
Ad hoc Extensibility and Access Control

Úlfar Erlingsson

Microsoft Research
Silicon Valley

ulfar@microsoft.com

John MacCormick

Microsoft Research
Silicon Valley

jmacc@microsoft.com

Abstract
General-purpose, commercial software platforms are in-
creasingly used as system building blocks, even for depend-
able systems. One reason for their generality, usefulness,
and popular adoption is that these software platforms can
evolve throughad hoc extensions: behavior tweaks outside
the scope of supported platform interfaces. Unfortunately,
such use of internal platform implementation details is fun-
damentally incompatible with security and reliability. Even
so, platforms that exclude ad hoc extensions—for instance,
by enforcing full isolation and strict interfaces—will, most
likely, either have their security enforcement circumvented
or be relegated to a niche market. In this paper, we identify ad
hoc extensions as well as the economic and technical factors
surrounding their existence. Subsequently, we propose the
enforcement of novel access-control policies for reconciling
ad hoc extensibility with security and reliability.

1. Introduction
Most computing today involves one or more general-purpose
software platformssuch as operating systems, databases,
web browsers, or web servers. The vast majority of this
activity occurs on only a select set of dominant, platform
systems—the Windows and Linux operating systems [41,
43], the IIS and Apache web servers [25, 46], and the Oracle
database system [27] are a few examples.

The ubiquitous use of these platforms raises natural secu-
rity and reliability concerns: they comprise millions of lines
of code and are not designed to guarantee behavioral proper-
ties. On the other hand, by using a well-established platform,
software creators can leverage powerful advantages such as
rich features, familiarity, standardization, and an implemen-
tation completeness otherwise hard to attain [24]. Therefore,
a new software system is increasingly likely to be built on
top of one of the dominant platforms—despite their lack of
security, and empirical instability.

Extensibilityis key to this success of software platforms:
a platform’s functionality can be extended, modified, or uti-
lized through additional software [24]. These additions, or
extensions, all act to customize the platform to a given appli-
cation or purpose—whether they are scripts, binary machine-
code modules, or even source-code patches. Unfortunately,
support of extensions can have negative consequences; in
particular, the interaction between an extension and its plat-
form, or between extensions, can lead to security vulnera-

bilities or general instability that reduces the usefulness of
the system. As a result, there is a long tradition of research
that aims to make extensions more dependable by isolating
them in memory, limiting their interactions to a few well-
defined interfaces [4, 10, 23, 40], and by using cryptographic
or other means to establish their trustworthiness [15, 31, 34].
Recently, there has been a resurgence of research interest in
the topic of dependable, extensible systems [11, 19, 48, 56];
the motivation for this current paper has its origin in our own
work on this topic [12].

Clearly, the instability and security vulnerabilities of the
software platforms we use every day are very unsatisfying,
and the authors of this paper are sympathetic to calls for
the increased use of restricted interfaces. Yet, software of-
ten arises in unanticipated ways, and many key aspects of
today’s software platforms started out as only unsupported,
expedient “hacks.” Suchad hoc extensionsprovide important
benefits to both the users and creators of a software system,
and play a key role in its evolution into a dominant, general-
purpose platform.

In this paper we argue that there is a substantial danger of
being too restrictive when designing reliable, secure extensi-
bility mechanisms. While it may ensure reliability—and be
a necessary foundation for security—a design that isolates
and restricts all extensions will forego some of the benefits
of the “extensibility ecosystem”. Specifically, such a system
may not be amenable to the development of some features
and, thus, may run the risk of reduced adoption.

This paper makes three contributions: (i) a definition of
ad hoc extensions; (ii) an analysis of ad hoc extensions from
the point of view of software development and industry eco-
nomics; and (iii) a description of how to increase depend-
ability without restricting extensibility by applying a novel
form of access control to these ad hoc extensions. Although
the topic of the paper is not amenable to absolute scientific
rigor—and we must base our discussion on historical evi-
dence and simple economic analysis—we believe our con-
clusions to be valid, and to have important consequences.

The remainder of the paper is as follows. In Section 2, we
define ad hoc extensions, and give examples of their impor-
tance in achieving and maintaining the success of a software
platform. Then, in Section 3 we analyze what gives rise to
ad hoc extensibility, and whether it can be compatible with
high-assurance dependability. Finally, in Section 4 we de-
scribe how to reconcile dependability with ad hoc extensibil-
ity through the enforcement of novel access-control policies.



We propose an architecture for such access control that ties
support for pervasive mediation with both online manage-
ment and behavior manifests for platform extensions. Sec-
tion 5 offers our conclusions.

2. Identifying Ad hoc Extensions
Each extensible software platform, by its nature, exposes
a set of software interfaces that support the programming
of extensions. These publicextensibility interfacesmust be
fully documented and provide all the functionality necessary
for creating useful extensions. When an extension relies only
on these documented, public extensibility interfaces, it can
be said to bewell-behaved.

To prevent undesirable behavior, public extensibility in-
terfaces are deliberately of limited scope. (If those public
interfaces are improperly designed—e.g., if they are too
permissive—then well-behaved extensions may still cause
undesirable behavior.) A software platform may, for exam-
ple, allow extensions to append messages to a work-item
queue that is naturally sorted by append order. By only ex-
posing a single, limited append interface for this queue, the
platform can hold this data structure abstract, maintain its
ordering invariant, synchronize its access, and allow its im-
plementation to change across platform versions.

Ad hoc extensions are not well behaved and do not restrict
themselves to public interfaces. This characteristic, simply
depicted in Figure 1, can serve to define them:

Definition: An ad hoc extension depends for its function-
ality upon the implementation details of its underlying soft-
ware platform—not only on the public extensibility inter-
faces specified and exposed by that platform.

Because they circumvent the proper interfaces and rely on
unsupported, undocumented platform details, there are many
ways in which ad hoc extensions can cause undesirable sys-
tem behavior. For instance, an ad hoc extension might acci-
dentally corrupt the work-item queue, mentioned above, by
not acquiring the correct lock before modifying its internal
state.

Some ad hoc extensions are purelypassive, and therefore
less likely to violate system invariants. These extensions
only observe, but do not modify, internal platform details,
e.g., they may read undocumented fields in data structures.
Screen scraping is one well-known implementation approach
that fits this description. In the context of the work-item
queue example, passive ad hoc extensibility could be used
to provide a notification whenever messages are appended—
something that is not possible given the limited append-only
interface described earlier.

Other ad hoc extensions areactive, and directly affect
state in their host platform that should be opaque to them,
e.g., they may modify an undocumented field in a configura-
tion database. In particular, such active extensions can inter-
cept and modify (in an arbitrary way) the arguments and re-
turn values of internal platform functions. In the example of
the work-item queue, an active ad hoc extension would, e.g.,

today.pdf

Figure 1. Well-behaved extensionsinteract with their plat-
form via a public interface, whereasad hoc extensionsdi-
rectly depend upon or manipulate the implementation details
of their platform.

be able to insert its own messages at the head of the queue
by modifying its internal data structure. Note that—because
of the limited public queue interface—such a modification
may be necessary if the extension truly requires priority for
its messages. On the other hand, this modification will vio-
late the platform’s invariant about the ordering of messages
in the queue.

The above definitions notwithstanding, the concept of ad
hoc extensions is best understood with the help of additional,
real-world examples such as the ones below.

2.1 Examples of Ad hoc Extensions

This section briefly describes several examples of ad hoc ex-
tensibility, while an appendix gives the full details of one
particular ad hoc extension. As with the work-item queue
example described above, there is a fundamental reason why
these examples rely on unsupported platform internals: the
platform simply does not support the functionality required
to implement them as well-behaved extensions. For instance,
the platform may expose interfaces to query a system dictio-
nary that is implemented as a hash table—but not provide
any means for enumerating all of its keys. As a result, saving
and restoring the dictionary contents may only be possible
through implementation-dependent means.

Because of its relatively limited functionality, MS-DOS
was the target of many clever extensions; we consider only
a few of the numerous examples here. Third-party MS-DOS
extensions added support for increased memory, longer file-
names, and the caching and compression of data in sec-
ondary storage. These were all ad hoc extensions: imple-
menting this functionality required knowledge and assump-
tions about unspecified aspects of how MS-DOS managed
memory, implemented directory tables, and made disk ac-
cesses, respectively [39]. Subsequently, in later versions of
MS-DOS, all of the abovementioned extensions were added
as supported features, e.g., as the DPMI, VFAT, SmartDrive,
and DoubleDisk technologies [8].

Historically, internationalization, localization, and acces-
sibility have all been added to popular software platforms
through a variety of of ingenious methods. Here, necessity
has been the mother of invention: initial platform versions
have typically not provided any support for these small, but



important, market segments. This omission may be under-
standable, since platform creators must focus their limited
resources. But, as a result, this functionality could only be
achieved through unsupported means, like the direct mod-
ification of implementation-specific, undocumented system
fonts and string tables, as well as various forms of screen
scraping. Even on a mature platform like Windows, “for-
eign” spell checking and certain Asian languages have, un-
til quite recently, primarily been supported through de-facto-
standard, third-party ad hoc extensions.

The nature of systems software (for example, Symantec’s
Norton SystemWorks [49] and Veritas Enterprise Backup [50],
to name just two), is to augment an underlying software
platform with new functionality. Because this augmentation
is often unanticipated, systems software must often be im-
plemented as ad hoc extensions. For instance, Norton’s un-
delete feature must somehow interpret the undocumented
on-disk structures of the Windows’ NTFS file system. Simi-
larly, backup on Windows NT was (until relatively recently)
somewhat of a black art. As another example, mounting files
containing disk images is not fully supported in Windows
XP [36], yet many utilities exist for doing this—by defini-
tion, they are ad hoc extensions.

Debuggers, tracers, and other instrumentation form a spe-
cial case of systems software. For this software, it is particu-
larly important to observe or modify the behavior of arbitrary
interfaces, and to arbitrarily change state. Interactive debug-
ging, in particular, regularly involves modifying critical plat-
form state such as the values of registers and the layout of the
stack. In the Appendix, one example of an ad hoc extension
in this category is described in full detail. Despite its intru-
sive nature, such systems software cannot always be catego-
rized with ad hoc extensions—after all, platforms typically
expose powerful debugging interfaces by design. However,
ad hoc extensions are often implemented by using this plat-
form debugging support in unintended ways.

In some cases, systems software changes the behavior
of its underlying platform’s most fundamental abstractions.
Two examples, both third-party products, are VMware’s im-
plementation of a hosted virtual machine [47], and the multi-
user support added to Windows NT by Citrix terminal ser-
vices [6]. This suggests that no platform extensibility support
can ever be complete: even the abstractions of that support
mechanism may have to be extended—something that by its
nature may require an ad hoc extension.

That a platform’s extensibility interfaces can never be
complete helps explain why—even on mature platforms—
novel functionality is often implemented through ad hoc ex-
tension. Pop-up blocking for web pages is an illustrative
example, as it is a recent addition to the mature, highly-
competitive web browser platforms. Abstractly, a pop-up
blocker needs to do two things: (i) mediate on all attempts
to open web-browser windows, and (ii) block all those at-
tempts, except when originating from a network domain
listed as safe. Unfortunately, when the need for pop-up
blocking first became apparent, most web browsers did not
provide extensibility interfaces for receiving notifications

about “window open” attempts and their associated source
URL. When the web browsers were designed, such interfaces
may have been complex to implement or seen as unneces-
sary; even today, some unwanted pop-ups cannot be correctly
identified. By using ad hoc extensions, on the other hand, it
was easy for third parties to implement pop-up blocking
functionality for many popular web browsers, in a timely
and relatively complete manner.

To conclude this section’s examples, the following dis-
parate features have all been implemented using ad hoc ex-
tensibility: support for scroll wheels on computer mice, anti-
virus and anti-spyware defenses, the desktop remoting of
GoToMyPC [7] and WebEx [7], the Google toolbar for web
browsers [16], file and email encryption, and Bluetooth net-
working. These ad hoc extensions all use different means
to achieve their goals: for instance, graphical Windows soft-
ware often uses code injection, window subclassing, and in-
terface detouring [18, 57]. Such graphical software will de-
pend on the names of particular window “classes” and the
ordering of particular window “events”, both of which are
implementation specific.

The discussion so far has highlighted the benign, positive
aspect of ad hoc extensions, where they extend the under-
lying platform with new, useful functionality. There are at
least as many cases where ad hoc extensions have been used
unnecessarily, for frivolous purposes, and with dire conse-
quences to platform integrity. For example, on MS-DOS,
utilities for performance optimizations such as early ver-
sions of SmartDrive, modified disk semantics to use write-
back caching—with the unfortunate side-effect of possible
file system corruption. Needless to say, utilities that did not
immediately remedy this flaw never gained popularity.

Purposefully malicious ad hoc extensions include viruses,
spyware, kernel rootkits and other malware. It is therefore
not surprising that recipies for malware creation, e.g., the
recent book on Windows kernel rootkits [17], are little more
than an enumeration of ad hoc extensibility particulars.

Whatever their purpose, the use of unsupported interfaces
makes all ad hoc extensions inherently fragile, unreliable,
and intolerant of platform implementation modification—
in particular, modifications due to other ad hoc extensions.
On many popular platforms this has led to the development
of entire frameworks for making ad hoc extensions more
robust (e.g., by avoiding bad interactions between them),
and for their general management and support. Examples of
such frameworks include HackMaster for the Palm Pilot [9],
Extension Overload for Apple’s Mac OS 9 [32], and APE
Application Enhancer for Mac OS X [51]. In Section 4 we
describe mechanisms that offer further support.

3. Ad hoc Extensibility: Causes and Effects
As touched upon in the previous section, there are both
positive and negative aspects to ad hoc extensibility. In this
section, we look at ad hoc extensibility in further detail, and
consider both what drives the creation of ad hoc extensions
(e.g., time pressure), and what can result from their existence
(e.g., reduced reliability).



3.1 The Software Development Process

There many ways that ad hoc extensions can arise during
software development. Sometimes, the cause is a combina-
tion of expediency and the ambiguous nature of platform in-
terface documentation. A programmer is unlikely to inves-
tigate fully what is the precisely correct use of interfaces;
rather, she is likely to simply invoke them in the first manner
she discovered to provided the proper functionality. If she
applies good engineering practice, then she will also confirm
with a suite of tests that the interfaces continue to behave as
expected under a variety of inputs and environment condi-
tions.

Unfortunately, platform interfaces may consistently pro-
vide certain, desirable functionality not by design, but as a
mere side-effect of their implementation details; relying on
such functionality can make any software implementation-
dependent. The less careful the programmer is, the more
likely is the creation of suchinadvertent ad hoc extensions.
As one example, the order of messages in the Windows
graphical user interface has always been very ill-defined, al-
though quite consistent on any given instance of the operat-
ing system. Therefore, it is difficult to create advanced, yet
version-independent, graphical Windows applications. Not
surprisingly, for the last ten years, versions of Windows have
included an “application compatibility flags” database that
changes the per-application order of these messages to make
popular software run correctly [30].

Of course, developers will in some cases deliberately
create ad hoc extensions, as shown by the many examples
given previously in this paper. This may be done either to
expedite the implementation of an extension, or to overcome
limitations in public platform interfaces.

Whether they are inadvertent, or created on purpose, the
mere existence of ad hoc extensions can severely hamper
the creation of a new platform version. In the limit, this
can result inimplementation ossification, where almost no
implementation detail can be modified, because the chances
are that some software is relying on it. Some platforms, by
design, expose more of their structure and they are therefore
more likely to suffer such ossification. Elaborate, object-
oriented class hierarchies seem particularly vulnerable to this
effect; this is likely the reason why Sun’s Java platform is
currently supported in five parallel, similar versions.

3.2 Security, Reliability, and Assurance

No matter how it comes about, extensions’ dependence on
internal platform details can have negative effects on both
security and reliability. Indeed, most viruses and other mal-
ware could be categorized as stealthy, ad hoc extensions.

It is easy to see that ad hoc extensibility is fundamentally
incompatible with formally-verified, high-assurance depend-
ability guarantees, e.g., for security and reliability. Because
it may potentially do anything, an ad hoc extension can act
to prevent progress (obstructing availability), read any data
(breaching secrecy), and write any combination of values
(violating integrity invariants).

Even when there is a proof, whether formal or informal,
of these platform guarantees, they may still be invalidated:
to be tractable, proofs must abstract from implementation
details [22], but an ad hoc extension can make use of, or
make changes to, intermediate platform states that are not
captured in these proof abstractions. Such problems some-
times arise in real-world systems; for instance, when paging
was added to the Tenex platform, exposing additional inter-
mediate platform state, suddenly passwords could be triv-
ially broken character-by-character [1].

For most practical purposes, however, ad hoc extensions
can be compatible with reasonable levels of dependability.
Through use of testing, inspection, and problem reporting,
any violation of system invariants that is likely to occur is
likely to be detected. Although such reviews often miss vul-
nerabilities, and may not detect many information-disclosure
channels, they are the only process currently used to assess
most commodity software. Clearly, this process can also be
applied to ad hoc extensions, even when highest software
standards must be met. Evidence to this effect is the uni-
versal use of anti-virus and virtual-machine software—both
ad hoc extensions, typically—in the dependability-conscious
realm of enterprise computing.

3.3 Market Forces for Software Platforms

Ad hoc extensions can add remarkable value to a software
platform, as shown by the examples earlier in this paper.
These benefits extend to all platform stakeholders, including
its creators, its users, and its third-party developers, and can
help in creating an “ecosystem” that propels the platform
into a dominant market position.

In many cases, new versions of extensible platforms
will directly support functionality previously only available
through implementation-specific means. Such direct support
is especially likely when several popular extensions have
made repeated use of the same unsupported, clever hack.
This delayed support of important features holds an ad-
vantage for the creators of general-purpose software plat-
forms: any given platform version need not support all its
possible uses, as long as new, interesting features can be
implemented by ad hoc extensibility. The next version can
incorporate support for whatever turns out to be important
in the marketplace—e.g., as the recent “Tiger” version of
Mac OS X did for the kernel interfaces [42]. The opposite
approach, where all possible uses are supported from the be-
ginning, requires platform creators to be almost omniscient,
and can guarantee only a more complex design and a higher
implementation cost for the platform.

There have been few serious attempts at providing plat-
form interfaces that support all possible applications; invari-
ably, some developers find the results too restrictive—as has
happened, e.g., in the case of Linux Security Modules [28].

An inflexible platform interface is also frustrating, since
it may not support features that its users consider of critical
importance. Even when this support can be had through
negotiations with the platform creators, the time and cost of
doing so forms a major obstacle. It can be argued that the



tomorrow.pdf

Figure 2. Our proposed architecture for making ad hoc ex-
tensions more dependable through the use of a mediation
framework, the gathering and publication of online monitor-
ing data, and behavior manifests that accompany extensions.

lack of such impediments is a key driving force behind the
recent success of open-source software platforms.

General-purpose platforms with strong dependability
guarantees, as intended in current research projects, like As-
bestos, Mondrix, and Singularity [11, 19, 56], will hopefully
become a reality someday—and this will involve restricting
extensions and making them use only well-defined inter-
faces. But, without admitting the benefits of ad hoc exten-
sions, market forces may result either in these platforms be-
coming closed, niche-purpose systems, or in the subversion
of their reliability mechanisms.

4. Access Control for Ad hoc Extensions
We believe that future general-purpose platforms can recon-
cile ad hoc extensions with reliability and security and—in
doing so—garner all the practical, economic advantages of
ad hoc extensibility described in this paper. Specifically, we
propose that platforms implement the following three-part
architecture:

1. The platform provides amediation framework: a mecha-
nism that identifies platform implementation details and
allows extensions to arbitrarily observe, modify, and in-
terpose on them—but forces extension to openly declare
if, and how, they use this framework.

2. The platform is part of anonline monitoring infrastruc-
ture that identifies software, monitors behavior and its
compliance with declared intent, and makes these statis-
tics public.

3. All platform extensions come with abehavior manifest,
written by the extension vendor, that statically declares
how the extension intends to interact with the platform at
runtime—describing, in particular, any use of the media-
tion framework.

The details of our proposed architecture are given in the next
four subsections; Figure 2 depicts an outline of our proposal,
which can be contrasted with Figure 1.

The goal, however, can be described here: in combination,
the three ingredients of our proposed architecture should give
popular extensions a strong incentive to be well-behaved, yet
still leave room for outside-the-box originality. Furthermore,
our proposal should serve to provide stakeholders with all the
information they need to assess, regulate, and tolerate the use
of ad hoc extensibility.

Of course, our proposals do not fully reconcile ad hoc
extensibility with reliability and security; as argued in Sec-
tion 3.2, this appears impossible. However, an implementa-
tion of our architecture seems likely to be often preferable to
the alternatives: doing nothing—as is the current situation on
dominant platforms—or enforcing strict isolation and con-
formance to interfaces, thereby forgoing all the benefits that
accrue from ad hoc extensions.

Many of the issues of ad hoc extensibility are addressed in
our proposed architecture through synergy between its three
parts. For example, it might seem that the mediation frame-
work would exacerbate the problem of implementation ossi-
fication (described in Section 3.1). However, manifests and
use of the mediation framework, coupled with online report-
ing, would give platform creators—when changing internal
implementation details—full knowledge about any existing
dependencies on those details. This knowledge allows plat-
form creators to discover what backward-compatibility sup-
port is needed, make changes contingent on the impact to
popular, important software, notify vendors, and negotiate
with them, as well as prevent incompatible software from ex-
ecuting on new platform versions. Thereby, our architecture
greatly improves on the current situation, which is character-
ized by uncertainty and exemplified by Windows’ manually
maintained “application compatibility flags”.

Implementations of our architecture could be driven by
market forces—e.g., in a manner similar to today’s anti-
virus and anti-spyware industries. The bulk of the work,
such as operating the monitoring infrastructure, might not
be performed by platform creators, or even administrators,
but rather by third-party stakeholders such as commercial IT
management firms, insurers, or even governments; such third
parties might have the most to gain from increased security
and reliability. Similarly, a differentiated market might apply
to the creation and use of behavior manifests.

Even partial implementations of our architecture would
have benefits. The online monitoring infrastructure, by it-
self, might be sufficient to permit less draconian administra-
tion of corporate or university computers, without decreas-
ing reliability—e.g., users might be allowed to install all ex-
tensions with a proven reliability history. Alternatively, the
mediation framework, described next, can serve to reduce
instability, even when implemented in a simplified manner.

4.1 Exposing the Platform to Mediation

The mediation framework extends the idea of interposi-
tion [18, 20] to all internal platform interfaces and data struc-



tures. In this way, the mediation framework is closely related
to program instrumentation [44, 45], language-level reflec-
tion [54], aspect-oriented programming [21], and inlined
reference monitors [13].

To allow for their mediation, as many internal platform
implementation details should be enumerated and named as
are possible to identify. Those names can be created au-
tomatically by basing them on the original, programming-
language identifiers used for code, variables, and data types.
In fact, executable binaries compiled from modern languages
(such as C# and Java) already include those names in order
to support runtime reflection. In the case of hand-written as-
sembly language, and legacy C code, the required names can
be automatically extracted from compiler output such as the
symbol files used by debuggers.

Platform creators already provide identifying information
to extension writers; for instance, the debug symbols for any
Windows binary can be freely retrieved from a public net-
work service run by Microsoft [29]. As part of the mediation
framework, this data would be augmented, e.g., to include
certain details—such as the full names for internal, local
variables—that are currently elided. These additions could
provide metadata useful for assessing the impact of ad hoc
extensions. The platform creators could, in particular, put a
value on the risk of mediating certain components and fur-
ther annotate internal data structures as to whether they are
critical to security or reliability; in an operating system, the
stored hash of the user’s password and the hardware interrupt
dispatch table might be expected to carry such an annotation.

4.2 Supporting Mediation by Ad hoc Extensions

In addition to naming, the mediation framework should pro-
vide a mechanism that enables—yet regulates—the use of
platform implementation details by ad hoc extensions.

This mediation mechanism should give highly flexible ac-
cess to platform internals; ideally, it should not only be pos-
sible to mediate every internal function invocation, and ob-
serve or modify arguments and local variables, but it should
even be possible to mediate the reading or writing of certain
data structures, given their named identifier or data type. A
primary concern of this platform mechanism would be sup-
porting the insertion ofmediation hooks; this is sufficient,
as long as ad hoc extensions can designate arbitrary code to
be executed at the point of each such insert hook. Such a
mechanism could be implemented in several ways, e.g., by
dynamically detouring running code [18] or instrumenting
new code as it is loaded [13, 44].

Because it allows for the access control of ad hoc ex-
tensions, this mediation mechanism lies at the heart of our
proposal. This access control enforcement would proceed
through decisions based on information in manifests, the ac-
tual runtime behavior of each extension, as well as a local
policy, set by relevant stakeholders (e.g., administrators).

In particular, only an ad hoc extension that declared it-
self as such, in its manifest, would be able to use the me-
diation mechanism. The extension’s identity, or that of its
vendor, might be also grounds for rejection, e.g., based on ei-

ther a purely local policy or on the published statistics about
the extensions—such as whether its actual runtime behavior
complies with its manifest. Furthermore, access control deci-
sions could be made depending on a categorization of the ad
hoc extensions, e.g., based on to what, and how many, imple-
mentation details they depend upon; thus, passive and active
ad hoc extensions might be treated separately, as might one
that mediates high-risk details.

In addition to enforcing policy, the mediation mechanism
could perform additional access control in order to increase
the reliability of the ad hoc extensions. This gatekeeping
could eliminate unexpected, cross-extension interactions and
other common causes of instability. For instance, the medi-
ation mechanism should take no action unless the versions
of all affected platform components conformed with the ver-
sions given in the ad hoc extension’s manifest. The media-
tion mechanism might also choose to honor an extension’s
request for exclusive mediation on some internal details—
although it might also interpret such requests as suggestive
of high-risk behavior. Perhaps most importantly, the medi-
ation mechanism could give synchronization guarantees to
ad hoc extensions, both for their installation activity and for
the execution of their mediation code. Such synchronization
could range from a coarse-grained, single lock, to locks per
component, per interface, or even per named identifiers or
data types.

While the above type of access control can reduce the
chances of reliability and security faults, it cannot eliminate
them; in particular, it cannot provide any protection against
malicious ad hoc extensions. However, our proposed access
control can successfully limit ad hoc extensions to those that
meet high standards—e.g., to only those that passive monitor
non-critical platform components and have a proven reliabil-
ity record. For some examples (such as that of the Appendix),
the stronger version checking and synchronization support
alone can succeed in eliminating almost all risks related to
the extension.

4.3 Online Behavior Monitoring of Extensions

Aspects of an online monitoring infrastructure already exist:
automated bug reporting and software updates are common-
place in many systems. However, more is required. First, the
details and automation of bug reports must be increased, e.g.,
as described in [37]. Second, failure statistics must become
public if administrators—or the stakeholders gaining most
from increased dependability—are to make informed deci-
sions based on software reliability records. And third, reports
are needed about both healthy and problem-prone machines,
as shown by systems such as Cooperative Bug Isolation [26],
Strider [53], and PeerPressure [52], and proposed in [5].

Only with such detailed reports can the cause of an ex-
tension’s stability problem be discovered and fixed, e.g.,
through negotiations between the extension writer and the
platform creators. In addition, practical details must be ad-
dressed, such as how to assign meaningful identities to soft-
ware, its creators, users, as well as administrators. Such



identities must allow for software versioning, updates, and
patches, and might be based on existing schemes [15, 31].

Public dependability data will reduce the popularity of
unreliable extensions and, thereby, encourage that any un-
derlying problems be addressed. The reliability of a software
extension, as reported by the online infrastructure, evolves
in a natural fashion. Initially, when it is only used by a few
early-adopters, the infrastructure would report the software’s
reliability as essentially unknown; however, with popularity,
and pervasive coverage of its behavior, a more accurate relia-
bility estimate would become available. Eventually, detailed
assessments could be given, such as “with 95% confidence,
using extensionsX andY together is causally linked tok
additional reliability issues, per month”.

As mentioned earlier, when used in our architecture, the
online monitoring infrastructure would also help prevent im-
plementation ossification. It allows the easy identification of
which popular, important software needs help in switching
to supported extensibility interfaces; it also allows platform
creators to proactively work to prevent ad hoc extensibility
from becoming entrenched in the first place. If online moni-
toring also reports on the use of supported extensibility inter-
faces, it can further support a platform’s evolution by helping
to regulate inadvertent ad hoc extensions.

4.4 Manifests for Circumscribing Behavior

There are many techniques for specifying and using behav-
ior manifests, or contracts [2, 3, 14]. A manifest in our archi-
tecture is a statement attached to an extension in which the
extension writer declares what platform interfaces the ex-
tension uses, and—in the case of ad hoc extensions—how
they rely on platform implementation details using the me-
diation framework. It is left to the relevant stakeholders to
choose what they see as acceptable manifests. Instead of be-
ing purely descriptive, these manifests can be what Lamp-
son [24] calls “specs with teeth,” i.e., either through runtime
enforcement or static analysis, extensions can be guaranteed
to comply with their manifests. It is important that any vio-
lations of the manifest, whether during admission testing or
actual use, get reported and have negative consequences.

Using the existing online mechanisms for platform up-
dates, the manifest of installed extensions could be updated
over time, e.g., to include new version data, as vendors con-
firm that the extensions function well with new versions of
platform components. (To allow uninterrupted use of exten-
sions, the platform creators might especially facilitate such
version data updates, e.g., by giving vendors ahead-of-time
access to changed platform components.)

In this manner, the mediation framework facilitates, but
regulates innovative, clever hacks. All ad hoc extensions will
naturally be suspect and thus—all other things being equal—
less popular, thereby giving extensions a strong incentive
to being well-behaved. In particular, an ad hoc extension
that mediates high-risk, critical platform internals will find
few takers until it has established a track record as being
reliable. However, for advanced, cutting-edge extensions, as

well as single-use, custom extensions, such admissions in the
manifests may well be considered as reasonable.

4.5 Implementing the Proposed Architecture

It is easy to see how our proposed architecture could be im-
plemented for software platforms based on the Java language
runtime. Java-based systems already support both code man-
ifests and strong cryptographic code identity [15]; many al-
ready contact the platform creators through an online service
for sending error reports and retrieving updates; and it has
been demonstrated that it is simple to accommodate both the
identification and hooking required for the mediation frame-
work [13, 54]. Indeed, architectures similar to our proposal
have already been implemented for Java-based application
server platforms, the Wily Interscope management and mon-
itoring system being one example [55].

There are several benefits to implementing our architec-
ture on top of a type-safe platform, such as Java. For one,
its access control could be made uncircumventable—i.e., the
mediation framework, manifests, and online reporting could
themselves be outside the realm of ad hoc extensibility [13].
Type safety can also help guarantee that extension’s run-
time behavior corresponds to their manifests. For instance,
for an ad hoc extension that purports to be purely passive,
the ad hoc extension code inserted by the mediation mecha-
nism can be prevented from modifying any internal platform
state [13]. (Such restrictions would, of course, make it im-
possible to implement some, potentially useful ad hoc exten-
sions; for many purposes, this loss will be outweighed by the
benefits of stronger guarantees.)

Of course, in their current form, the existing Java mech-
anisms are not sufficient for a realistic implementation of
our architecture. Java code manifests would have to be aug-
mented with declarations for specifying use of the medi-
ation framework by an ad hoc extension. The mediation
framework itself, and its access-control decision procedures,
would have to be created (including any required instrumen-
tation mechanisms, e.g., based on the Java ClassLoader, as
in [13]). Finally, the rudimentary online servicing of existing
systems would have to be tied into a full-fledged online mon-
itoring infrastructure that can provide public dependability
data. However—although it would require a significant ef-
fort, both in terms of software development and in terms of
standardization and consensus-building between the relevant
stakeholders—there are no technical obstacles to an imple-
mentation of our proposed architecture for Java-based plat-
forms.

5. Conclusion
Ad hoc extensions provide many benefits: they enable de-
velopers to create truly innovative features, they allow users
to benefit early from functionality, and they enhance the
value of software platforms in ways that help them achieve
and maintain dominance. Therefore, even though kludgy
hacks are an enemy of dependability, in practice their omis-
sion might prevent the success of future secure, reliable
platforms. The controlled support of arbitrary tweaks, e.g.,



through our proposed architecture, can help reconcile de-
pendability and ad hoc extensibility.

Acknowledgments
Several of our colleagues at Microsoft Research, Silicon Val-
ley, and Microsoft Research, Cambridge, provided helpful
feedback on earlier versions of this paper, Comments from
Tim Harris, Doug Terry, and Lidong Zhou were particularly
useful.

References
[1] R. Anderson. Security Engineering: A Guide to Building

Dependable Distributed Systems. Wiley, 2001.
[2] M. Barnett, K. Leino, and W. Schulte. The Spec# program-

ming system. InProc. CASSIS’04, 2004.
[3] M. Barnett and W. Schulte. Runtime verification of .NET

contracts.J. Syst. Softw., 65(3), 2003.
[4] B. Bershad, S. Savage, P. Pardyak, E. Sirer, M. Fiuczynski,

D. Becker, C. Chambers, and S. Eggers. Extensibility, safety
and performance in the SPIN operating system. InProc.
SOSP’95, 1995.

[5] M. Chen, E. Kiciman, A. Accardi, A. Fox, and E. Brewer.
Using runtime paths for macroanalysis. InProc. HotOS’03,
2003.

[6] Citrix Systems, Inc. Citrix Terminal Services.http:
//www.citrix.com/.

[7] Citrix Systems, Inc. GoToMyPC.http://gotomypc.com/.
[8] J. Cooper. Special Edition Using MS-DOS 6.22. Que, 3

edition, 2001.
[9] DaggerWare. HackMaster 0.9 for the original Palm

Pilot. http://www.palmblvd.com/software/pc/

HackMaster-1999-02-21-palm-pc.html.
[10] R. Daley and J. Dennis. Virtual memory, processes, and

sharing in MULTICS.Commun. ACM, 11(5), 1968.
[11] P. Efstathopoulos, M. Krohn, S. VanDeBogart, C. Frey,

D. Ziegler, E. Kohler, D. Mazieres, and M. K. R. Morris.
Labels and event processes in the Asbestos operating system.
In Proc. SOSP’05, 2005.

[12] Ú. Erlingsson, T. Roeder, and T. Wobber. Virtual environ-
ments for unreliable extensions. Technical Report MSR-TR-
2005-82, Microsoft Research, 2005.

[13] Ú. Erlingsson and F. Schneider. IRM enforcement of Java
stack inspection. InProc. of 2000 IEEE Symposium on
Security and Privacy, May 2000.

[14] C. Flanagan, K. Leino, M. Lillibridge, G. Nelson, J. Saxe,
and R. Stata. Extended static checking for Java. InProc.
PLDI’02, 2002.

[15] L. Gong. Inside Java 2 Platform Security: Architecture, API
Design, and Implementation. Addison-Wesley, 1999.

[16] Google, Inc. Google Toolbar.http://toolbar.google.
com/.

[17] G. Hoglund and J. Butler.Rootkits: Subverting the Windows
Kernel. Addison-Wesley Professional, 2005.

[18] G. Hunt and D. Brubacher. Detours: Binary interception of
Win32 functions. InProc. of the 3rd USENIX Windows NT
Symposium, 1999.

[19] G. Hunt and J. Larus. Singularity design motivation.
Technical Report MSR-TR-2004-105, Microsoft Research,
Dec. 2004.

[20] M. Jones. Interposition agents: transparently interposing user
code at the system interface. InProc. SOSP’93, 1993.

[21] D. Lafferty and V. Cahill. Language-independent aspect-
oriented programming. InProc. OOPSLA ’03, 2003.

[22] L. Lamport. Specifying Systems: The TLA+ Language
and Tools for Hardware and Software Engineers. Pearson
Education, 2002.

[23] B. Lampson. Protection. InProc. 5th Princeton Conf.
Information Sciences and Systems, 1971. Reprinted in ACM
Op. Sys. Rev. 8, 1 (Jan. 1974), pages 18-24.

[24] B. Lampson. Software components: Only the giants survive.
In Computer Systems: Theory, Technology, and Applications:
A Tribute to Roger Needham. Springer, 2004.

[25] B. Laurie and P. Laurie.Apache: The Definitive Guide.
O’Reilly & Associates, 3 edition, 2002.

[26] B. Liblit, M. Naik, A. Zheng, A. Aiken, and M. Jordan. Public
deployment of cooperative bug isolation. InProc. RAMSS’04,
2004.

[27] K. Loney. Oracle Database 10g: The Complete Reference.
McGraw-Hill Osborne Media, 2004.

[28] J. P. Mello, Jr. Developer raps Linux security.LinuxInsider,
January 11th, 2005.

[29] Microsoft Corp. Debugging tools and symbols.http:
//www.microsoft.com/whdc/devtools/debugging/

debugstart.mspx.
[30] Microsoft Corp. Windows application compatibility.http:

//msdn.microsoft.com/compatibility/.
[31] Microsoft Corp. Frequently asked questions about Authen-

ticode, 2000. http://msdn.microsoft.com/library/
en-us/dnauth/html/signfaq.asp.

[32] T. Ming and S. Mitchell. Extension Overload.http:
//www.xoverload.com/extensionoverload/.

[33] G. Nebbett.Windows NT/2000 Native API Reference. New
Riders Publishing, 2000.

[34] G. Necula. Proof-carrying code. InProceedings of the 24th
ACM Symposium on Principles of Programming Languages,
pages 106–119, January 1997.

[35] W. Oney. Programming the Microsoft Windows Driver
Model. Microsoft Press, 2 edition, 2002.

[36] Open Systems Resources, Inc. Peter pontificates.The NT
Insider, 11(4), Dec 2004.http://www.osronline.com/.

[37] J. Redstone, M. Swift, and B. Bershad. Using computers to
diagnose computer problems. InProc. HotOS’03, 2003.

[38] M. Russinovich and B. Cogswell. SysInternals.http:
//www.sysinternals.com/.

[39] A. Schulman.Undocumented DOS: A programmer’s guide
to reserved MS-DOS functions and data structures. Addison-
Wesley, 1990.

[40] M. Seltzer, Y. Endo, C. Small, and K. Smith. Dealing with
disaster: Surviving misbehaved kernel extensions. InProc.
OSDI’96, Oct. 1996.

[41] E. Siever, A. Weber, and S. Figgins.Linux in a Nutshell.
O’Reilly & Associates, 4 edition, 2003.

[42] J. Siracusa. Mac OS X 10.4 Tiger: Kernel updates.Ars
Technica, page 4, April 28th, 2005.http://arstechnica.
com/reviews/os/macosx-10.4.ars/4.

[43] D. Solomon and M. Russinovich.Windows Internals.
Microsoft Press, 4 edition, 2005.

[44] A. Srivastava, A. Edwards, and H. Vo. Vulcan: Binary
transformation in a distributed environment. Technical Report
MSR-TR-2001-50, Microsoft Research, 2001.

[45] A. Srivastava and A. Eustace. ATOM: A system for building
customized program analysis tools. Technical Report WRL
Research Report 94/2, Digital Equipment Corporation, 1994.



[46] W. Stanek. Microsoft IIS 6.0 Administrator’s Pocket
Consultant. Microsoft Press, 2003.

[47] J. Sugerman, G. Venkitachalam, and B. Lim. Virtualizing I/O
devices on VMware Workstation’s hosted virtual machine
monitor. InProc. USENIX’02, June 2001.

[48] M. Swift, B. Bershad, and H. Levy. Improving the reliability
of commodity operating systems.ACM Trans. Computer
Systems, 22(4), Nov 2004.

[49] Symantec Corp. Symantec Norton SystemWorks 2005.
http://www.symantec.com/sabu/sysworks/basic/.

[50] Symantec Corp. Veritas Backup Exec.http://www.
veritas.com/.

[51] Unsanity LLC. APE Application Enhancer.http://www.
unsanity.com/haxies/ape/.

[52] H. Wang, J. Platt, Y. Chen, R. Zhang, and Y. Wang. Automatic
misconfiguration troubleshooting with PeerPressure. InProc.
OSDI’04, 2004.

[53] Y. Wang, C. Verbowski, J. Dunagan, Y. Chen, H. Wang,
C. Yuan, and Z. Zhang. STRIDER: A black-box, state-
based approach to change and configuration management and
support. InProc. LISA, 2003.

[54] I. Welch and R. Stroud. Kava - A reflective Java based
on bytecode rewriting. InProc. 1st OOPSLA Workshop on
Reflection and Software Engineering, 1999.

[55] Wily Technology, Inc. Interscope.http://www.wilytech.
com/solutions/products/Introscope.html.

[56] E. Witchel, J. Rhee, and K. Asanovic. Mondrix: Memory
isolation for Linux using Mondriaan memory protection. In
Proc. SOSP’05, 2005. http://www.cag.lcs.mit.edu/
scale/papers/mmp-sosp2005.pdf.

[57] F. Yuan. Windows Graphics Programming: Win32 GDI and
DirectDraw. Prentice Hall, 2001.

Appendix: The Details of the TDImon Ad hoc
Extension for Network Monitoring
The SysInternals website [38] is a source of many useful
Windows systems software utilities created by Mark Russi-
novich, a co-author of the definitive book on the internals
of the Windows operating system [43]. Most of these util-
ities rely on some unsupported properties, e.g., they often
make direct use of the undocumented NT system call in-
terface [33]; therefore, they are ad hoc extensions to Win-
dows. (Interestingly, techniques for Windows kernel rootkits
are frequently based on the available source code for these
utilities [17].)

TDImon is one of these utilities. It monitors activity at the
kernel’s Transport Driver Interface (TDI), which is funda-
mental to Windows’ implementation of many network proto-
cols, including TCP/IP [35, 43]. TDImon comprises a user-
mode application and a kernel-mode driver.1 The applica-
tion displays a listing of network operations—such as accept,
connect, and send—and the user process, IP addresses, etc.,
associated with each of those operations. This information
is gathered by the driver, which the application dynamically
loads into the Windows kernel.

It is the kernel-mode portion of TDImon that relies on
unsupported, undocumented implementation details of the

1 In Windows, the term “driver” is used for for device drivers, loadable
kernel modules, and even for parts of the operating system itself.

Windows TCP/IP TDI driver. To be precise, TDImon over-
writes a table of seven function pointers in an internal, un-
documented data structure of the Tcpip TDI driver instance,
thereby changing what functions are invoked for TCP/IP net-
work operations. Once overwritten, this table points to seven
functions implemented by the kernel-mode TDImon driver;
each of these TDImon functions records information about
the network operation and then invokes the original function
pointer for that operation.

TDImon gains several benefits from its use of ad hoc ex-
tensibility. In particular, it can simultaneously achieve three
goals: (i) the utility can be used immediately after instal-
lation, without an intervening operating system reboot; (ii)
it can identify the correct user-level process responsible for
each network operation; (iii) it can be run alongside other
network filters (such as for firewalls or VPNs). In Windows,
it is difficult for well-behaved extensions to achieve these
goals for two reasons: first, the set of network filters is lim-
ited, and mostly statically determined at boot time; second,
data about user-mode processes is not always propagated to
those filters. In the past, some Windows networking software
has gone to great lengths to achieve these goals through alter-
nate means, e.g., replacing the Windows’ system-wide user-
mode networking library (the WinSock DLL), and dynami-
cally detouring running applications [18]. Compared to this,
changing the TDI function-pointer table is a simple and reli-
able way to achieve these goals.2

At the same time, TDImon runs several risks by its un-
supported behavior. For instance, since it is undocumented,
nothing guarantees that the TDI function-pointer table will
always be used in the manner TDImon expects. More wor-
ryingly, another ad hoc extension, or some unexamined plat-
form component, might be critically dependent on the values
of that table. These risks are mitigated by TDImon’s purely
passive nature, once installed, and by its use of defensive
programming, such as careful version checking and atomic
overwriting of pointers. The remaining risk may be consid-
ered acceptable, given TDImon’s past and present popularity
and the lack of reported problems. Of course, through the use
of a mechanism for supporting reliable ad hoc extensibility,
e.g., based on our architecture from Section 4, this risk could
be virtually eliminated.

2 The enhanced platform support of the upcoming Windows Vista makes it
easy to achieve these goals—and dynamically add filters like TDImon—as
the discussion of Section 3.3 would predict.


