
Functional programming, in the data structures
course, in Java

John MacCormick
Dickinson College

Carlisle, PA
jmac@dickinson.edu

Abstract

We describe a new curriculum design, termed functional embedding, for
embedding functional programming within a core sequence of courses
taught in a non-functional programming language such as Java. We
present evidence that functional embedding has been successful in prac-
tice, based on a survey of student perceptions and analysis of student
exam performance. An analysis of college computer science curriculums
demonstrates that at least 59% of colleges can benefit from the approach.

1 Introduction

There is wide agreement among computer science educators that it is important
for students to acquire proficiency in a variety of programming paradigms. Of
these paradigms, perhaps the most important are the object-oriented and func-
tional paradigms. Modern computer science curriculums rarely have any diffi-
culty in ensuring that all students are exposed to the object-oriented paradigm,
but the same is not true of the functional paradigm. One relatively common
curriculum design has a core sequence of three or four courses containing no
functional programming. This core sequence of exclusively imperative/object-
oriented content may comprise, for example, CS1→CS2→DSA (where DSA is
a single course covering data structures and algorithms), or CS0→CS1→Data

∗Copyright ©2022 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

1

Structures→Algorithms (where CS0 is a course skipped by students with prior
programming experience). This curriculum design typically includes a separate
Programming Languages (PL) course which contains a substantial functional
programming component (say, a minimum of 30% functional—but we observe
up to 100% functional programming in some PL courses). If the PL course is
required for the computer science major, all CS majors are thus guaranteed
reasonable exposure to functional programming.

It is not uncommon, however, for the PL course to be an elective. If the
core sequence is exclusively imperative/object-oriented, this raises an impor-
tant curricular problem: students who do not take the elective PL course can
graduate with no awareness of the functional paradigm. The CS education
community is divided on whether this should be considered a severe problem;
section 5 gives more details on why it may be considered problematic that an
undergraduate computer scientist can graduate with no knowledge of functional
programming. In this paper, we propose a partial solution to this problem and
report on our experiences with it.

The proposed solution is to insert a suitable amount of functional pro-
gramming into the core sequence, without changing the (imperative, object-
oriented) programming languages in which the core sequence is taught. Our
department has experimented successfully with this approach since 2019, by
making alterations to our CS2 data structures course, which is taught in Java.
By reallocating material between our separate data structures and algorithms
courses, we made room for a one-week unit of functional programming mate-
rial. We do not introduce the overhead of studying a truly functional program-
ming language. Instead, we use Java lambda expressions and other features in
Java.lang.function, combined with practical applications for efficient parallel
data processing via Java’s Stream API.

This explains the title of this paper: we teach some aspects of functional
programming, in the data structures course, in Java. The remainder of the
paper will describe the implementation details and results of that approach.
Nevertheless, we believe it would generalize to other situations. For example,
it is certainly possible to create similar units of functional programming in
courses that use Python or C++. And these units can easily be inserted into
courses other than Data Structures, including CS1 or Algorithms. Indeed, one
of our items of future work is to weave functional programming into most other
required courses, now that we can be sure students have seen it before.

2

2 Related work and a taxonomy of functional program-
ming curriculums

In this section, we briefly survey other approaches to incorporating functional
programming within the computer science curriculum, and we propose a taxon-
omy of five possible approaches: functional-first, functional-required, functional-
elective, functional-minimal, and functional-embedded.

Many previous researchers have investigated the use of functional program-
ming within the core sequence of programming courses in a computer sci-
ence major. One highly successful and much-studied approach is known as
functional-first [7]: CS1, the first core programming course, is taught either en-
tirely or largely in the functional paradigm. Famous examples of such curricu-
lums include those of Grinnell College [1] and Brown University [4], amplified
by the influential textbook How to Design Programs [3]. The functional-first
approach has numerous well-documented advantages, but it also presents chal-
lenges. Empirically, we find that it has not been widely adopted. For example,
in our sample of CCSC curriculums described later (section 4), we found that
zero out of 29 institutions had adopted functional-first.

As described in the introduction, a common curricular approach is to in-
clude a substantial topic on functional programming within a programming
languages (PL) course. If the PL course is required for the major, we refer
to this as the functional-required approach; if the PL course is an elective, we
describe the approach as functional-elective.

There are some computer science curriculums in which functional program-
ming does not appear to be an explicit goal. Either it is not present at all, or
it makes an appearance as a byproduct of certain elective courses not focussed
on programming languages (such as an AI course that makes use of LISP). We
refer to this curricular approach as functional-minimal.

In this paper, we advocate a new curricular approach to functional program-
ming: a modest but nontrivial amount of functional programming is embedded
into one or more of the courses in the core sequence, such as CS2/data struc-
tures. Moreover, embedded functional programming content is emphasized as
an important topic that will be reflected in other parts of the curriculum. We
refer to this approach as functional-embedded.

3 Method for embedding functional programming in a
Java-based data structures course

In this section we give details of our current approach to embedding functional
programming in a Java-based data structures course. Section 3.1 describes a
low-overhead way of introducing functions as first-class objects, and section 3.2

3

describes a practical application for cementing student engagement via the Java
Stream API. We provide these details for concreteness only; we believe many
other approaches could achieve the same goals.

3.1 Rudiments of functional programming in Java

It can be argued that the most important concepts underlying functional pro-
gramming are immutability (lack of side effects) and the treatment of functions
as first-class objects. The brief survey of functional programming described
here focuses on functions as first-class objects, mentioning immutability only
as it applies to existing Java classes such as String and Stream. In prac-
tice, students learn that functions can be: (i) parameters of other functions;
(ii) return values of other functions; and (iii) created and employed as local
variables. Simple demos of these three features can easily be achieved using
Java’s functional programming package, java.util.function, which has been
available since Java version 8 was released in 2014. For example, we can define
the function f(x) = 3x2 + 5 and then evaluate f(2) via the following snippet
of Java:

Function<Integer, Integer> f = x->3*x*x+5;
System.out.println(f.apply(2)); // prints "17"

There is one piece of syntactic ugliness that is unavoidable in the above snippet:
to evaluate f(2) we need to invoke the apply() method on the object f. Thus,
we write f.apply(2) rather than using the more natural notation f(2). This
reflects the fact that Java is not a functional language: one cannot define a
Java object that is a function. Instead, we create an object that implements
a functional interface. The interface includes the apply() method, and that is
how the function must be invoked.

To avoid this potential source of confusion, we prefer to first introduce
the notion of functions as first-class objects using Python. We have found
this works well, even in a course that is otherwise 100% Java and does not
assume any prior knowledge of other programming languages. The syntax of
Python is close enough to standard pseudocode conventions that students with
no knowledge of Python can leap right in. In our experience, they can actively
participate in an in-class, browser-based mini-lab on the topic of functions as
objects after only a few minutes’ explanation by the instructor. For example,
the above Java snippet becomes

def f(x): return 3*x*x+5
print(f(2)) # prints "17"

The above snippet can be formulated using a lambda expression in Python,
and in our approach students will certainly learn how to do that. But we prefer

4

to delay the introduction of lambda expressions until after the idea of functions
as objects has already been demonstrated.

For example, the concept of passing a function as a parameter is always a
challenging new abstraction the first time it is seen by a student. But a hands-
on mini-lab, using snippets such as the following, can help students quickly
adapt to this new idea:

def isIncreasingOn123(f): return f(1)<f(2) and f(2)<f(3)
def add5(x): return x+5
print(isIncreasingOn123(add5)) # prints "True"
def applyTo9(f): return f(9)
print(applyTo9(add5)) # prints "14"

Once the idea of treating functions like any other data item is familiar, we
can switch back to Java. We recommend omitting the details of functional
interfaces, instead treating the apply() method as a required piece of Java
syntax that is not explained further. Thus, the above Python snippets become:

public static boolean isIncreasingOn123(Function<Integer, Integer> f) {
return f.apply(1) < f.apply(2) && f.apply(2) < f.apply(3);

}

public static int applyTo9(Function<Integer, Integer> f) {
return f.apply(9);

}

public static void main(String[] args) {
Function<Integer, Integer> add5 = x->x+5;
System.out.println(isIncreasingOn123(add5)); // prints "true"
System.out.println(applyTo9(add5)); // prints "14"

}

Some further fundamentals of functional programming, including moder-
ately advanced lambda expressions, can be introduced in a similar fashion.
Further details are available in our publicly-available textbook chapter [9].

3.2 A practical application of functional programming: parallel
processing of data streams

It is a well-known educational principle, not just within computer science, that
learning outcomes for a theoretical concept are improved if students perceive
the concept as applicable or useful [5]. We believe, therefore, that it is im-
portant for students to apply their knowledge of functional programming in
Java to some real-world situations. For this, we use Java’s Stream API; this

5

is provided in java.util.stream and was introduced by Java version 8, at the
same time as the functional programming facilities, in 2014.

In Java, Stream<T> is an interface for performing operations on sequences of
objects of type T. There are two types of operations on streams: intermediate
operations and terminal operations. In the brief coverage provided in our
data structures course, we explore only eight of these operations: the four
intermediate operations filter(), map(), sequential(), and parallel(); and
the four terminal operations count(), foreach(), reduce(), and sum(). Any
computation based on a stream performs a sequence of intermediate operations
followed by one terminal operation. Because many of these operations accept
lambda expressions as parameters, they are an excellent way to practice the
application of functional programming. For example, the following snippet
counts the number of words in a stream that begin with ‘c’ and end with ‘t’,
by using two filter() operations followed by the count() operation; it employs
two lambda expressions for the filters:

Stream<String> s = Stream.of("cat", "bat", "catch", "chat");
long numWords = s.filter(word -> word.startsWith("c"))

.filter(word -> word.endsWith("t"))

.count(); // returns 2

The Stream API provides opportunities for students to implement realistic ex-
periments from the world of big data, based on only modest guidance from
the instructor—certainly less than one class meeting, in our experience. For
example, students can apply the map-reduce [2] framework to large data sets,
and/or demonstrate the speed-up from using parallel versus sequential streams.
This latter experiment is trivial to implement: one simply prepends the call
“.parallel()” to the sequence of stream operations. Further details are avail-
able in our publicly-available textbook chapter [9].

4 Results

In this section we present results from three investigations which suggest that
the functional-embedded approach (teaching functional programming in the
data structures course and/or elsewhere in the core) is efficacious and suit-
able for incorporation in a substantial proportion of existing computer science
curriculums.
Investigation 1: Student performance. We analyzed the final exam scores
of students in the fall 2021 instance of the data structures course. A total of
25 students completed the course, and all are included in this analysis. The fi-
nal exam included a three-part question requiring students to write code using
the Java Stream API and employing lambda expressions. Students averaged

6

28/30 points on this question. On the most challenging part of the question,
which required a non-trivial application of the map-reduce pattern, 22 of the
25 students (88%) scored 13/15 or higher. This demonstrates that a key ap-
plication of functional programming was mastered by a strong majority of
students.
Investigation 2: Student perceptions. We surveyed students who com-
pleted our functional-embedded data structures course, assessing their per-
ception of the 9 topics in the course; 32 students participated in the survey.
They rated each topic based on how “interesting” and (separately) “useful”
they perceived it to be. Ratings employed a 5-point Likert scale, from 1 =
“not at all interesting” to 5 = “extremely interesting” (and similarly for “use-
ful”). Results are shown in figure 1. Functional programming was certainly
perceived as interesting and useful: it averaged 3.7 and 3.5 respectively. That
is, the average response places functional programming between “moderately
interesting” and “very interesting” (and similarly for “useful”). The level of
interest in functional programming was commensurate with most other top-
ics; only the binary search tree/heaps topic received a statistically significant
higher score. However, functional programming was ranked ninth out of the
nine topics in terms of usefulness, substantially lower than classic data struc-
tures topics such as lists/stacks/queues (average 4.4) and graphs (4.3); these
two differences have high statistical significance (t-test p-value < 10−3). The
low ranking of functional programming in terms of perceived usefulness may
indicate that we could do a better job of demonstrating the importance of
functional programming. Or maybe the student perception is correct: perhaps
fundamentals such as stacks, queues, and graphs really are more useful than
functional programming.
Investigation 3: Curriculum survey. We analyzed the curriculums for
the computer science major of the 32 colleges and universities whose faculty
contributed to the four most recent CCSC conference proceedings [8]. Three
institutions that do not offer a four-year computer science major were excluded.
For the remaining 29 institutions, we examined publicly-available requirements
for the major and course descriptions to classify each institution’s curriculum
according to the taxonomy described in section 2. Figure 2 shows the results.

Notwithstanding the well-known examples of functional-first curriculums
mentioned earlier, we find that, in this sample, none of these institutions em-
ploys the functional-first approach. Unsurprisingly, no institutions employ the
functional-embedded approach either: this is the new approach used at our
own institution and which we are advocating in the present paper.

The remaining three categories demonstrate that there is significant diver-
sity in how these institutions cover functional programming: 79% include it
in a programming languages (PL) course, split almost equally between the

7

average Likert
score for. . .

topic “interesting” “useful”

Binary search trees/heaps 4.2* 4.3**
Sorting algorithms 4.1 4.4**
Hash tables 4.0 3.9*
Graphs 3.9 4.3**
Lists/stacks/queues 3.8 4.4**
Functional programming 3.7 3.5
Recursion 3.7 4.1**
Algorithm Analysis 3.5 4.2**
Generics 3.1** 3.6

Figure 1: Results of student perception survey. Topics are sorted by the
average rating for “interesting.” Starred values indicate a statistically signifi-
cant p-value for a two-tailed paired t-test comparing the given result with the
result for functional programming: single * for p < 0.05; double ** for p < 0.01.

Approach frequency percentage

functional-first 0 0%
functional-embedded (proposed here) 0 0%
functional-required 12 41%
functional-elective 11 38%
functional-minimal 6 21%

Figure 2: Results of the functional programming curriculum survey.

functional-required and functional-elective approaches. That is, about half of
the 79% with a PL course (41%) require the PL course for the major, and the
other half (another 38%) offer PL as an elective. Finally, 21% of the insti-
tutions employ the functional-minimal approach, meaning they do not offer a
significant amount of functional programming.

We believe these results demonstrate ample opportunity for the functional-
embedded approach advocated here. Certainly, the 59% of institutions where
CS majors can graduate with no exposure to functional programming could
rectify this using functional-embedding. In addition, we believe that the 41%
in the functional-required category would also benefit from embedding a certain
amount of functional programming into one or more core courses such as CS2.
This has the benefit of allowing the functional mindset to start earlier and res-
onate in other parts of the curriculum; perhaps students will view it as a more

8

fundamental and integral technique, rather than an approach of mainly theo-
retical interest that has been sidelined to a challenging upper-level course. To
summarize, 100% of the institutions in this sample may benefit from adopting
the functional-embedded approach, and 59% would eliminate the possibility of
students graduating with no exposure to functional programming.

5 Discussion

This paper makes the assumption that it is desirable for undergraduate com-
puter scientists to be exposed to functional programming. It is beyond our
scope to justify this claim, which has been the subject of debate for decades.
Functional ideas have become increasingly important even within primarily
imperative/object-oriented languages, and this is one argument for teaching
functional programming explicitly. Another argument is that the ACM/IEEE
2013 Curriculum Guidelines ([7], page 156) require 7 core lecture hours of
functional programming, equivalent to 2–3 weeks of classes. The more recent
2020 guidelines, known as CC2020 [6], express required content in terms of
competencies rather than lecture hours. The guidelines list 84 competencies,
of which 3 mention functional programming explicitly ([6], page 114; more
details below). This can be converted very approximately to comprehensi-
ble units as follows. In a 10-course major, one of the courses would need to
devote 3/84× 10 = 36% of its time to covering the three functional program-
ming competencies—equivalent to 5 weeks in a 14-week semester. This level
of coverage is probably not a realistic goal for every CS program. But these
curriculum guidelines imply that it is highly desirable for every computer sci-
ence undergraduate to receive some exposure to functional programming ideas.
As discussed in the previous section, our curriculum analysis shows that about
60% of institutions in our sample do not currently achieve this goal, and they
could do so by using the functional-embedded approach.

One potential limitation of our functional-embedded approach is that we
are not teaching the full range of functional thinking: our emphasis is on the
practical use of lambda expressions. It lies beyond the scope of this paper to
debate this in detail, but this is an interesting line of future research. If we are
limited to a very small amount of time for functional programming, what are
the most essential and useful ideas to convey? As a partial justification for the
approach advocated here, we note that reasonable progress towards two of the
three CC2020 functional programming competencies mentioned above can be
achieved using only the material covered in our functional-embedded CS2 data
structures course. In detail, the two competencies covered are PL-A (imple-
ment a function that takes and returns other functions) and PL-D (use oper-
ations on aggregates, including operations that take functions as arguments).

9

The competency not covered is PL-E (contrast the procedural/functional ap-
proach with the object-oriented approach).

Another potential limitation is that, at present, we devote only one week to
functional programming in the data structures course. In fact, we have been
satisfied with the level of conceptual coverage, but the one-week timeframe does
seem short for a valuable topic. We do commit to functional programming as
an important concept, listing it in the official bulletin description of the course
and in one of the department-approved learning goals.

Hence, an area of future work is to thread some functional programming
ideas into additional courses. At our institution, students also encounter
lambda expressions in a software engineering course that relies on JavaScript
web frameworks. We believe they could benefit from further exposure in the
required algorithms course and in electives such as artificial intelligence. As a
specific example of this, note that the sorted() function in the standard Python
library accepts a functional parameter for extracting the key from each item.
Hence, the instructor has an opportunity for a quick refresher on lambda ex-
pressions whenever sorting a list in Python. But an important issue for further
investigation is, how can we embed deeper functional programming concepts,
such as immutability?

6 Conclusion

We have described functional embedding, a new curriculum design that teaches
a modest but meaningful amount of functional programming within a core
course taught in a non-functional programming language. An analysis of CCSC
college curriculums showed that about 60% of colleges in the sample do not
currently ensure that CS majors have exposure to functional programming,
and that they could achieve this with relative ease via functional embedding.
We argued that the remaining 40% of colleges may also gain benefits from
functional embedding. A survey of student perceptions shows that functional
programming is perceived as interesting and useful, albeit to a lesser extent
than classical topics in data structures. An analysis of student exam results
demonstrates solid achievement on sophisticated learning goals such as the
map-reduce paradigm, even when only one week of functional programming is
embedded. We hope functional embedding will be adopted at other institutions
and that future work can refine the embedding of functional programming
throughout the typical computer science curriculum.

10

References

[1] Sarah Dahlby Albright, Titus H. Klinge, and Samuel A. Rebelsky. “A
Functional Approach to Data Science in CS1”. In: Proc. SIGCSE. 2018,
pp. 1035–1040.

[2] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: simplified data pro-
cessing on large clusters”. In: Communications of the ACM 51.1 (2008),
pp. 107–113.

[3] M. Felleisen et al. How to Design Programs: An Introduction to Program-
ming and Computing. 2nd edition. MIT Press, 2018.

[4] Robert Bruce Findler et al. “DrScheme: A programming environment for
Scheme”. In: Journal of Functional Programming 12.2 (2002), pp. 159–182.

[5] L. Dee Fink. Creating significant learning experiences: An integrated ap-
proach to designing college courses. 2nd edition. John Wiley & Sons, 2013.

[6] CC2020 Task Force. Computing Curricula 2020: Paradigms for Global
Computing Education. Association for Computing Machinery, 2020.

[7] Association for Computing Machinery (ACM) Joint Task Force on Com-
puting Curricula and IEEE Computer Society. Computer Science Curric-
ula 2013: Curriculum Guidelines for Undergraduate Degree Programs in
Computer Science. Association for Computing Machinery, 2013.

[8] Baochuan Lu, ed. Journal of Computing Sciences in Colleges. Vol. 37.
6,7,8,10. Consortium for Computing Sciences in Colleges, 2022.

[9] John MacCormick. “Functional Programming and Streams”. Available as
https://arxiv.org/abs/2302.09403. 2023.

11

https://arxiv.org/abs/2302.09403

	Introduction
	Related work and a taxonomy of functional programming curriculums
	Method for embedding functional programming in a Java-based data structures course
	Rudiments of functional programming in Java
	A practical application of functional programming: parallel processing of data streams

	Results
	Discussion
	Conclusion

