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Economics is the most mathematical of all the social sciences. Indeed, to the unini-
tiated reader, many academic journals in economics resemble a mathematics or
physics journal. Because this text is intended to show the practical applications of
economic theory, this presents something of a dilemma. On the one hand, the eco-
nomic theory of managerial decision making has evolved along with the rest of
economics to a point where it can be (and usually is) profusely expressed in mathe-
matical terms. On the other hand, industry experience indicates that managers
seldom use the more advanced mathematical expressions of economic theory. They
do, nonetheless, rely quite often on many of the concepts, graphs, and relatively
simple numerical examples that are used throughout this text to assist them in their
decision making.

But the dilemma does not end here. Regardless of the role of mathematics in
managerial decision making, it certainly serves as an important instructional vehi-
cle for economics professors. Using calculus enables the very concise expression
of complex functional relationships and the quick solution of problems involving
the optimal allocation of scarce resources. Moreover, students with extensive aca-
demic backgrounds or work experience in applied mathematics (i.e., engineers
and scientists) often find that they are able to discern the essential nature of an
economic problem more easily with equations and calculus than with narratives
and tabular examples.

We have resolved the dilemma in the following way. The explanations of eco-
nomic terms, concepts, and methods of analysis rely primarily on verbal defini-
tions, numerical tables, and graphs. As appropriate, chapter appendixes present
the same material using algebra and calculus. At times, algebra and calculus are
employed in the main body of a chapter. Moreover, problems and exercises at the
end of the chapter give students ample opportunity to reinforce their under-
standing of the material with the use of algebra and calculus, as well as with
tables and graphs.

The authors’ experience as teachers indicates that many students have already
learned the mathematics employed in this text, both in the main body and in the
appendixes. However, some students may have studied this material some time ago
and may therefore benefit from a review. Such a review is offered in the balance of this
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2 Managerial Economics

appendix. It is intended only as a brief refresher. For a more comprehensive review,
readers should consult any of the many texts and review books on this subject.1 In
fact, any college algebra or calculus text would be just as suitable as a reference.

VARIABLES, FUNCTIONS, AND SLOPES:
THE HEART OF ECONOMIC ANALYSIS

1See, for example, Bodh R. Gulati, College Mathematics with Applications to the Business and Social Sciences,
New York: Harper & Row, 1978; and Donald and Mildred Stanel, Applications of College Mathematics,
Lexington, MA: D.C. Heath, 1983.

2To be sure, variables in the other social sciences are measurable, but in many instances, the measure-
ment standards themselves are subject to discussion and controversy. For example, psychologists may
use the result of some type of IQ test as a measure of intelligence. But there is an ongoing debate as to
whether this result is reflective of one’s native intelligence or socioeconomic background.

A variable is any entity that can assume different values. Each academic discipline
focuses attention on its own set of variables. For example, in the social sciences,
political scientists may study power and authority, sociologists may study group
cohesiveness, and psychologists may study paranoia. Economists study such vari-
ables as price, output, revenue, cost, and profit. The advantage that economics has
over the other social sciences is that most of its variables can be measured in a rela-
tively unambiguous manner.2

Once the variables of interest have been identified and measured, economists try to
understand how and why the values of these variables change. They also try to deter-
mine what conditions will lead to optimal values. Here the term optimal refers to the best
possible value in a particular situation. Optimal may refer to the maximum value (as in
the case of profit), or it may refer to the minimum value (as in the case of cost). In any
event, the analysis of the changes in a variable’s value, often referred to as a variable’s
“behavior,” is almost always carried out in relation to other variables. In mathematics,
the relationship of one variable’s value to the values of other variables is expressed in
terms of a function. Formally stated in mathematical terms, Y is said to be a function of
X (i.e., Y � f(x), where f represents “function” if for any value that might be assigned to X
a value of Y can be determined). For example, the demand function indicates the quan-
tity of a good or service that people are willing to buy, given the values of price, tastes
and preferences, prices of related products, number of buyers, and future expectations.
A functional relationship can be expressed using tables, graphs, or algebraic equations.

To illustrate the different ways of expressing a function, let us use the total revenue
function. Total revenue (TR, or sales) is defined as the unit price of a product (P) multi-
plied by the number of units sold (Q). That is, TR � P × Q. In economics, the general
functional relationship for total revenue is that its value depends on the number of
units sold. That is, TR � f(Q). Total revenue, or TR, is called the dependent variable
because its value depends on the value of Q. Q is called the independent variable because
its value may vary independently of the value of TR. For example, suppose a product
is sold for $5 per unit. Table 1 shows the relationship between total revenue and quan-
tity over a selected range of units sold.

Figure 1 shows a graph of the values in Table 1. As you can see in this figure, we
have related total revenue to quantity in a linear fashion. There does not always have
to be a linear relationship between total revenue and quantity. As you see in the next
section, this function, as well as many other functions of interest to economists, may
assume different nonlinear forms.
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` Review of Mathematical Concepts Used in Managerial Economics 3

Table 1 Tabular
Expression of the TR
Function

UNITS SOLD (Q) TOTAL REVENUE (TR)

0 $0
1 5
2 10
3 15
4 20
5 25

Figure 1 Total Revenue
Function

We can also express the relation depicted in Table 1 and Figure 1 in the following
equation:

TR � 5Q (1)

where TR � Dependent variable (total revenue)
Q � Independent variable (quantity)
5 � Coefficient showing the relationship between changes in TR relative to

changes in Q

This equation can also be expressed in the general form:

Y � a � bX (2)

where Y � Dependent variable (i.e., TR)
X � Independent variable (i.e., Q)
b � Coefficient of X (i.e., the given P of $5)
a � Intercept term (in this case, 0)

In a linear equation, the coefficient b (which takes the value of 5 in our total
revenue function) can also be thought of as the change in Y over the change in X

TR ($)

Q

25

1

20

15

10

5

2 3 4 5
0

TR
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4 Managerial Economics

Figure 2 The Slope
of the Total Revenue Line

(i.e., (�Y)/(�X)). In other words, it represents the slope of the line plotted on the
basis of Equation 2. The slope of a line is a measure of its steepness. This can
be seen in Figure 1, which for purposes of discussion we have reproduced in
Figure 2. In this figure, the steepness of the line between points A and B can be
seen as BC/AC.

The slope of a function is critical to economic analysis because it shows the
change in a dependent variable relative to a change in a designated independent
variable. As explained in the next section of this appendix, this is the essence of
marginal analysis.

THE IMPORTANCE OF MARGINAL ANALYSIS
IN ECONOMIC ANALYSIS

One of the most important contributions that economic theory has made to
managerial decision making is the application of what economists call marginal
analysis. Essentially, marginal analysis involves the consideration of changes in
the values of variables from some given starting point. Stated in a more formal
mathematical manner, marginal analysis can be defined as the amount of change
in a dependent variable that results from a unit change in an independent vari-
able. If the functional relationship between the dependent and independent
variables is linear, this change is represented by the slope of the line. In the case of
our total revenue function, TR � 5Q, we can readily see that the coefficient, 5,
indicates the marginal relationship between TR, the dependent variable, and Q,
the independent variable. That is, total revenue is expected to change by $5 for
every unit change in Q.

Most economic decisions made by managers involve some sort of change in one
variable relative to a change in other variables. For example, a firm might want to
consider raising or lowering the price from $5 per unit. Whether it is desirable to do
so would depend on the resulting change in revenues or profits. Changes in these
variables would in turn depend on the change in the number of units sold as a result
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` Review of Mathematical Concepts Used in Managerial Economics 5

of the change in price. Using the usual symbol for change, � (delta), this pricing deci-
sion can be summarized via the following illustration:

The top line shows that a firm’s price affects its profit. The dashed arrows indicate
that changes in price will change profit via changes in the number of units sold
(�Q), in revenue, and in cost. Actually, each dashed line represents a key function
used in economic analysis. �P to �Q represents the demand function. �Q to
�Revenue is the total revenue function, �Q to �Cost is the cost function, and �Q
to �Profit is the profit function. Of course, the particular behavior or pattern of
profit change relative to changes in quantity depends on how revenue and cost
change relative to changes in Q.

Marginal analysis comes into play even if a product is new and being priced in
the market for the first time. When there is no starting or reference point, different
values of a variable may be evaluated in a form of sensitivity or what-if analysis.
For example, the decision makers in a company such as IBM may price the com-
pany’s new workstations by charting a list of hypothetical prices and then fore-
casting how many units the company will be able to sell at each price. By shifting
from price to price, the decision makers would be engaging in a form of marginal
analysis.3

Many other economic decisions rely on marginal analysis, including the hiring of
additional personnel, the purchase of additional equipment, or a venture into a new
line of business. In each case, it is the change in some variable (e.g., profit, cash flow,
productivity, or cost) associated with the change in a firm’s resource allocation that is
of importance to the decision maker. Consideration of changes in relation to some ref-
erence point is also referred to as incremental analysis. A common distinction made
between incremental and marginal analysis is that the former simply considers
the change in the dependent variable, whereas the latter considers the change in the
dependent variable relative to a one-unit change in the independent variable. For
example, suppose lowering the price of a product results in a sales increase of 1,000
units and a revenue increase of $2,000. The incremental revenue would be $2,000, and
the marginal revenue would be $2 ($2,000/1,000).

Price Profit
� Revenue

�P �Q � Profit
� Cost

FUNCTIONAL FORMS: A VARIATION
ON A THEME

3One of the authors was a member of the pricing department of IBM for a number of years. This type of
sensitivity analysis involving marginal relationships is indeed an important part of the pricing process.

For purposes of illustration, we often rely on a linear function to express the relation-
ship among variables. This is particularly the case in Chapter 3, on supply and
demand. But there are many instances when a linear function is not the proper
expression for changes in the value of a dependent variable relative to changes in
some independent variable. For example, if a firm’s total revenue does not increase

KEATMX02_p001-027.qxd  11/2/12  2:24 PM  Page 5



6 Managerial Economics

Figure 3 Demand Curve

at the same rate as additional units of its product are sold, a linear function is clearly
not appropriate. To illustrate this phenomenon, let us assume a firm has the power to
set its price at different levels and that its customers respond to different prices on
the basis of the following schedule:

P Q

$7 0
6 100
5 200
4 300
3 400
2 500
1 600
0 700

The algebraic and graphical expressions of this relationship are shown in
Figure 3. As implied in the schedule and as shown explicitly in Figure 3, we assume
a linear relationship between price and quantity demanded.

Based on the definition of total revenue as TR � P × Q, we can create a total
revenue schedule, as well as a total revenue equation and graph. These are shown
in Figure 4.

Because we know that the demand curve is Q � 700 � 100P and TR � P × Q,
we can arrive at the values of the coefficient and intercept terms, as well as
the functional form in a very straightforward manner. First, we need to express
P in terms of Q so we can substitute this relationship into the total revenue
equation:

Q � 700 � 100P (3)

or

P � 7 � 0.01Q (4)

P ($)

Q

7

100

6

5

4

3

2

1

200 300 400 500 600 700
0

P = 7 – 0.01Q

KEATMX02_p001-027.qxd  11/2/12  2:24 PM  Page 6



` Review of Mathematical Concepts Used in Managerial Economics 7

Figure 4 Total
Revenue

Substituting the Equation 4 into the total revenue equation gives

TR � P × Q (5)
� (7 � 0.01Q)Q
� 7Q � 0.01Q2

As can be seen, a linear demand function results in a nonlinear total revenue
function. More precisely, the functional relationship between total revenue and
quantity seen here is expressed as a quadratic equation. Basically, this particular
functional relationship is obtained whenever the independent variable is raised to
the second power (i.e., squared) and to the first power. Graphically, quadratic equa-
tions are easily recognized by their parabolic shape. The parabola’s actual shape and
placement on the graph depend on the values and signs of the coefficient and inter-
cept terms. Figure 5 shows four different quadratic functions, the left two have Y as a
function of X and the right two have X as a function of Y. 

If, in addition to being squared, the independent variable is raised to the third
power (i.e., cubed), the relationship between the dependent and independent vari-
ables is called a cubic function. Figure 6 illustrates different cubic functions. As in the
case of quadratic equations, the pattern and placement of these curves depend on
the values and signs of the coefficients and intercept terms, and on whether Y as a
cubic function of X or X is a cubic function of Y. 

The independent variable can also be raised beyond the third power. However,
anything more complex than a cubic equation is generally not useful for describing
the relationship among variables in managerial economics. Certainly, there is no need
to go beyond the cubic equation for purposes of this text. As readers see in ensuing
chapters, the most commonly used forms of key functions are (1) linear demand func-
tion, (2) linear or quadratic total revenue function, (3) cubic production function, 
(4) cubic cost function, and (5) cubic profit function. Some variations to these relation-
ships are also used, depending on the specifics of the examples being discussed.

There are other nonlinear forms used in economic analysis besides those just
listed. These forms involve the use of exponents, logarithms, and reciprocals of the
independent variables. Simple examples of these types of nonlinear form are shown
in Figure 7. These forms are generally used in the statistical estimation of economic

TR ($)

Q100 200 300 400 500 600 700
0

1,200
1,100
1,000

900
800
700
600
500
400
300
200
100

TR Q

0
600

1,000
1,200
1,200
1,000

600
0

0
100
200
300
400
500
600
700

TR = 7Q – 0.01Q2
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8 Managerial Economics

Figure 5 Examples
of Quadratic Functions

Figure 6 Examples of Cubic Functions

functions, such as the demand, production, and cost functions, and in the forecasting
of variables based on some trend over time (i.e., time series analysis). More is said
about these particular functional forms in Chapters 5, 8, and 9.

Continuous Functional Relationships

In plotting a functional relationship on a graph, we assume changes in the value of
the dependent variable are related in a continuous manner to changes in the inde-
pendent variable. Intuitively, a function can be said to be continuous if it can be

Y

X

Y

X

Y

X

Y

X
Y = f(X) X = f(Y)

X X

Y Y

Y = f(X) X = f(Y)
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` Review of Mathematical Concepts Used in Managerial Economics 9

Figure 7 Examples
of Selected Nonlinear
Functions

Exponential
Y = Xa

a > 1

Logarithmic
Y = logX

Reciprocal

Y = 
X
1

Y

X

Y

X

Y

X

4This particular way of explaining a continuous function is taken from Gulati, College Mathematics. To be
sure, the author provides a much more rigorous definition of this concept.

drawn on a graph without taking the pencil off the paper.4 Perhaps the best way to
understand a continuous function is to observe its opposite, a function with disconti-
nuity. Suppose the admission price to an amusement park is established as follows:
ages 1 through 12 must pay $3, ages 13 through 60 must pay $8, and ages 61 and
older must pay $5. A graph of the relationship between admission price and age is
shown in Figure 8. Notice that there is a jump or break in the graph at the level sepa-
rating children from adults and the level separating adults from senior citizens.
Because of these breaks in the relationship between the independent and dependent
variables, this discontinuous relationship is also referred to as a step function.

Unless otherwise specified, the functional relationships analyzed in this text are
considered to be continuous. Looking back at our example of the demand and total
revenue functions, we can see that they indeed indicate a continuous relationship
between price and quantity and between total revenue and quantity (see Figures 1
and 4). However, a closer look at the intervals used in the examples might lead you
to question the applicability of a continuous function in actual business situations.
For instance, let us observe again in Figure 9 the relationship between total revenue
and quantity first shown in Figure 4.
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10 Managerial Economics

Figure 8 Example of a
Step Function: Age Groups
and Admission Price

Figure 9 Discrete
Intervals in a Continuous
Function: The Example of
Total Revenue

P ($)

Age (Years)

8

10 20 30 40 50 60 70
0

7

6

5

4

3

2

1

TR ($)

Q100 200 300 400 500 600 700 800

500

1,000

0

150 units

TR = $825

The inquiring reader might ask whether this relationship, TR � 7Q � 0.01Q2, is in
fact valid for points within each given interval. For example, if the firm sold 150 units,
would it earn $825? Even if the answer is affirmative, to be a truly continuous function,
the relationship would have to hold no matter how small the intervals of quantity con-
sidered.5 For example, if the firm sold 150.567 units, its revenue would be $827.265.

But at this point, an adjustment to strict mathematics must be tempered with
common sense. There are many instances in economic analysis in which continuous
functions are assumed to represent relationships among variables, even though the
variables themselves are subject to limitations in how finely they can be subdivided.
For example, a firm may only be able to sell its product in lots of 100 or, at the very
least, in single units. A firm might not want to consider price changes in terms of cents

5According to mathematicians, “A function is said to be continuous over an open interval if it is continuous
at every point in that interval” (Gulati, College Mathematics, p. 505).
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` Review of Mathematical Concepts Used in Managerial Economics 11

USING CALCULUS

Calculus is a mathematical technique that enables one to find instantaneous rates of
change of a continuous function. That is, instead of finding the rate of change
between two points on a plotted line, as shown in Figure 2, calculus enables us to
find the rate of change in the dependent variable relative to the independent variable
at a particular point on the function. However, calculus can be so applied only if a
function is continuous. Thus, we needed to establish firmly the validity of using con-
tinuous functions to represent the relationships among economic variables.

Our brief introduction to calculus and its role in economic analysis begins with
the statement that if all functional relationships in economics were linear, there
would be no need for calculus! This point may be made clearer by referring to an
intuitive definition of calculus. To quote the author of an extremely helpful and read-
able book on this subject:

Calculus, first of all, is wrongly named. It should never have been
given that name. A far truer and more meaningful name is “SLOPE-
FINDING.”6

It is not difficult to find the slope of a linear function. We simply take any two points
on the line and find the change in Y relative to the change in X. The relative change is,
of course, represented by the b coefficient in the linear equation. Moreover, because it is
linear, the slope or rate of change remains the same between any two points over the
entire range of intervals one wants to consider for the function. This is shown in
the algebraic expression of the linear function by the constancy of the b coefficient.

However, finding the slope of a nonlinear function poses a problem. Let us arbitrar-
ily take two points on the curve shown in Figure 10 and label them A and D. The slope
or rate of change of Y relative to the change in X can be seen as DL/AL. Now, on this
same curve let us find the slope of a point closer to point D and call it C. Notice that the
slope of the line between these two points is less than the slope between D and A. (The
measure of this slope is DM/CM.) The same holds true if we consider point B, a point
that is still closer to D; the slope between B and D is less than the two slopes already con-
sidered. In general, we can state that in reference to the curve shown in Figure 10, the
slope between point D and a point to the left decreases as the point moves closer to D.
Obviously, this is not the case for a linear equation because the slope is constant.

6Eli S. Pine, How to Enjoy Calculus, Hasbrouck Heights, NJ: Steinlitz-Hammacher, 1983. Pine’s definition
is, of course, a simplification because it leaves out integral calculus (which could more meaningfully be
defined as “AREA FINDING”). Nevertheless, we recommend this book highly for those who want a
“user-friendly” review of differential calculus.

but only in terms of dollars. In other cases, it might not be a matter of a firm’s choice
but of what resources are available. For example, suppose we have a function relating
persons hired to the output they produce. (In Chapter 6, this is referred to as the short-
run production function.) Let us further suppose that labor resources are measured in
terms of units of people (as opposed to hours, minutes, or even seconds of work time).
Many economic activities in business involve variables that must be measured in dis-
crete intervals (e.g., people, units of output, monetary units, machines, factories). For
purposes of analysis, we assume all the economic variables are related to each other in
a continuous fashion but are valid only at stated discrete intervals.

KEATMX02_p001-027.qxd  11/2/12  2:24 PM  Page 11



12 Managerial Economics

Figure 10 Finding the
Slope of a Nonlinear
Function

Y

X

A

C

B

D

M

L

Line tangent
to point D

To understand how calculus enables us to find the slope or rate of change of a
nonlinear function, let us resume the experiment. Suppose we keep on measuring
changes in Y relative to smaller and smaller changes in X. Graphically, this can be
represented in Figure 10 by moving point B toward point D. As smaller and smaller
changes in X are considered, point B moves closer and closer to point D until the
limit at which it appears to become one and the same with point D. When this occurs,
the slope or rate of change of Y relative to X can be represented as point D itself.
Graphically, this is represented by the slope of a line tangent to point D. In effect, this
slope is a measure of the change in Y relative to a very small (i.e., infinitesimally
small) change in X. To find the magnitude of the slope of tangency to any point on a
line, we need to employ calculus, or more specifically, a concept used in calculus
called the derivative.

In mathematics, a derivative is a measure of the change in Y relative to a very
small change in X. Using formal mathematical notation, we can define the deriva-
tive as

This notation can be expressed as, “The derivative of Y with respect to X equals the
limit (if such a limit exists) of the change in Y relative to the change in X as the
change in X approaches zero.”7 It is worth noting that, although we will not refer to
derivatives this way, a common shorthand for dY/dX or df/dx is to put a “prime” after
the function Y' or f '. As you can see from the discussion in the previous two para-
graphs, the derivative turns out to be the slope of a line that is tangent to some given
point on a curve. By convention, mathematicians use d to represent very small
changes in a variable. Hence, dY/dX means “changes in Y relative to very small
changes in X.” For changes between two distinct points, the delta sign (�) is used.

dY
dX

Y
X

=
X

lim
Δ →

Δ
Δ0

7The concept of limit is critical to understanding the derivative. We tried to present an intuitive explanation
of this concept by considering the movement of point B in Figure 10 closer and closer to point D, so
that in effect the changes in X become smaller and smaller. At the limit, B becomes so close to D that,
for all intents and purposes, it is the same as D. This situation would represent the smallest possible
change in X. For a more formal explanation of limit, readers should consult any introductory calculus text.
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` Review of Mathematical Concepts Used in Managerial Economics 13

Figure 11 The
Derivative of a Constant
Equals Zero

Y

X

100 Y = 100

0

Finding the Derivatives of a Function

There are certain rules for finding the derivatives of a function. We present in some
detail two rules that are used extensively in this text. The other rules and their use in
economic analysis are only briefly mentioned. Formal proofs of all these rules are not
provided. Interested students may consult any introductory calculus text for this
information.

Constants
The derivative of a constant must always be zero. Derivatives involve rates of
change, and a constant, by definition, never changes in value. Expressed formally, if
Y equals some constant (e.g., Y � 100), then

The null value of the derivative of a constant is illustrated in Figure 11. Here we have
assumed Y to have a constant value of 100. Clearly, this constant value of Y is unaf-
fected by changes in the value of X. Thus, dY/dX � 0.

Power Functions
A power function is one in which the independent variable, X, is raised to a power.
This type of function can be expressed in general terms as

Y � bXn (6)

where Y � Dependent variable
b � Coefficient of the independent variable
X � Independent variable
n � Power to which the independent variable is raised

The rule for finding the derivative of this type of function is called the Power Rule

(7)
dY
dX

nbX n= −( )1

dY
dX

= 0

KEATMX02_p001-027.qxd  11/2/12  2:24 PM  Page 13



14 Managerial Economics

Thus, suppose we have the equation

Y � 10X3 (8)

The derivative of this equation according to this rule is

(9)

Thus, at the point where X � 5, the “instantaneous” rate of change of Y with respect
to X is 30(5)2, or 750.

Interestingly, n need not be a whole number, or even positive. The power rule
still holds. 

Sums and Differences
For convenience in presenting the rules in the remainder of this appendix, we use the
following notations:

U � g(X), where U is an unspecified function, g, of X
V � h(X), where V is an unspecified function, h, of X

Given the function Y � U � V, the derivative of the sum (difference) is equal
to the sum (difference) of the derivatives of the individual terms. In notational form,

For example, if U � g(X) � 3X2, V � h(X) � 4X3 and Y � U � V � 3X2 � 4X3, then

Products
Given the function Y � UV, its derivative can be expressed as follows:

This rule states that the derivative of the product of two expressions (U and V) is
equal to the first term multiplied by the derivative of the second, plus the second
term times the derivative of the first. For example, let Y � 5X2(7 � X). By letting
U � 5X2 and V � (7 � X), we obtain

Quotients
Given the function Y � U/V, its derivative can be expressed as follows:

dY
dX

V dU dX U dV dX

V
=

( ) − ( )/ /
2

dY
dX

X
dV
dX

X
dU
dX

X X X

X

= + −( )
= −( ) + −( )
= −

5 7

5 1 7 10

5

2

2

22 2

2

70 10
70 15

+ −
= −

X X
X X

dY
dX

U
dV
dX

V
dU
dX

= +

dY
dX

X X= +6 12 2

dY
dX

dU
dX

dV
dX

= +

dY
dX

X

X

= ×

=

−( )3 10

30

3 1

2

KEATMX02_p001-027.qxd  11/2/12  2:24 PM  Page 14



` Review of Mathematical Concepts Used in Managerial Economics 15

For example, suppose we have the following function:

Using the formula and letting U � 5X � 9 and V � 10X2, we obtain the following:

Applying the Rules to an Economic Problem and a Preview of Other
Rules for Differentiating a Function
There are several other rules for differentiating a function that are used in eco-
nomic analysis. These involve differentiating a logarithmic function and the “func-
tion of a function” (often referred to in mathematics as the chain rule). We present
these rules as they are needed in the appropriate chapters. In fact, almost all the
mathematical examples involving calculus require only the rules for constants,
powers, and sums and differences. As an example of how these three rules are
applied, we return to the total revenue and demand functions presented earlier in
this appendix. Recall that

TR � 7Q � 0.01Q2 (10)

Using the rules for powers and for sums and differences, we find that the derivative
of this function is

(11)

The derivative of the total revenue function is also called the marginal revenue function
and plays an important part in many aspects of economic analysis. (See Chapter 4 for
a complete discussion of the definition and uses of marginal revenue.)

Turning now to the demand function first presented in Figure 3, we recall that

Q � 700 � 100P (12)

Using the rules for constants, powers, and sums and differences, we see that the
derivative of this function is:

(13)

Notice that, by the conventions of mathematical notation, variables such as P that
have no stated exponent are assumed to be raised to the first power (i.e., n � 1).

dQ
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16 Managerial Economics

8The rule in algebra is that any value raised to the zeroth power is equal to unity.
9An expression such as this is referred to in mathematics as a linear additive equation. The most common
nonlinear alternative demand function is the constant elasticity demand function, CED, discussed in
Chapter 4. Using price, P, and income, I, this function is Q � aPbIc and the partials with respect to P and
I are given by: QP � ∂Q/∂P � baP(b-1)Ic and QI � ∂Q/∂I � caPbI(c-1).

Thus, based on the rule for the derivative of a power function (n � 1) becomes
(1 � 1), or zero.8 Therefore, dQ/dP is equal to the constant value 100. Recall our
initial statement that there is no need for calculus if only linear functions are con-
sidered. This is supported by the results shown in Equation 13. Here we can see
that the first derivative of the linear demand equation is simply the value of the
b coefficient, 100. That is, no matter what the value of P, the change in Q with
respect to a change in P is 100 (i.e., the slope of the linear function, or the b coeffi-
cient in the linear equation). Another way to express this is that for a linear func-
tion, there is no need to take the derivative of dY/dX. Instead, we can use the
slope of the line represented by �Y/�X.

Partial Derivatives
Many functional relationships in the text entail a number of independent variables.
For example, let us assume a firm has a demand function represented by the follow-
ing equation:

Q � �100P � 50I � Ps � 2N (14)

where Q � Quantity demanded
P � Price of the product
I � Income of customers

Ps � Price of a substitute product
N � Number of customers

If we want to know the change in Q with respect to a change in a particular indepen-
dent variable, we can take the partial derivative of Q with respect to that variable.
For example, the impact of a change in P on Q, with other factors held constant,
would be expressed as

(15)

The conventional symbol used in mathematics for the partial derivative is the del oper-
ator, ∂. Notice that all we did was use the rule for the derivative of a power function on
the P variable. Because the other independent variables, I, Ps, and N, are held constant,
they are treated as constants in taking the partial derivative. (As you recall, the deriva-
tive of a constant is zero.) Thus, the other terms in the equation drop out, leaving us
with the instantaneous impact of the change in P on Q. This procedure applies regard-
less of the powers to which the independent variables are raised. In Equation (14), all of
the independent variables are raised only to the first power.9

Finding the Maximum and Minimum Values of a Function

A primary objective of managerial economics is to find the optimal values of key
variables. This means finding “the best” possible amount or value under certain cir-
cumstances. Marginal analysis and the concept of the derivative are very helpful in
finding optimal values. For example, given a total revenue function, a firm might

∂
∂
Q
P

= −100
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` Review of Mathematical Concepts Used in Managerial Economics 17

want to find the number of units it must sell to maximize its revenue. Taking the total
revenue function first shown in Equation 5, we have

TR � 7Q � 0.01Q2 (16)

The derivative of this function (i.e., marginal revenue) is

(17)

Setting the first derivative of the total revenue function (or the marginal revenue
function) equal to zero and solving for the revenue-maximizing quantity, Q*,
gives us10

7 � 0.02Q � 0
Q* � 350 (18)

Thus, the firm should sell 350 units of its product if it wants to maximize its
total revenue. In addition, if the managers want to know the price that the firm
should charge to sell the “revenue-maximizing” number of units, they can go
back to the demand equation from which the total revenue function was derived,
that is,

P � 7 � 0.01 Q (19)

By substituting the value of Q* into this equation, we obtain

P* � 7 � 0.01(350)
� $3.50 (20)

The demand function, the total revenue function, and the revenue-maximizing price
and quantity are all illustrated in Figure 12.

To further illustrate the use of the derivative in finding the optimum, let us use
an example that plays an important part in Chapters 8 and 9. Suppose a firm wants
to find the price and output levels that will maximize its profit. If the firm’s revenue
and cost functions are known, it is a relatively simple matter to use the derivative of
these functions to find the optimal price and quantity. To begin with, let us assume
the following demand, revenue, and cost functions:

Q � 17.2 � 0.1P (21)

or

P � 172 � 10Q (22)

TR � 172Q � 10Q2 (23)

TC � 100 � 65Q � Q2 (24)

By definition, profit (π) is equal to total revenue minus total cost. That is,

π � TR � TC (25)

d
dQ

Q
TR = −7 0 02.

10Henceforth, all optimal values for Q and P (e.g., values that maximize revenue or profit or minimize
cost) are designated with an asterisk.
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18 Managerial Economics

Substituting Equations 23 and 24 into 25 gives us:

π � 172Q � 10Q2 � 100 � 65Q � Q2

� �100 � 107Q � 11Q2 (26)

To find the profit-maximizing output level, we simply follow the same procedure
used to find the revenue-maximizing output level. We take the derivative of the total
profit function, set it equal to zero, and solve for Q*:

(27)

Q* � 4.86 (28)

The total revenue and cost functions and the total profit function are illustrated in
Figures 13a and 13b, respectively.

d
dQ

Q

Q

π
�

�

107 22 0

22 107

− =

Figure 12 Demand
Function, Total Revenue
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Maximizing Price and
Quantity
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` Review of Mathematical Concepts Used in Managerial Economics 19

Figure 13 Total
Revenue, Total Cost, and
Total Profit Functions

(a)

$

Q

TR = 172Q – 10Q2

(b)

$

Q

 = –100 + 107Q – 11Q 2

TC = 100 + 65Q – Q2

Q* = 4.86

Q* = 4.86

π

Distinguishing Maximum and Minimum Values
in the Optimization Problem
In economic analysis, finding the optimum generally means finding either the maxi-
mum or minimum value of a variable, depending on what type of function is being
considered. For example, if the profit or total revenue function is the focus, the max-
imum value is obviously of interest. If a cost function is being analyzed, its minimum
value would be the main concern. Taking the derivative of a function, setting it equal
to zero, and then solving for the value of the independent variable enables us to find
the maximum or minimum value of the function.

However, there may be instances in which a function has both a maximum and a
minimum value. When this occurs, the method described previously cannot tell us
whether the optimum is a maximum or a minimum. This situation of indeterminacy
can be seen in Figure 14a. The graph in this figure represents a cubic function of the
general form Y � a � bX � cX2 � dX3. Clearly, this function has both a minimum
(point A) and a maximum (point C). As a generalization, if we took the first deriva-
tive at the four points designated in Figure 14a, we would find that

At point A, dY/dX � 0.
At point B, dY/dX > 0.
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20 Managerial Economics

Figure 14 Maximum
and Minimum Points of a
Cubic Function

(a)

Y

X

A

B

C
D

Y = a – bX + cX2 – dX3

(b)

dY
dX

X

A' C'

dY
 dX

 = –b + 2cX – 3dX2

At point C, dY/dX � 0.
At point D, dY/dX < 0.

As expected, the first derivatives of points A and C are equal to zero, reflecting the fact
that their lines of tangency are horizontal (i.e., have zero slope). The positive and nega-
tive values of the derivatives at points B and D are reflective of their respective upward
and downward lines of tangency. However, because both points A and C have first
derivatives equal to zero, a problem arises if we want to know whether these points
indicate maximum or minimum values of Y. Of course, in Figure 14 we can plainly see
that point A is the minimum value and point C is the maximum value. However, there
is a formal mathematical procedure for distinguishing a function’s maximum and min-
imum values. This procedure requires the use of a function’s second derivative.

The second derivative of a function is the derivative of its first derivative. The sec-
ond derivative is denoted with superscript 2s, d2Y/dX2, but note that the superscripts
are in different locations in numerator and denominator so that the reader will not
think the first derivative is being squared. The procedure for finding the second deriv-
ative of a function is quite simple. All the rules for finding the first derivative apply to
obtaining the second derivative. Conceptually, we can consider the second derivative
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` Review of Mathematical Concepts Used in Managerial Economics 21

11Mathematics and physics texts often use the example of a moving automobile to help distinguish the
first and second derivatives. To begin with, the function can be expressed as M � f(T), or miles traveled
is a function of the time elapsed. The first derivative of this function describes the automobile’s velocity.
As an example of this, imagine a car moving at the rate of speed of 45 miles per hour. Now suppose this
car has just entered a freeway, starts to accelerate, and then reaches a speech of 75 mph. The measure of
this acceleration as the car goes from 45 mph to 75 mph is the second derivative of the function. Because
the car is accelerating (i.e., going faster and faster), the second derivative is some positive value. In other
words, the distance (measured in miles) that the car is traveling is increasing at an increasing rate.
To extend this example a bit further, suppose the driver of the car, realizing that this section of the
freeway is closely monitored by radar, begins to slow down to the legal speed limit of 60 mph. As the
driver slows down, or decelerates, the speed at which the car is traveling is reduced. In other words,
the distance (in miles) that the car is traveling is increasing at a decreasing rate. Deceleration, being the
opposite of acceleration, implies that the second derivative in this case is negative.

12Let us return to the automobile example for an alternative explanation of the second-order condition for
determining a function’s maximum value. Let us imagine that, at the very moment the car reached
75 mph, the driver started to slow down. This means that at the precise moment the accelerating car
started to decelerate, it had reached its maximum speed. In mathematical terms, if a function is increasing at
an increasing rate (i.e., its second derivative is positive), then the moment it starts to increase at a decreasing
rate (i.e., its second derivative becomes negative), it has reached its maximum value. Similar reasoning can
be used to explain the second-order condition for determining the minimum value of a function.

of a function as a measure of the rate of change of the first derivative. In other words,
it is a measure of “the rate of change of the rate of change.”11

Let us illustrate precisely how the second derivative is used to determine the
maximum and minimum values by presenting a graph of the function’s first deriva-
tive in Figure 14b. As a check on your understanding of this figure, notice that, as
expected, the second derivative has a negative value when the original function
decreases in value and a positive value when the original function increases in value.
But now consider another aspect of this figure. Recall that the second derivative is a
measure of the rate of change of the first derivative. Thus, graphically, we can find
the second derivative by evaluating the slopes of lines tangent to points on the graph
of the first derivative. See points A′ and C′ in Figure 14b. By inspection of this figure, it
should be quite clear that the slope of the line tangent to point A′ is positive and the
slope of the line tangent to point C′ is negative. This enables us to conclude that at the
minimum point of a function, the second derivative is positive. At the maximum
point of a function, the second derivative is negative.12

Using mathematical notation, we can now state the first- and second-order condi-
tions for determining the maximum or minimum values of a function.

Maximum value: dY/dX � 0 (first-order condition)
d2Y/dX2 � 0 (second-order condition)

Minimum value: dY/dX � 0 (first-order condition)
d2Y/dX2 � 0 (second-order condition)

We now illustrate how the first- and second-order conditions are used to find the
profit-maximizing level of output for a firm. Suppose this firm has the following rev-
enue and total cost functions:

TR � 50Q (29)

TC � 70 � 60Q � 3Q2 � 0.1Q3 (30)

Based on these equations, the firm’s total profit function is

π � 50Q � (70 � 60Q � 3Q2 � 0.1Q3)
� 50Q � 70 � 60Q � 3Q2 � 0.1Q3

� �70 � 10Q � 3Q2 � 0.1Q3 (31)
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Figure 15 Cubic
Profit Function

139

Q

−79

π = –70 – 10Q + 3Q2 – 0.1Q3π (Q)

π (Q)

Q1 = 1.84

Q2 = 18.16

dπ/dQ = 0 and d2π/dQ2 > 0 at Q1

dπ/dQ = 0 and d2π/dQ2 < 0 at Q2

d2π/dQ2 = 0 at Q = 10

Notice that this firm’s profit function contains a term that is raised to the third
power because its cost function is also raised to the third power. In other words, the
firm is assumed to have a cubic cost function, and therefore, it has a cubic profit
function. Plotting this cubic profit function gives us the graph in Figure 15. We can
observe in this figure that the level of output that maximizes the firm’s profit is
about 18.2 units, and the level of output that minimizes its profit (i.e., maximizes its
loss) is about 1.8 units.

Let us employ calculus along with the first- and second-order conditions to
determine the point at which the firm maximizes its profit. We begin as before by
finding the first derivative of the profit function, setting it equal to zero, and solving
for the value of Q that satisfies this condition.

π ��70 � 10Q � 3Q2 � 0.1Q3 (32)

(33)

Note that Equation 33 has been rearranged to conform to the general expression for a
quadratic equation. Because the first derivative of the profit function is quadratic,
there are two possible values of Q that satisfy the equation.13

Q*1 � 1.84 Q*2 � 18.16

As expected, Q*1 and Q*2 coincide with the two points shown in Figure 13.
Although both Q*1 and Q*2 fulfill the first-order condition, only one satisfies the sec-
ond-order condition. To see this, let us find the second derivative of the function by
taking the derivative of the marginal profit function expressed in Equation 33:

d
dQ

Q
2

2
0 6 6

π = − +.

d
dQ

Q Q

Q Q

π
�

� �

− + −

− + −

10 6 0 3

0 3 6 10 0

2

2

.

.
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13The economic rationale for cost functions of different degrees is explained in Chapter 7. The first
derivative of a cubic function is a quadratic function. Such a function can be expressed in the
general form

Y � aX2 � bX � c

Perhaps you recall from your previous studies of algebra that the values of X that set the quadratic func-
tion equal to zero can be found by using the formula for the “roots” of a quadratic equation:

By substituting the values of the coefficients in Equation 33 (i.e., a � �0.3, b � 6, c � �10), we obtain
the answers shown.

X
b b ac

a
=

− ± −2 4

2

By substitution, we see that at output level 1.84 the value of the second derivative is a
positive number:

In contrast, we see that at output level 18.16 the value of the second derivative is a
negative number:

Thus, we see that only Q*2 enables us to adhere to the second-order condition that
d2π/dQ2 � 0. This confirms in a formal, mathematical manner what we already knew
from plotting and evaluating the graph of the firm’s total profit function: Q*2 is the
firm’s profit-maximizing level of output. Finally, note that d2p/dQ2 � �0.6Q � 6 � 0
occurs Q � 10 in Figure 15. This is where the p (Q) function changes convexity. To use
the analogy in footnotes 11 and 12, this is where the profit function stops accelerating
and, while still increasing, starts its deceleration. 

d
dQ

2

2
0 6 18 16 6 4 89

π = − ( ) + = −. . .

d
dQ

2

2
0 6 1 84 6 4 89

π = − ( ) + =. . .

FIVE KEY FUNCTIONS USED IN THIS TEXT

Five key functions are used in this text: (1) demand, (2) total revenue, (3) production,
(4) total cost, and (5) profit. The following diagrams show the algebraic and graphical
expressions for these functions. As can be seen, the demand function is linear, the total
revenue function is quadratic, and the production, cost, and profit functions are cubic.
Note that the last three functions all refer to economic conditions in the short run.

1. Demand $

Q

P = a – bQ
(or Q = c – dP)
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2. Total revenue

3. Production (short run)

4. Cost (short run)

5. Profit (short run) $

Q

 =  a – bQ + cQ2 – dQ3π 
(a < 0)

$

Q

TC = a + bQ – cQ2 + dQ3

(a > 0)

Labor

TP TP = a + bL + cL2 – dL3 

         (a = 0)

$

Q

TR = a + bQ – cQ2

(a = 0)
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SUMMARY

QUESTIONS

As you proceed with your study of managerial economics and the reading of the
text, you will find that the essence of economic analysis is the study of functional
relationships between certain dependent variables (e.g., quantity demanded, rev-
enue, cost, profit) and one or more independent variables (e.g., price, income, quan-
tity sold). Mathematics is a tool that can greatly facilitate the analysis of these
functional relationships. For example, rather than simply saying that “the quantity of
a product sold depends on its price,” we can use an algebraic equation to state pre-
cisely how many units of a product a firm can expect to sell at a particular price.
Moreover, when we engage in a marginal analysis of the impact of price on quantity
demanded, we can use the first derivative of this equation to measure the change in
quantity demanded relative to changes in price.14 Furthermore, as shown in this
appendix, the precise algebraic expression of the demand function enables us to
derive a firm’s total revenue and marginal revenue functions. With the help of calcu-
lus, the optimal price and quantity (e.g., the price and quantity that maximize rev-
enue) can be quickly found.

The more data a firm is able to obtain about its key economic functions
(i.e., demand, revenue, production, cost, and profit), the more mathematics can be
employed in the analysis. The more that mathematics can be used, the more precise a
manager can be about such key decisions as the best price to charge, the best markets to
compete in, and the most desirable levels of resource allocation. Unfortunately, in the
real world firms do not often have the luxury of accurate or complete data with which
to work. This is another aspect of decision making and is discussed in Chapter 5.

14In Chapter 4, you see how this first derivative is incorporated into a formula for elasticity, a value
indicating the percentage change in a dependent variable, such as units sold, with a percentage
change in an independent variable, such as price.

1. Define the following terms: function, variable, independent variable, dependent variable, func-
tional form.

2. Briefly describe how a function is represented in tabular form, in graphical form, and in
an equation. Illustrate using the relationship between price and quantity expressed in a
demand function.

3. Express in formal mathematical terms the following functional relationships. You may
use the general form Y � f(X). However, in each case be as specific as possible about what
variables are represented by Y and X. (For example, in the first relationship, advertising is
the X variable and could be measured in terms of the amount of advertising dollars spent
annually by a firm.)
a. The effectiveness of advertising
b. The impact on output resulting from increasing the number of employees
c. The impact on labor productivity resulting from increasing automation
d. The impact on sales and profits resulting from price reductions
e. The impact on sales and profits resulting from a recession
f. The impact on sales and profits resulting from changes in the financial sector (e.g., the

stock market or the bond market)
g. The impact on cost resulting from the use of outside vendors to supply certain com-

ponents in the manufacturing process
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26 Managerial Economics

4. What is a continuous function? Does the use of continuous functions to express economic
relationships present any difficulties in analyzing real-world business problems? Explain.

5. Define in mathematical terms the slope of a line. Why is the slope considered to be so
important in the quantitative analysis of economic problems?

6. Define marginal analysis. Give examples of how this type of analysis can help a managerial
decision maker. Are there any limitations to using this type of analysis in actual business
situations? Explain.

7. Explain why the first derivative of a function is an important part of marginal analysis.
8. Explain how an analysis of the first derivative of the function Y � f(X) enables one to find

the point at which the Y variable is at its maximum or minimum.
9. (Optional) Explain how an analysis of the second derivative of a function enables one to

determine whether the variable is a maximum or a minimum.
10. Briefly explain the difference between �Y/�X and dY/dX. Explain why in a linear equa-

tion there is no difference between the two terms.

PROBLEMS

1. Answer the following questions on the basis of the accompanying demand schedule.

Price Quantity

$100 25
80 35
60 45
40 55
20 65
0 75

a. Express the schedule as an algebraic equation in which Q is the dependent variable.
Plot this on a graph.

b. Express the schedule as an algebraic equation in which P is the dependent variable.
Plot this on a graph.

2. You are given the following demand equations:

Q � 450 � 16P

Q � 360 � 80P

Q � 1,500 � 500P

a. Determine each equation’s total revenue and marginal revenue equations.
b. Plot the demand equation and the marginal and total revenue equations on a graph.
c. Use calculus to determine the prices and quantities that maximize the revenue for

each equation. Show the points of revenue maximization on the graphs that you have
constructed.

3. You are given the following cost equations:

TC � 1,500 � 300Q � 25Q2 � 1.5Q3

TC � 1,500 � 300Q � 25Q2

TC � 1,500 � 300Q
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` Review of Mathematical Concepts Used in Managerial Economics 27

a. Determine each equation’s average variable cost, average cost, and marginal cost.
b. Plot each equation on a graph. On separate graphs, plot each equation’s average vari-

able cost, average cost, and marginal cost.
c. Use calculus to determine the minimum point on the marginal cost curve.

4. Given the demand equation shown, perform the following tasks:

Q � 10 �.004P

a. Combine this equation with each cost equation listed in question 3. Use calculus to
find the price that will maximize the short-run profit for each of the cost equations.

b. Plot the profit curve for each of the cost equations.
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