Faculty Profile

Jorden Hayes

Assistant Professor of Earth Sciences (2016)

Contact Information

hayesjo@dickinson.edu

Kaufman Hall Room 139
717.254.8303

Education

  • B.S., Olivet Nazarene University, 2007
  • Ph.D., University of Wyoming, 2016

2016-2017 Academic Year

Fall 2016

ERSC 142 Earth's Changing Climate
An overview of our understanding of climate processes and their interaction with the atmosphere, geosphere, hydrosphere, and biosphere based on studies of ancient climates, which inform our understanding of climate change now and into the future. Topics include drivers of climate change at different time scales, evidence for climate change, and major climate events such as ice ages. Emphasis will be placed on the last 1 million years of earth history as a prelude to discussing potential anthropogenic impacts on the climate. Case studies of major climate “players” such as the US and China will be contrasted with those most vulnerable, Africa and SE Asia to determine mitigation and adaptation strategies. The lab component will use historic climate data, field experiences, and climate modeling to interpret climate change processes. Three hours classroom and three hours laboratory a week.

ERSC 142 Earth's Changing Climate
An overview of our understanding of climate processes and their interaction with the atmosphere, geosphere, hydrosphere, and biosphere based on studies of ancient climates, which inform our understanding of climate change now and into the future. Topics include drivers of climate change at different time scales, evidence for climate change, and major climate events such as ice ages. Emphasis will be placed on the last 1 million years of earth history as a prelude to discussing potential anthropogenic impacts on the climate. Case studies of major climate “players” such as the US and China will be contrasted with those most vulnerable, Africa and SE Asia to determine mitigation and adaptation strategies. The lab component will use historic climate data, field experiences, and climate modeling to interpret climate change processes. Three hours classroom and three hours laboratory a week.

ERSC 221 Oceanography
An interdisciplinary introduction to the marine environment, including the chemistry of seawater, the physics of currents, water masses and waves, the geology of ocean basins, marine sediments and coastal features, and the biology of marine ecosystems. Topics include the theory of plate tectonics as an explanation for ocean basins, mid-ocean ridges, trenches, and island arcs. The interaction of man as exploiter and polluter in the marine environment is also considered. Three hours classroom and three hours laboratory per week. Prerequisite: One introductory science course (not MATH). This course is cross-listed as ENST 221. Offered every other year.

ERSC 500 Independent Study

Spring 2017

ERSC 141 Earth's Hazards
This course examines natural processes such as earthquakes, volcanic eruptions, mass wasting events, and floods that have the potential to produce disastrous consequences for humans. All of these processes result from interactions between the atmosphere, biosphere, geosphere and hydrosphere directly or indirectly, which is the realm of earth sciences. Increasing global populations and increasingly interdependent national economies mean that few disasters are now only ‘local’. This course will use examples such as case studies of recent earthquakes and volcanic eruptions to examine how natural processes can be hazardous, and whether or not humans can anticipate and mitigate these kinds of hazards to prevent future disasters. Laboratory work will include analog experiments, field trips, and video analysis of historic disasters. Three hours classroom and three hours laboratory a week.

ERSC 141 Earth's Hazards
This course examines natural processes such as earthquakes, volcanic eruptions, mass wasting events, and floods that have the potential to produce disastrous consequences for humans. All of these processes result from interactions between the atmosphere, biosphere, geosphere and hydrosphere directly or indirectly, which is the realm of earth sciences. Increasing global populations and increasingly interdependent national economies mean that few disasters are now only ‘local’. This course will use examples such as case studies of recent earthquakes and volcanic eruptions to examine how natural processes can be hazardous, and whether or not humans can anticipate and mitigate these kinds of hazards to prevent future disasters. Laboratory work will include analog experiments, field trips, and video analysis of historic disasters. Three hours classroom and three hours laboratory a week.

ERSC 560 Stu/Faculty Collaborative Rsch