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Abstract

Tracking multiple targets is a challenging problem, especially when the targets are “identical”,

in the sense that the same model is used to describe each target. In this case, simply instanti-

ating several independent 1-body trackers is not an adequate solution, because the independent

trackers tend to coalesce onto the best-fitting target. This paper presents an observation density

for tracking which solves this problem by exhibiting a probabilistic exclusion principle. Ezclu-
ston arises naturally from a systematic derivation of the observation density, without relying on
heuristics. Another important contribution of the paper is the presentation of partitioned sam-
pling, a new sampling method for multiple object tracking. Partitioned sampling avoids the high
computational load associated with fully coupled trackers, while retaining the desirable properties

of coupling.

1 Introduction

This paper proposes a mathematically rigorous methodology for tracking multiple objects. The
fundamental problem to be addressed is demonstrated in figure 1. T'wo instantiations of the same
tracking algorithm, with different initial conditions, are used to track two targets simultaneously.
When one target passes close to the other, both tracking algorithms are attracted to the single
target which best fits the head-and-shoulders model being used. One might think of avoiding
this problem in a number of ways: interpreting the targets as “blobs” which merge and split
again (Haritaoglu et al., 1998; Intille et al., 1997), enforcing a minimum separation between
targets (Rasmussen and Hager, 1998), or incorporating enough 3D geometrical information to

distinguish the targets (Koller et al., 1994). However, each of these solutions can be unattractive.
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A blob interpretation does not maintain the identity of the targets, and is difficult to implement
for moving backgrounds and for targets which are not easily segmented. A minimum separation

relies on heuristics and fails if the targets overlap. Incorporating 3D information is impossible

without detailed scene modelling.

So it seems we must instead address the fundamental problem: that the observation model
used to interpret image measurements permits two targets to occupy the same point in config-
uration space too easily. More specifically, a single piece of image data (such as an edgel, or a
colour blob), must not simultaneously reinforce mutually exclusive hypotheses. What is needed
is a “probabilistic exclusion principle”, and an observation model exhibiting this behaviour is
described in this paper. The formal model will initially be derived for “wire frame” targets —
objects which have detectable boundaries but which do not occlude each other. We then de-
scribe how occlusion reasoning about solid objects can be incorporated naturally into the same
framework. The most interesting feature of this approach is that it works even when the targets
are indistinguishable given the available information. This is of both theoretical and practical
interest.

Many visual tracking systems for multiple objects have been developed. One standard tech-
nique is the probabilistic data association filter (PDAF) (Bar-Shalom and Fortmann, 1988),
and other successful examples include (Haritaoglu et al., 1998; Intille et al., 1997; Paragios and
Deriche, 1998; Rasmussen and Hager, 1998). These generally employ a combination of blob
identification and background subtraction; both techniques are complementary to the method
proposed here. In particular, our exclusion principle does not allow two targets to merge when
their configurations become similar; instead, the model continues to interpret the data in terms
of two targets. As will be seen, it is a natural consequence of the methodology that the proba-
bility distribution for an obscured target diffuses until it is reinforced by further data. Further-
more, the method works for unknown and constantly changing backgrounds. Rasmussen and
Hager (1998) proposed a promising method for combining colour blob and edge information, and
incorporated an exclusion principle by using a joint PDAF. However, their algorithm for fusing
edgel information enforced an arbitrary minimum separation between targets. Gordon (1997)
employs a similar multi-target tracking methodology to this paper but with a rather different
observation model and no explicit exclusion principle.

One of the difficulties with tracking multiple objects is the high dimensionality of the joint
configuration space. Section 5 introduces a method known as partitioned sampling which di-
minishes the computational burden associated with the increased dimensionality of multi-target

spaces.



2 The observation model

The target objects in this paper are described by their outlines, which are modelled as B-splines.
We will call any such outline a contour. The space of contours which can correspond to a target
or set of targets is called the shape space (Blake and Isard, 1998), and is parameterised as a
low-dimensional vector space X. The space X generally has 5-50 dimensions. This framework
is based on standard concepts from the theory of snakes and deformable templates (e.g. (Kass
et al., 1987; Szeliski and Terzopoulos, 1991)) and is summarised concisely in (Blake and Isard,

1998).

A configuration x € X is measured by the method of figure 2, obtaining a list of image

coordinates Z = (z1),2® ... 2(M). A component of Z is itself a vector z(™) consisting of
the measurements made along fixed measurement lines (see the figure) of the configuration
x. An advantage of this measurement line approach is that we have reduced the problem of
analysing a 2D image to that of analysing several 1D measurement lines. The statistical processes
generating features on different measurement lines are treated as independent (the merits of this
approximation are discussed in section 2.2), so we need only specify this process on 1D subsets
of the image.

So consider just one fixed measurement line, of length L, positioned in an image known to
contain two target objects. A one-dimensional edge detector is applied to this line, and some

features are detected at image coordinates z = (21, 22, ... 2z,). Some of the z; might correspond

to the target objects” boundaries, while the others are due to clutter in the image. So we must
develop a generative model for both the target and clutter features — this is analogous to the
models adopted in some pattern recognition tasks, such as the generation of printed matter as
“character + ink spatter” (Hinton et al., 1992). For a given target configuration x, there are
three possibilities to consider: the measurement line may intersect ¢ = 0,1 or 2 of the targets.
The probability densities for each case are denoted p.(n;z). To calculate the p., several concrete

assumptions about the generative model for z are adopted:

e ¢ = 0 (“random background clutter”): The probability of obtaining n features is b(n),
learnt from randomly placed measurement lines in typical images. The positions of the n
features z = (z1, 22, ... 2p) are drawn from the uniform distribution on the measurement

line. These assumptions are discussed in section 2.1.

e ¢ =1 (“single target”): One of the n features corresponds to the target boundary, whose
hypothesised position on the measurement line is denoted v. If the boundary feature is z;,

then z; is assumed to be drawn from a fixed probability distribution G(z;|v), termed the
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Figure 1: With an observation model designed for one target, two trackers initialised in

distinct configurations eventually lock on to the one target which bests fits the model. The

objective is to derive an observation model which does not permit the presence of two targets to be

inferred from measurements of only one.

Figure 2: Measurement methodology. The thick white line is x — a mouse-shaped contour in some
hypothesised configuration. The thin lines are measurement lines, along which a one-dimensional feature
detector is applied. Black dots show the output of the feature detector, which in this case responds to
rapid changes in intensity — one-dimensional edges. Note that many spurious edges are generated by

shadows, or more generally by clutter in the image.



“boundary feature distribution”. In this paper G(z;]v) is a Gaussian centred on v with
variance 02 (we take o = 7 pixels in the examples later; see table 1 for the justification

of this value). The remaining n — 1 features are assumed to be drawn from the random

background clutter distribution described above.

e ¢ =2 (“two targets”): Two of the n features, say z;,z;, correspond to target boundaries
at hypothesised positions v, 1. They are drawn from G(z;|v1), G(z|v2) respectively with,

importantly, ¢ # j. In other words, any edge feature can correspond to at most one target

boundary. It is this assumption which leads to the enforcement of a probabilistic exclusion
principle described later on. (The same assumption is made in (Rasmussen and Hager,
1998) to enforce exclusion in the context of a joint PDAF). Again the remaining n — 2

features are drawn from the background distribution.

The model can be generalised to higher values of ¢, but for clarity only the cases ¢ = 0,1, 2
are considered here. The assumption for ¢ = 2 that any one edge feature corresponds to at most
one target is crucial, and requires further explanation. While it is true that wherever two targets
cross, there is a single edge corresponding to two targets, such points form a very sparse set in
the image. The possibility that such a point lies on one of the measurement lines is therefore
disregarded. For an example, look ahead to figure 8.

The mathematical consequences of these assumptions are collected in the next proposition,
which is proved in the appendix. Note that p(n;z) is a probability distribution over both n and
z — this notation is explained in the appendix. Also note the density p follows the generative

model in assuming that the measurements (z1,... ,2,) might come in any order with equal

likelihood; if it is assumed instead that the measurements are made in a prescribed order (e.g.

21 < z9,... < z,) then each density should be multiplied by n!.

Proposition 1 The probability density functions resulting from the assumptions above are

po(n;z) = b(n)/L"

pr(mizlv) = b(n — 1)) Galv)/nL"! (1)
k=1
patmsin ) = b —2) 3 ST el
i#]

As described so far, the generative model assumes that if a target boundary is present, then
the edge detector will detect it. This is unrealistic: occasionally the target object’s boundary
is not detected, because the background and target happen to have similar grey-scale values.

Hence a final step is added to the generative model. It is assumed that when ¢ = 1 there is



a small fixed probability qg; of the edge detector failing to detect the target boundary, and
q11 = 1 — qo1 that it will succeed. This is precisely analogous to the non-detection probabilities
used in PDAFs (Bar-Shalom and Fortmann, 1988). Similarly, when ¢ = 2, there are fixed
probabilities qgpa, 12, g22 that 0,1,2 target boundaries are detected successfully. Thus we can

define pdfs p for the final generative model as follows, for the cases ¢ =0,1,2:

Po(-) = po(-)
P1(-|v) = qoipo(-) + quip1(-|v) (2)
P2(-lv1, v2) = qozpo(-) + qu2(p1(-|v1) + p1(-|re))/2

+ q2op2(-|v1, 12)

Typical graphs of the last two functions are shown in figures 3 and 4.

The above discussion was framed in terms of a single measurement line, but for any given
hypothesised configuration x, the measurements Z will arise from say M distinct measurement
lines. Let ¢(i) be the number of target boundaries intersecting the ith measurement line for a
given configuration x, and let v be the coordinates of these intersections. By making the as-
sumption that outputs on distinct measurement lines are statistically independent (section 2.2),

we define the exclusive likelithood function as

M
P(2ZIx) = [ [ ey (27w ?). (3)
=1
We call ¢(i) the intersection number of the ith measurement line.

2.1 Discussion of the background model

Recall that the numbers b(n),n € N specify the probability of obtaining n features on a mea-
surement line positioned randomly on the background, and that these probabilities are learnt
from typical training images. Of course this innocuous statement conceals a perennial problem
in computer vision: how does one characterise a “typical” image, and even worse, how does
one specify a prior for such images? Even when an image is reduced to the simple level of
one-dimensional features, there is no straightforward answer to this question. However, it turns
out the tracking system described later is extremely robust to the choices of b(n). Indeed, we
routinely set b(0) = b(1) = ... = b(Nmax) = 1/(1 4+ nmax) for some nmayx, with b(n) = 0 when
n > Nmax. For measurement lines of 40 pixels, and an edge convolution operator with weights
(—0.375, —0.625,0,0.625,0.375), one can take nmax =~ 10 and obtain results indistinguishable

from when the b(n) are learnt from the entire sequence to be tracked. Another simple approach



which gives equally good results in all our experiments is to learn the b(n) from the first image
of the sequence.

An alternative approach to modelling the occurrence of background features is the careful
use of a Kalman filter framework to disregard spurious features (e.g. (Peterfreund, 1998)), but
in order for this to work in cluttered backgrounds, one needs much more accurate dynamical
models than those available in the type of problems considered here. Other researchers explicitly
adopt a uniform distribution on the b(n) (e.g. (Lowe, 1992)), as suggested above.

Our second assumption about random background clutter features is that their positions
are drawn from a uniform distribution. What is the corresponding assumption about 2D image
features that would make this true? It would certainly hold provided the positions of all edgels
of a given orientation were also distributed uniformly. We find this is sufficiently true over the
small regions (scale around 40 pixels) occupied by the measurement lines, but it is clear that
this approximation is unsatisfactory for larger regions. Further work is needed here: perhaps

the recent ideas on filters and scale-invariance (Mumford and Gidas, 1999; Zhu et al., 1998) can
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