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Abstract
It has long been known that when a cable of specified length is hung between
two poles, it takes the shape of a catenary—a hyperbolic cosine function. In
this paper, we study a variation of this problem. First, we consider a cable
hanging between two poles in which one end of the cable is fixed to one pole;
the other end of the cable runs over a pulley, attached to the other pole, and then
down to a table. Here, the length of the cable can vary as the pulley rotates. For
a specified horizontal distance between the two poles, we vary the height of the
fixed cable end. We then determine both experimentally and analytically the
stability of the resulting catenary-cable shapes. Interestingly, at certain heights
there are two catenaries of different lengths—we use Newtonian mechanics
to show that only one of these is stable. Below a certain critical height, no
catenary exists and the cable is pulled down to the table. Finally, we explore a
related problem in which one end of the cable runs over a pulley, but the other
end can now freely move vertically along a pole. These experiments nicely
lend themselves as teaching tools in a classroom setting.

1. Introduction

There are a few classic optimization problems which challenged and inspired the greatest
mathematicians of the 17th and 18th century and which eventually gave rise to the calculus
of variations as a branch of mathematics. Two famous examples are the brachistochrone and
the catenary problems [1]. In the catenary problem a flexible cable of specified length is hung
between two poles; one must determine the shape of the cable that minimizes the potential
energy.

Galileo was the first to formulate this problem in 1638, and he incorrectly speculated that
the shape of a hanging cable was a parabola [2, 3]. Subsequently, in the 1690s, the Bernoulli
brothers, Huygens and Leibniz, independently found the correct solution, the hyperbolic
cosine function. Since then, many variations on this original problem have been studied, some
considering non-uniform cables [4], others treating elastic cables [5], networks of cables [6]
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and cables with surface tension [3]. All of these studies assume that the length of the cable
cannot change in the problem.

Here we describe another variation of the catenary problem and its experimental
implementation in which the cable length is allowed to vary. A cable is again hung between
two vertical poles. In the first setup, the right end of the cable is fixed to a pole, but on the left
side the cable runs through a pulley attached to the other pole. The cable then follows down
this pole (on the other side of the pulley) to a reservoir of cable on the table. As the pulley
rotates, the length of the cable varies. In a related setup, the boundary condition on the right
is changed such that the cable can move freely up and down the right pole.

Several parameters are important here: the heights of the cable at the two ends and the
horizontal distance between the two poles. For simplicity, we assume that the horizontal
distance between the two poles is fixed and only allow the height of the right end of the cable
to vary.

There are essentially two possible cable shapes that minimize the potential energy: the
cable will either take the shape of a catenary, or when the cable is ‘too’ long it will simply
lie flat on the table. Which of these two cases is physically realized depends on the height
of the right cable end. One can show (see for example exercise 7 in [12]) that there exists
a critical height below which the cable begins to unwind. We determine this critical height
experimentally as well as analytically by exploring the relationship of the height of the right
end of the cable to its length.

In a second setup, we modify the boundary condition on the right side of the cable. We
retain the pulley arrangement, but we now keep the right cable end free to move vertically
along the pole. The essential parameter in this modified problem is the pulley height as it
determines the existence of stable catenaries.

In this paper, we describe the experimental setups of the cable and pulley system outlined
above. We have found these experiments to be instructive in a classroom setting as a way to
motivate and elucidate the ‘calculus of variations’ approach to classical mechanics.

Furthermore, we develop a perturbation technique to determine the stability of the catenary
using Newtonian mechanics reasoning. At the heart of this technique is a calculation of the
cable tension at the pulley for catenaries of various lengths. In contrast to the standard
approach using conjugate points from the calculus of variations [7, pp 247–9], we believe that
our method is accessible to undergraduate students.

2. Theoretical background and experimental setup

We seek the shape of a uniform cable between two fixed points of suspension that minimizes
the potential energy without imposing any constraint on the cable length. To find this shape,
the standard procedure is to obtain the Euler–Lagrange equation by setting the first variation of
the potential energy functional, U = ∫

μgy
√

1 + (y ′)2 dx, to zero. Here, μ is the mass per unit
length of the cable, g is the gravitational acceleration and y is the height of a cable element.
Because the integrand is explicitly independent of x, a first integral of the Euler–Lagrange
equation is obtained:

yy ′2√
1 + y ′2

− y

√
1 + y ′2 = C1. (1)

(See [7, pp 39–40], [9, pp 20–21] and [8] for more information.) After solving for y ′, one
obtains the following integral for x:

x =
∫

dy√
y2

C2
1

− 1
= C1 cosh−1 y

C1
+ C2. (2)
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C2 is the arbitrary constant of integration. Finally, after inverting the expression for x(y), the
general solution is obtained:

y(x) = κ1 cosh

(
x

κ1
+ κ2

)
, (3)

where κ1 = C1 and κ2 = −C2
C1

. Here, κ1 and κ2 are the two arbitrary constants, and hence
equation (3) represents a family of curves.

Experimentally, a straightforward way to obtain a variable length between the suspension
points on the poles is to employ a pulley leading to a cable reservoir. The location of the
reservoir should be at zero potential energy, i.e. at the level of the table. With this choice, the
additional cable is transferred via the pulley from or to zero potential energy, which means
that we do not pay a potential energy penalty at the reservoir for lengthening or shortening
the catenary. If the cable reservoir were located at the pulley, say, a lengthening of the
catenary would always lower the potential energy of the entire system (hanging cable and
cable reservoir), and thus no catenary would be stable. In [7, pp 3–5], the author suggests
two pulleys and two reservoirs (one on each pole). The mathematical development leading
to equation (3) would be the same with two pulleys as with one pulley and the other cable
end clamped, since in both setups the length of the chain is not constrained and the potential
energies differ only by a constant; experimentally, however, the latter setup is easier to
implement and control.

We normalize the horizontal distance between the poles to be one. Furthermore, we
restrict ourselves to the case where the height of the left suspension point also equals one.
This leaves one free parameter—the height of the right suspension point. Mathematically, we
impose the boundary conditions, y(0) = 1 and y(1) = y1, which leads to the two constraints
(see [5, pp 51–52]):

κ1 cosh (κ2) = 1, and κ1 cosh

(
1

κ1
+ κ2

)
= y1. (4)

Using the general formula for the arc-length of a curve,

L =
∫ 1

0

√
1 + (y ′)2 dx, (5)

we finally arrive at the following expression for the length of the catenary:

L = κ1 sinh

(
1

κ1
+ κ2

)
− κ1 sinh (κ2). (6)

The experimental arrangement is depicted in figure 1(a). The cable is a chain of small
interlocking metal balls. It is fixed on the right to a vertical position gauge (C), so that the
height can be varied continuously over a large range (roughly from 0.1 m to 0.5 m). On the
left, the chain is held up to a fixed height of 0.3 m by a Vernier rotary motion sensor [10]
which acts as a low-friction pulley (B) after which it travels straight down to the table (A). The
horizontal distance between the two suspension points is also 0.3 m. The solid dots appearing
in the figure are the result of photo analysis. While the mathematical treatment was done for
simplicity in dimensionless units for x and y, the experimental length scale in both the x and
y dimensions is 0.3 m. (Thus, 1 is equivalent to 0.3 m).

Enough excess chain rests on the table (representing zero potential energy) so that the
suspended chain can freely ‘choose’ its own optimal length. For instance, when starting with
a catenary of insufficient length between the pulley and position gauge, the pulley (rotary
motion sensor) rotates clockwise to deliver more chain from the table. Similarly, when too
long a catenary is first set up, the pulley can rotate counter clockwise to transfer some chain
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(a) (b)

Figure 1. (a) A digital photo taken of the experimental arrangement and imported into Logger
Pro for further analysis. (A) the cable reservoir; (B) the pulley-wheel at a fixed height; (C) the
other suspension point of the catenary, the height of which is variable. The coordinate system is
illustrated in white. The catenary is the graph of the function y(x) between the two suspension
points. (b) Photo analysis of seven catenaries is shown by the open circles. Best hyperbolic cosine
fits are overlaid.

to the table surface. By monitoring the state of the rotary motion senor (and ensuring that no
slippage occurs), changes in catenary length can be tracked.

Data from rotary motion sensor are collected via the Lab Pro interface and Logger Pro
software by Vernier [10]. The height of the right suspension point, y1, can also be monitored
continuously by means of a digital linear motion sensor tracking the suspension point (or some
point that travels with the suspension point). In this way, the length of the catenary and its
right suspension height, y1, are measured simultaneously.

Another technique employed here is to take digital pictures of catenaries at various
suspension heights, y1. These photos are then imported into Logger Pro, where the shape of
the hanging cable can be mapped with great accuracy by clicking on the various interlocking
balls (see also [11]). The software then records the coordinates of the points thus selected
(relative to a user-defined coordinate system). Figure 1(b) shows the results obtained from
seven digital photos taken at values of y1 = 0.15–0.45 m. The circles indicate the measured
positions of metal balls along the hanging chain and the solid line indicates the best fit. The
fit equation is equation (3) with two independent parameters, κ1 and κ2.

3. Results and discussion

3.1. Analytical

On first sight, it may not be obvious why the problem at hand should exhibit a critical height of
the right endpoint below which no stable catenary can exist. As a starting point in addressing
this question, we seek a relationship between catenary length, L, and height, y1. Rewriting the
expression for L in equation (6) in terms of y1 yields,

L = ±κ1

√
cosh2

(
1

κ1
+ κ2

)
− 1 ∓ κ1

√
cosh2(κ2) − 1, (7)

where the upper sign is used for positive arguments of the hyperbolic cosines and the lower
signs for negative ones. Using the first of the two constraints in equation (4), we see that
cosh(κ2) = 1

κ1
. If we substitute this expression for 1

κ1
into the equation for the second constraint

in equation (4), then the left side of this constraint becomes κ1 cosh(cosh(κ2) + κ2). Since
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(a)

(b)

Figure 2. (a) Catenary length versus height as in the previous figure, compared to the length of
a straight line segment between the same endpoints (dotted trace). For 0.59 < y1 � 2, the graph
shows two catenary solutions of different lengths (see solid line). (b) The two catenaries consistent
with y1 = 0.8 are plotted. The longer solution is dynamically unstable.

cosh(−x) = cosh(x) > x for any real number x , κ−1
1 + κ2 can never be negative. Therefore,

since κ−1
1 + κ2 � 0, sinh

(
κ−1

1 + κ2
)

� 0, and we can drop the first plus–minus symbol in
equation (7).

Combining equations (7) and (4) we arrive at the expression

L =
√

y2
1 − κ2

1 ∓
√

1 − κ2
1 . (8)

It is important to remember that y1 depends on κ1. By the boundary conditions, we have

y1 = κ1 cosh

(
1

κ1
± cosh−1

(
1

κ1

))
, (9)

where again the lower sign is to be used for negative κ2.
In figure 2(a), the solid line is a parametric plot of equations (8) and (9), where the

parameter κ1 runs over the interval (0, 1] and both signs are used. κ1 must stay within this
interval in order for y1 to be positive and L to be real. The graph shows that no catenary
solution exists for heights y1 below about 0.59. We will refer to this value as the critical
height. One interesting feature of the parametric plot is that the curve turns around at the
critical height, resulting in two catenaries for 0.59 < y1 � 2 (i.e. two values of L for a given
y1). Note that both catenary branches appearing in the figure continue indefinitely to the right
beyond the range shown.

The lower and upper circles in the figure correspond, respectively, to the stable and
unstable catenaries at a fixed y1 = 0.8, and these two catenaries are then plotted in
figure 2(b). These curves were obtained by first determining graphically the two κ1 values con-
sistent with y1 = 0.8 after plotting equation (9). Upon applying the first boundary condition of
equation (4), the corresponding values of κ2 can be found (both are negative). With these two
pairs of constants (κ1, κ2) in hand, equation (3) yields the two catenaries of figure 2(b). The
upper catenary is stable and the lower one is unstable, as will be demonstrated in the following
section.

Let us return to figure 2(a) once more. Note that the figure compares the lengths of the
catenary to that of a straight line segment between the same endpoints. As expected, the
catenary is always longer than the straight line due to the sagging of the cable. For large
heights, the two curves follow one another closely, but as the height is reduced, a gap opens up
due to the more pronounced catenary sag (as seen in figure 1(b)). In this regime, the catenary
curves up more quickly resulting in a minimum shifted to larger y1. Note that the left–right
symmetry is broken, as the left endpoint height is constrained to be equal to the horizontal
distance between the poles (but not the right).
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(a) (b)

Figure 3. (a) Length of the catenary, L, as a function of suspension height, y1. The results obtained
from photo analysis are superimposed on those obtained from direct measurements. (b) Perturbing
the catenary to ascertain its stability: time evolution of the catenary length for y1 = 0.35 m (solid
line) and y1 = 0.2 m (dotted and dashed lines).

Thus, the minimum catenary length does not occur at a height of 1, as one might first
suspect, but instead at y1 = 1.0676. This number is obtained by substituting equation (9) into
equation (8), and then taking the derivative, dL

dκ1
, which yields

κ1 cosh(1/κ1 − cosh−1(1/κ1))√
κ2

1 cosh2(1/κ1 − cosh−1(1/κ1)) − κ2
1

×
⎧⎨
⎩ cosh(1/κ1 − cosh−1(1/κ1))

+ κ1

⎡
⎣sinh(1/κ1 − cosh−1(1/κ1))

⎛
⎝− 1

κ2
1

+
1

κ2
1

√
1
/
κ2

1 − 1

⎞
⎠

⎤
⎦ − 2κ1

⎫⎬
⎭ − κ1√

1 − κ2
1

.

(10)

Upon setting this expression to zero and solving numerically for κ1 we get 0.887, and
using equation (9) we finally arrive at y1 = 1.0676. Interestingly, from figure 2(a) we note
that for the unstable (longer in figure 2(b)) catenary, the length continues to decrease as the
right endpoint is lowered. Here the minimum occurs at the critical height of y1 = 0.59.

3.2. Experimental

Let us now subject some of the analytical predictions in the previous section to the experimental
test, remembering that the experimental length scale is 0.3 m which corresponds to 1 in the
dimensionless analysis. In the experiment, one quickly finds that when the right suspension
point is lowered below a value of around 0.15 m, the chain is quickly pulled down to the table
in a run-away fashion. So the existence of a critical height below which the catenary loses
stability is easily verified.

Before pinpointing this critical height more precisely, let us first determine the lengths of
the measured catenaries depicted in figure 1(b). This can be achieved by first fitting the data
points using the hyperbolic cosine model of equation (3). Inserting the resultant best-fit values
for κ1 and κ2 into equation (6) then yields the experimental lengths. In this way, the lengths of
all seven catenaries of figure 2(a) were estimated, and the result is shown by the solid squares
in figure 3(a). The graph suggests a minimum catenary length at a height of around 0.3 m (or
slightly above it), in agreement with the analytical results.

A more direct method that yields continuous, real-time data was briefly described earlier.
Here we directly measure the rotational motion of the pulley as a function of time, while
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simultaneously recording the height of the suspension point using a digital motion sensor.
The results are depicted by the dotted and dashed lines in figure 3(a). The dashed line
represents the data for continuously decreasing heights, starting from 0.45 m, approaching
and passing through the critical height of 0.18 m. The dotted line shows the progression back up
to 0.45 m.

Comparing these results with those obtained from static photo analysis, we would expect
reasonable agreement if the height were varied slowly, so that at each instant the cable had
time to settle into the specific catenary which corresponds to the instantaneous boundary
conditions. Overall, figure 3(a) indicates reasonable consistency between the two methods.
Note, however, that the dotted and dashed lines do not coincide, and their discrepancy is
particularly apparent for lower heights. Here we observe qualitatively reproducible hysteretic
behaviour. In the analytical section, we showed that the solution given by equation (3) loses
its stability at a height of 0.59∗(0.3 m) = 0.18 m. Thus, for heights between y1 = 0.18 m and
0.2 m, the ‘restoring’ force on the chain is much reduced and the residual pulley friction
becomes more prominent, explaining the lag in length change for both scan directions.

Figure 3(a) demonstrates that in the presence of friction a catenary can be observed in the
unstable regime of y1 < 0.18 m. In order to reveal the stability of the various catenaries, we
must perturb these solutions. Here we chose to perturb the length of the respective catenaries
by turning the pulley-wheel attached to the rotary motion sensor through a fixed angle and
letting go. The perturbation angle is then recorded via the rotary motion sensor, and it can be
quickly converted to a perturbation length via the radius of the wheel. Figure 3(b) depicts the
resultant changes of cable length as a function of time for two different heights, y1. In each
case, the catenary corresponding to a given height was initially perturbed and then allowed
to relax. The solid line corresponds to y1 = 0.35 m. The catenary solution is perturbed
by reducing the cable length initially. Upon release, the cable quickly returns to the stable
catenary via damped oscillations. Repeating this experiment for y1 = 0.2 m, we observe the
dotted and dashed lines in figure 3(b). Here, the final state of the cable depends on the sign of
the initial perturbation. When the cable length is initially reduced, we end up with a longer
catenary than when the cable is initially increased.

At a height of 0.5∗(0.3) m = 0.15 m (not shown in figure 3(b)), a perturbation towards
larger lengths always results in the cable being pulled down to the table in a run-away fashion.
Thus, experimentally, 0.15 < y1,crit < 0.2 m, consistent with the analytical prediction.

Let us compare the results from theory and experiment in more detail. Figure 4 plots
catenary length versus height of right endpoint and overlays the experimental and analytical
results. The squares, dotted and dashed lines are the experimental results from figure 3 now
given in dimensionless units (by dividing by the experimental length scale of 0.3 m). Good
agreement is found between the mathematical prediction and the experimental data. Due to
slight friction in the experiment, a catenary solution below the critical height can be observed
(see the left most data point), though it is unstable against perturbations.

3.3. Newtonian approach to stability

In figure 2(b), we asserted that the upper catenary solution was stable against perturbations
whereas the lower one was unstable. In this section, we prove this from a Newtonian point
of view. To our knowledge, this line of reasoning has not appeared in the literature. The
standard treatment in the literature [7, pp 247–9], [9, pp 106–130] establishing the stability of
these catenaries relies on fairly advanced techniques from the calculus of variation (conjugate
points).
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Figure 4. Dependence of catenary length on suspension height (solid line) overlaid on the
experimental results.

Figure 5. The tension at the cable’s lowest point, H, is related to the tension at the right
endpoint, T.

In the Newtonian picture, the horizontal component of the tension at any point along the
cable has to equal the tension, H, at the bottom of the cable, as depicted in figure 5. This
principle comes from the fact that the sum of the forces acting on the cable segment between
the cable minimum and the point of interest must be zero. Similarly, the vertical component of
the tension must be given by μgs, where s denotes the arc length. Thus, at the right suspension
point of the cable we have (see for example the well-known text [13])

μgs

H
= tan(θ) = dy

dx

∣∣∣∣
x=1

= sinh

(
1

κ1
+ κ2

)
. (11)

A simple calculation reveals that the arc length s = κ1 sinh
(

1
κ1

+ κ2
)
. Using equation (11),

and the expression for s, we find that H = μgκ1. Note that κ1 is the minimum value for y(x).
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Let us now define a perturbation of the catenary solution of equation (3), namely,

y(x) = κ1 cosh

(
x

κ1
+ κ2

)
+ α. (12)

This function is still a hyperbolic-cosine, of course, but for α �= 0, equation (12) does not solve
the Euler–Lagrange equation (for the unspecified length problem) and thus cannot minimize
the potential energy. Therefore, we do not expect these perturbed catenaries to represent
stationary chain configurations in our problem. Interestingly, equation (12) is the solution
to the classical problem where the length of the cable is fixed a priori, and in that problem
α represents the Lagrange multiplier. Thus, in a sense, this perturbation analysis samples
catenaries that would only be obtained if the pulley wheel were held in place.

Since this perturbed solution is still required to satisfy the boundary conditions, y(0) = 1
and y(1) = y1, equation (4) must be modified as follows:

κ1 cosh (κ2) = 1 − α, and κ1 cosh

(
1

κ1
+ κ2

)
= y1 − α. (13)

The tension at any point along this perturbed catenary is now found via the following sequence
of equalities (see [13]):

T (x)= H

cos(θ)
= H

√
1 + tan2(θ)= H

√
1 + sinh2

(
x

κ1
+ κ2

)
= H

(
y − α

κ1

)
= μg(y − α).

(14)

The formula for the length of the perturbed catenary is still given in equation (6). Note that
only for α = 0 does equation (14) yield a tension at the pulley equal to the weight of chain
hanging on the left side of the pulley, and so stationary chain configurations can only arise for
α = 0.

The basic idea for determining the stability of the catenary solutions to the Euler–Lagrange
equation is to plot the length L of the perturbed catenaries versus the tension at the pulley.
The tension at this point for the unperturbed catenary (i.e. α = 0) is μgy(0) = μg. If the
tension at the pulley of the perturbed catenary is less than μg, its length will decrease with
time, since the tension on the left side of the pulley, which is always fixed at μg, would then be
greater than that on the right side of the pulley, causing chain to be transferred to the reservoir.
Similarly, if the tension on the right side of the pulley for the perturbed catenary is greater
than μg, then its length will increase. The key is to consider the length in conjunction with
the tension for a given perturbed catenary. If the tension is greater than μg and the perturbed
catenary is longer than the unperturbed one, we say that the catenary is unstable. If both the
tension and the length are smaller than in the unperturbed case, the catenary is again unstable.
However, if a larger tension is associated with a smaller length or a smaller tension with a
greater length, then the catenary is deemed stable.

Specifically, given values for y1 and α, we can find κ1 and κ2 that satisfy equation (13).
Then, equation (8) yields the length and equation (14) yields the tension at the left endpoint.
Using this procedure, we calculate L and T for various choices of y1 and α as summarized
in table 1. We conclude that for y1 = 1, the shorter catenary is stable and the longer one
is unstable, which corresponds to experiments where the longer catenary solution is never
observed. For y1 = 0.5, which is below the critical height, both perturbed catenaries are
unstable, as tension on the right side of the pulley must exceed that on the left side of the
pulley (see table).
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Table 1. The lengths and tensions for both the short and long catenaries computed for two different
right endpoints.

y1 = 1

α T/μg L (short, long)

0 1 (1.054, 1.949)
−0.1 1.1 (1.038, 2.157)
+0.1 0.9 (1.084, 1.723)

y1 = 0.5

−0.07 1.07 (1.317, 1.459)
−0.1 1.10 (1.339, 1.567)

4. A catenary problem with a natural boundary condition

4.1. Mathematical formulation

In this section, we examine an interesting modification of the previous problem. A brief
discussion of this problem can be found in [7, pp 138–9]. Here we only impose one boundary
condition, namely that y(0) = y0, and allow the other end of the cable to freely move vertically
along the line x = 1. Thus y(1) is no longer specified. (Certain restrictions on y0 will be
imposed later.) Using methods from the calculus of variations (see, for example, [9, section 6]),
we obtain equation (1) again and the following new boundary condition, which we refer to as
a natural boundary condition:

∂U

∂y ′

∣∣∣∣
x=1

= 0. (15)

As before, we arrive at equation (3); now the boundary conditions y(0) = y0 and
equation (15) yield

κ1 cosh(κ2) = 1 and y(1)y ′(1) = 0. (16)

We assume that y(1) > 0 since if y(1) = 0 the cable simply lies flat on the table.
Hence y(1)y ′(1) = 0 when y ′(1) = 0. Using equation (3), this condition implies that
sinh( 1

κ1
+ κ2) = 0, and so κ2 = −1

κ1
. Therefore, the general solution to the Euler–Lagrange

equation becomes

y(x) = κ1 cosh

(
x − 1

κ1

)
. (17)

We see that y(1) = κ1, and the boundary condition y(0) = y0 leads to the equation

y0 = κ1 cosh

(
1

κ1

)
, (18)

It is important here to note that there are no values of κ1 that satisfy equation (18) for y0 = 1,
since the hyperbolic cosine is positive and always larger than its argument. However, this
equation does have exactly one solution (for κ1) when y0 ∼= 1.51, and two solutions when
y0 is larger than this value. This restriction on the value of y0 on the boundary leads to an
interesting distinction between this free-end boundary problem and our previous problem. For
this new problem, we only obtain catenaries when the ratio of the height of the left cable end
to the distance between the two poles is approximately 1.51 or larger, but not 1, as in our first
problem. Thus, there is no solution for the original pulley height of y0 = 1; only for higher
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(a) (b)

Figure 6. (a) Catenary length versus height of the left endpoint with natural boundary condition on
the right. For y0 > 1.51, the graph shows two catenaries of different lengths (see circles). (b) The
two catenaries consistent with y0 = 2 are plotted. The longer solution is dynamically unstable.

Table 2. The lengths and tensions for both the short and long catenaries computed for the natural
boundary condition on the right.

y0 = 2

α T/μg L (short, long)

0 2 (1.06, 1.93)
−0.1 2.1 (1.05, 2.05)
+0.1 1.9 (1.07, 1.85)

left endpoints catenaries are found. Finally, using equation (6) and the relation κ2 = − 1
κ1

we
obtain the following simplified expression for the length of the cable:

L = κ1 sinh

(
1

κ1

)
. (19)

4.2. Analytical and experimental results

Figure 6(a) displays the parametric plot of equations (18) and (19), analogous to figure 2(a).
Again we find two catenaries for y0 > 1.51 and no catenaries below this value of
y0. Figure 6(b) depicts the two catenaries for y0 = 2, as indicated by the circles in figure 6(a).
Only the shorter catenary is stable, as can be shown using the same Newtonian argument as
before. It is straightforward to show that the tension as given in equation (14) remains the same
in magnitude under this new boundary condition. Thus, we can apply the previous technique
here as well. Table 2 shows the results for a particular y0 = 2. Note that the longer catenary is
found to be unstable against both perturbations (i.e. positive and negative α), and the shorter
catenary is stable against both perturbations.

Experimentally, this natural boundary condition on the right side of the cable can be
realized by using a thin rod at x = 1. The chain ends on the right side in a ring that fits
over the thin rod and therefore can freely move along the rod. In order to reduce friction, we
apply a lubricant to the thin rod. The other aspects of the experiment remain unchanged; the
left end of the cable still runs over a pulley with excess cable at the level of the table. It is
important to attempt to reduce friction between the chain and the thin rod, otherwise the chain
gets stuck and cannot minimize its potential energy. Even at low friction, the chain may have
to be perturbed several times until the minimum is reached.
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(a) (b)

Figure 7. (a) Photo analysis of three catenaries is shown by circles; best hyperbolic cosine fits
are overlaid. (b) The lengths of four such catenaries (diamonds) are compared to the theoretical
prediction

Figure 7(a) summarizes the experimental data obtained via photo analysis as before.
The circles represent the hanging chain and the lines give the best one-parameter fit using
equation (17). In figure 7(b), the experimental results for catenary lengths are superimposed
on the theoretical curve of figure 6(a) and good agreement is found. At y0 = 1.3 the chain was
found to unravel, and no stable catenary was obtained; at y0 = 1.4 the chain did not always
spontaneously unravel due to some residual friction.

5. Conclusions

We have examined both analytically and experimentally the variable-length catenary for two
boundary conditions; in the first setup, the right end of the catenary was fixed at a particular
height, and in the second setup this end was free to move vertically (natural boundary
condition). Both cases exhibit critical points for the existence of stable catenaries. In the
first case, the height of the right end must be above a certain critical value, and in the second
case the height of the left end (i.e., the pulley end) must be above a critical value. As we have
described here, both critical points can be discovered experimentally. These experiments are
fairly straightforward to carry out, and they nicely illustrate principles from the calculus of
variations and from Newtonian mechanics at work.
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