affect the pattern formation process. case, five ferrofluid drops. Drop 1 is located at the origin, drop 2 is
As is common in these systems, the magnetizakibis  |ocated a distance along thex axis, and successive drops are
taken to be collinear with the applied field and uniform located at the vertices of a reguld-sided polygon with edge
throughout each of the domains. If the ribbon-shaped boundengtha.
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means that surface tension plays(doect role in determin- (N=-2
ing how these domains intergc5]. SN —N nlﬂ)
The total interaction energy of the system is obtained by tann,af,= — , (6)
summing the interaction energy between each pair of do- 1+cos<N_2n )
. . . 17
mains[16], which can be written N
N N N which is valid as long as the denominator is nonzero. To find
En= 2 A > Exy+ > Egt - (3y  the minimumenergy states, we require
i=2 i=3 =4
e
When pure mode perturbations are introduced on the drops Ja >0, )
of the form ¢;cogn,(6+a;)], then two drops separated by a 12 Tax,
distancea have a linearized interaction energy proportional
(0) * N-2 |
Eijzlij +§iAijC05niaij+§jAjiC05njaji . (4) alzz—W'ﬂ'-l— n—, (8&)
1

Here, /j is the amplitude of the perturbation on tite drop,  \yherel is an integer that satisfies
n; is the mode numbegnumber of protuberancesn theith
drop, a;; is the (clockwisg rotation angle of drog with N—-2
respect to drop, andA; is theamplitude coefficientwhich 2l+1<
depends on the mode number of thité drop n; and the
distance between drops Also in Eq.(4), | represents the It is worth noting that whenN—2)n, /N is an odd integer,
interaction between two perfectly circular domains. which corresponds to the denominator in E&). being equal
Due to the symmetric arrangement of the drops, we carto zero, the interaction energy does not have a minimum.
without loss of generality, focus our attention on a singleThis is due to a symmetry between the mode nunmeand
drop. Having found the preferred rotational angle for thisthe number of drops in the systeih In these situations, the
drop, the preferred angles for the otier 1 drops can then pattern selection mechanism may be due to next-nearest-
be determined by symmetry. Inspection of E4) reveals neighbor interactions or, perhaps more likely, due to nonlin-
that the only pieces of Ed3) that depend on the rotation of ear effects. This interesting situation is currently under fur-
drop 1 come from the; terms. Therefore, we can turn our ther investigation. For the remainder of this paper, we will
attention to drop 1 and write down the portion of the inter-simply assume that we are dealing with an energy minimum.
action energy that depends on the orientation of drop 1, Although we have focused our attention on a single drop,

n,<2l+3. (8b)

namely, the situation is entirely symmetric so that every drop will
behave in a similar manner. Furthermore, if each drop has
N the same initial radius, one should expect that the same mode
é‘mlt)z_Ez {1Aqjc08N; ay; . (5)  number will develop on each of the dropg]. Thus, let us
i=

consider situations in which the mode numbersn are the
. . ) i same for all drops in the system.

To minimize this energy with respect to rotations, the ro-  Fjrst consider a two-drop system in which each drop has
tation anglesay; must be replaced with a single angle thaty moden=2 perturbation. This will be referred to as &h
can be used as the minimization parameter. Using the geom:=» n—2 configuration. In this situation, Eqé8) give | =
etry shown in Fig. 1 gives the relatiomy;=ai,+(] -1 and thus a preferred angle for drop 1agb= — =/2. The
—2)7/N. Plugging this into Eq(5) and minimizing with  rotation angle for drop 2 is found by symmetry. A similar
respect toay, will then lead to the preferred anglesj,.  procedure for alN=5, n=3 configuration leads to a pre-
Unfortunately, the complexity of the amplitude coefficientsterred angle ofx,,= —3/10. Again, the rotation angles for
precludes us from finding a closed form expressiond®y.  the other drops are found by symmetry. These two situations
Nevertheless, we can make analytic progress by includingre shown in Fig. 2 along with some typical experimental
only nearest-neighbor interactions in the calculations. Sinceesults obtained using ferrofluids.
it is experimentally verified that the interactions do not play In the ferrofluid experiments, the plate spacing was about
a prominent role in the pattern formation process when 1 mm and the drop radius was about 1 cm. The drops were
=4R,, this is expected to be an excellent approximation. formed by using a small hand magnet and “tearing off” a

By including only nearest-neighbor interactions, only twosmall amount of ferrofluid from a large “reservoir.” This
terms survive from the sum in E¢p), j=2 andj=N. More-  process was not very accurate but it did allow us to obtain
over, because the distance between drops 1 and 2 is the sadeps that were approximately the same size, within about
as the distance between drops 1 adthe two amplitude 10%. Placing the drops in a symmetric array was easily done
coefficients are equald,=A;y. Differentiating &, with using the hand magnet. The drops would surround the mag-
respect tow;, and setting it equal to zero leads to extremenet without fusing together and when the magnet was slowly
anglesa?, given by lifted, the drops would relax onto the vertices of a polygon
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Theory Experiment
FIG. 2. The minimum energy configuration for &2, n=2 Simulation Experiment
configuration(top) and anN=5, n=3 configuration(bottom as . ] ) .
determined by Eqs(8), along with some typical experimental re-  FIG. 3. Simulation and experiment for &=2, n=2 configu-
sults. ration (top) and anN=5, n=3 configuration(bottom). The experi-

mental results are the late stage of the evolution shown in Fig. 2.

with an edge length of approximately R& A perpendicular o simylations. In the simulations, sticking with the glass

magnetic field was ramped up by hand from zero to a maxig|ates is modeled simply by stopping the calculations when
mum of about 200 G. Varying the rate at which the magnetiGhe motion has reached some reasonably stable configura-
field was applied allowed us to select the mode nuntt®r tjgn.
some degreeintroduced on the drops as described in Ref.  Figure 3 shows some typical simulation and experimental
[7]. The evolution of the drops was captured with a videopatterns for th&N=2, n=2 andN=5, n=3 configurations.
camera. The similarity between the experiments and simulations is
To study this system far into the nonlinear regime, it isquite striking. The experimental patterns in Fig. 3 are the late
important to include single domain interactions as well asstages of the evolutions shown in Fig. 2. The numerical ex-
interactions between the domains. The Navier-Stokes equaeriments were performed using circular initial states with a

tion for a ferrofluid in a Hele-Shaw cell is small amount(less than 1% of the circle radiusf random
noise distributed in the first eight azimuthal modes. The
h? number of points on each circle is increased as the evolution
V=— E?VH, 9) develops to preserve accuracy, but as few points as possible

are used in the interest of speed.
where 5 is the ferrofluid viscosity andl is a generalized The results shown here are fairly robust and appear virtu-

: . . ally every time the experiment or the simulation is performed
pressure that includes the magnetic effects. IncompreSS|b|I|t|¥] these configurations. One obvious difference in te

of the ferrofiuid leads to Laplace’s equation inside the do-_g5 ,_3 configuration is that two of the domains in the

mains. Assuming the pressure outside the ferrofluid is cOngyperiment have lost their third “center-pointing” finger.
stant renders the domains hydrodynamically isolated. Thehis was a common occurrence in the experiments. Typi-

only interz_ictive effects are then due to the magnetization Of:ally, all five drops would begin with three fingers and ap-
the domains and appear through the generalized pressure @isred almost identical to the simulation. However, at some

the boundary of a domain, point, some of the drops would lose their center-pointing
M2 fingers. In Fig. 3, we see that two of the drops have lost this
N — N2 finger. This effect appears to be related to the initial positions
M) =or(n) ==t (10 of the drops which is not terribly accurate in these simple
experiments. In addition, the simulations have been stopped
Here,o is the surface tensiom, is the interface curvaturey when the evolution has slowed down considerably to repre-
is an arbitrary parametrization of théh interface, and is  sent the small amount of sticking with the glass plates. In
the magnetic contribution. This magnetic contribution is anfact, if we allow the simulation to continue to run, all five
integral that depends on the shapesalbfthe domains and drops will lose their center-pointing fingers, similar to what
therefore represents a highly nonlocal interaction. The evohappens in the experiments.
lution equation for the interface is derived using the confor- The numerical results show excellent agreement with the
mal mapping techniques as described in IRET] and imple-  experiments, even though the outer fluid in the experiments
mented in Ref[7]. is not air. This suggests that these domains behave as if they
In the experiments, a water/tween mixture was used outwere hydrodynamically isolated. One can see some small
side the ferrofluid to prevent sticking with the glass plates aglifferences between the experiments and the simulations, but
much as possible. The addition of this outer liquid could leadby and large the agreement is surprisingly good.
to some hydrodynamic effects that are not accounted for in The present work has concentrated on a particular sym-
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metric arrangement of magnetic fluid drops and has led ttnexagonal lattices. In these cases, one would expect nearest-
some understanding of how multidomain interactions affecheighbor interactions to play a role on multiple sides of each
the pattern formation process in these systems. Much of theérop. This would likely lead to increased frustration in the
behavior seen here can also be seen in more complex scgystem and therefore less predictability in the final state pat-
narios, such as the disordered array of drops studied numetterns. For example, in a square lattice, if all drops hadh an
cally by Drikis et al. in Ref. [13]. In addition, this study =2 mode perturbation, it is unlikely that they would all
provides some insight into how the early stages of the patteravolve parallel to each other during the initial stages of the
formation process can have a dramatic impact on the fingbattern formation process. That would lead to fingers grow-
state patterns that form. In almost every case studied, thiag directly toward each other. Instead, one might see a pat-
“backbone structure” of the entire pattern appears to betern whereby each neighboring drop is oriented 90° with
“frozen in” very early in the pattern formation process. respect to each nearest neighbor.

It is also interesting to be able to make a direct compari- In addition to square and hexagonal lattices, one can
son between the theoretical equations and the actual expeimagine trying to cover the plane in a quasiperiodic manner.
ments. Normally in these systems, there is a large amount dh this case, there would be even more frustration caused by
randomness that precludes making direct physical comparthe nonperiodic nature of the lattice in addition to that caused
sons between specific final state patterns. But in this symby an increase in nearest neighbors. Although it is difficult to
metric situation, the final state patterns are very predictablénagine what effects this might have, it seems likely that it
and we can therefore compare specific patterns since thayould result in even less predictability of the final state pat-
repeatedly arise. The striking similarity between the numeriterns.
cal results and the experimental results suggests that the dy-
namics of the domains are essentially hydrodynamically in- | would like to acknowledge some previous students
dependent. whose contributions set the groundwork for much of what is

One can imagine extending the analysis here to a symmepresented here. They are Matthew Welker, Russell LaMantia,
ric arrangement of drops which covers the plane. Therérennan Gantner, and Matthew Grivich. This work was sup-
should be no problem accomplishing this task for square oported in part by Research Corporation Grant No. CC4693.
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