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Abstract

Writers of complex storage applications such as dis-
tributed file systems and databases are faced with the
challenges of building complex abstractions over sim-
ple storage devices like disks. These challenges are ex-
acerbated due to the additional requirements for fault-
tolerance and scaling. This paper explores the premise
that high-level, fault-tolerant abstractions supported di-
rectly by the storage infrastructure can ameliorate these
problems. We have built a system called Boxwood to
explore the feasibility and utility of providing high-level
abstractions or data structures as the fundamental storage
infrastructure. Boxwood currently runs on a small cluster
of eight machines. The Boxwood abstractions perform
very close to the limits imposed by the processor, disk,
and the native networking subsystem. Using these ab-
stractions directly, we have implemented an NFSv2 file
service that demonstrates the promise of our approach.

1 Introduction

Implementing distributed, reliable, storage-intensive
software such as file systems or database systems is hard.
These systems have to deal with several challenges in-
cluding: matching user abstractions (e.g., files, direc-
tories, tables, and indices) with those provided by the
underlying storage, designing suitable data placement,
prefetching, and caching policies, as well as provid-
ing adequate fault-tolerance, incremental scalability, and
ease of management. Indeed, it is generally believed that
building a distributed file system or a distributed database
with all these properties is an unrealistic ideal. Our hy-
pothesis in this paper is that this perceived difficulty can
be considerably lessened through the use of suitable ab-
stractions such as trees, linked lists, and hash-tables, pro-
vided directly by the storage subsystem, without com-
promising performance, scalability, or the manageability
of the storage system or the higher-level subsystems built

on top of it. We have built a system called Boxwood to
explore the feasibility and utility of providing such high-
level abstractions or data structures as the fundamental
storage infrastructure. Using these abstractions directly,
we have implemented a highly available and scalable
NFSv2 server that runs on multiple machines, coherently
exporting the same underlying file system.

Although Boxwood’s approach to storage is a signifi-
cant departure from traditional block-oriented interfaces
provided by disks—whether physical, logical [17], or
virtual [21]—we think it provides some key advantages.
One advantage, as evidenced by our experience with the
multi-machine NFS server, is that by directly integrat-
ing data structures into the persistent storage architec-
ture, higher-level applications are simpler to build, while
getting the benefits of fault-tolerance, distribution, and
scalability at little cost. Furthermore, abstractions that
can inherently deal with sparse and non-contiguous stor-
age free higher level software from dealing with address-
space or free-space management. In contrast, even so-
phisticated virtual disk systems that provide scalability
and ease of management require higher layers like the file
system to deal with free space management, data place-
ment, and maintaining user-visible abstractions [32]. A
third advantage is that using the structural information
inherent in the data abstraction can allow the system to
perform better load-balancing, data prefetching, and in-
formed caching. These mechanisms can be implemented
once in the infrastructure instead of having to be dupli-
cated in each subsystem or application.

Our earliest experience with Boxwood convinced us
that there is no single universal abstraction to storage
that will serve the needs of all clients. Our current pro-
totype provides two: a B-tree abstraction, which allows
typical operations like lookups, insertions, deletions, and
enumerations, and a simpler chunk store, where vari-
able sized data items can be allocated, freed, written, and
read, in much the same way that memory is today.

Our specific choices were motivated by several obser-



vations. First, B-trees are a very useful abstraction for
many storage needs found in file systems, databases and
the like. Second, building a high-performance, scalable
and distributed B-tree is a considerable challenge (even
building a centralized version with good concurrent per-
formance is difficult). We believe that our experience
with this data structure will complement the existing lit-
erature in building distributed data structures like hash
tables. Third, we believe that our simple chunk store ab-
straction provides a better match for applications that do
not need the strict atomicity guarantees or the rigid struc-
ture of a B-tree. This simpler abstraction offers good
performance and much flexibility to client applications
while offloading the details of free space (or in a virtual
disk environment, address space) management.

Our prototype is implemented by a collection of
“server nodes”, each containing a CPU, RAM, one or
more disks, and a network interface packaged as a rack-
mounted server. One can imagine alternative implemen-
tations of server nodes ranging from individual disk units
to disk controllers that control sets of disks.

In addition to its focus on distributed storage abstrac-
tions, this paper also offers some insights into the struc-
ture of fault-tolerant distributed systems. The classic ap-
proach to building such systems is to use Lamport’s repli-
cated state machines with Paxos [20]. Our approach,
although highly reliant on Paxos for consensus, uses a
fault-tolerant distributed lock service and the simple no-
tion of shared memory (or more precisely shared store)
programming to deal with the inherent complexity of a
distributed system with independent failures. We believe
the lessons learned may be valuable in the design of other
fault-tolerant distributed systems.

2 Boxwood System Structure

The overall goal of the Boxwood project is to experi-
ment with data abstractions as the underlying basis for
storage infrastructure. Generally, the term storage infras-
tructure connotes several requirements, a few of which
are: redundancy and backup schemes to tolerate failures,
expansion mechanisms for load and capacity balancing,
and consistency maintenance in the presence of failures.
Thus, ideally Boxwood needs to go well beyond provid-
ing distributed data structures. Our current status does
not satisfy this ideal, but we have made much progress.
For example, to deal with transient failures, we provide
services for logging and transaction recovery. To deal
with the correctness of replication in the presence of fail-
ures, automatic reconfiguration and expansion, we pro-
vide mechanisms (e.g., a Paxos consensus module, a lock
service, and a failure detector) to insure a correct inven-
tory of the components in the system and to provide a
consistent view of the overall system.

In this section, we describe parts of our design as
it relates to data abstractions and storage infrastructure
mechanisms. We envisage our system being deployed in
a machine room or in an enterprise cluster as the princi-
pal storage infrastructure used by file systems, database
systems, and other services. This environment justifies
several assumptions that impact our design choices. We
first enumerate these assumptions and design principles
before describing our system in greater detail.

2.1 Preliminaries

The Boxwood system is targeted at an environment that
has multiple processing nodes each with locally attached
storage, interconnected by a high-speed network. These
processors run the Boxwood software components to im-
plement abstractions and other services. Software run-
ning on a processor communicates with locally attached
disks using a low-level interface similar to the UNIX raw
device interface. We use remote procedure call (RPC) to
access resources and services executing on remote pro-
cessors.

The Boxwood system is organized as several inter-
dependent services. We use layering as a way of manag-
ing the complexity in a Boxwood system. For example,
the B-tree and the chunk store services mentioned ear-
lier in Section 1 are constructed by layering the former
on top of the latter. The chunk store service, in turn, is
layered on top of a simple replicated logical device ab-
straction (to be described in Section 3.4). Although lay-
ering has the potential for reducing performance because
of context switching overheads, our design avoids these
problems by running all layers within a single address
space.

Our interconnection network is Gigabit Ethernet; we
therefore feel justified in providing fault-tolerance by
synchronous replication of data on two disks attached to
separate machines. With this scheme, under fault-free
operations, the primary replica must wait for the sec-
ondary to finish writing its copy before it can return to
the client. This wait can be large on a slow network, but
is tolerable in a high-speed LAN. We also feel justified
in assuming that the cost of making RPCs is small and
that the network can be scaled by adding more switches.
Our implementation results bear out these assumptions.

We use a security model that is appropriate to the tar-
get environment. Specifically, we assume that the ma-
chines are within a single administrative domain and are
physically secure. We therefore send messages between
machines in the clear and make no special provisions for
encryption, authentication, or security.

We assume that CPUs, disks, and networks can fail.
Such failures can be transient or permanent. Examples
of transient failures that we can tolerate are: a faulty



power supply takes down a machine (and its attached
disks), which will come back up without the contents of
its RAM after power is restored; or the operator mistak-
enly unplugs a network cable. Examples of permanent
failures are: a disk suffers catastrophic media failure, or
a server’s log is destroyed beyond repair. We assume, re-
alistically, that the failure of a disk affects only that disk,
but the failure of a machine affects it and all the disks at-
tached to it. Although unlikely, we assume that networks
can partition. Failures are assumed to be fail-stop.

Our fundamental mechanism for protecting data
against catastrophic media failure is chained-declustered
replication [14]. Thus, the permanent failure of a single
disk will not cause data loss or data unavailability. In
fact, chained-declustering prevents data loss even in the
presence of many combinations of multiple disk failures
as well, but not against all combinations of multiple disk
failures. We also deal with the failure mode when all
machines suffer a transient power outage and come back
having lost the contents of RAM.

In our design, each service consists of software mod-
ules executing on multiple machines. Each service in-
dependently arranges for failover and high availability in
the presence of multiple failures. For instance, our Paxos
consensus service (described in Section 3.1) works as
long as a majority of Paxos servers are running. Thus,
double failures can be tolerated by running five Paxos
servers and triple failures with seven. Similarly, our lock
service (described in Section 3.3) uses a single master
and one or more slaves as standby. Depending on the
number of slaves we choose to run, we can tolerate mul-
tiple permanent failures. Our B-tree and NFS services
described in Sections 3.7 and 5 impose no additional
availability constraints as long as at least one instance of
each module is running and the underlying services (e.g.,
locking, consensus, and replicated data) are available.

As the scale of the deployment increases, the proba-
bility of multiple failures increases. Our design is most
vulnerable to increased disk failures in this regard. If
the probability of double disk failures becomes a serious
problem, we can use a different data protection scheme
(e.g., triplexing or erasure coding) at the lowest layers
without changing the design of any of the other services.

The principal client-visible abstractions that Boxwood
provides are a B-tree abstraction and a simple chunk
store abstraction provided by the Chunk Manager. Fig-
ure 1 shows the organization of these abstractions rela-
tive to each other. We introduce them briefly here, but
defer a fuller description to later sections.

2.2 B-tree Abstraction

B-trees and their variants are widely viewed as the best
general-purpose data structure for implementing a dictio-
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Figure 1: Design of the Boxwood abstractions. The B-
tree is layered atop the chunk manager, which is layered
on top of the replicated logical device. The numbers in
parentheses refer to the section describing the design of
the module.

nary (supporting insertion, lookup, deletion, and enumer-
ation of key-value pairs) on secondary storage. B-trees
are also complex enough to exercise fully the features
and foibles of a distributed storage architecture. There-
fore, they seemed an excellent candidate for the first data
abstraction to be implemented within Boxwood.

The Boxwood B-tree module is a distributed imple-
mentation of Sagiv’s [28] B-link tree algorithm, which is
a variant of the Lehman-Yao B-link tree algorithm [22].
Sagiv’s algorithm has the desirable property that locking
is considerably simplified from traditional B-tree algo-
rithms without compromising concurrency or atomicity.
Sagiv’s original B-link tree algorithm (like its classic B-
tree, B+-tree, or B∗-tree counterparts) runs in a single
machine environment, uses locks for synchronizing ac-
cesses amongst multiple threads, and stores data either
in memory or persistently on disk. Sagiv’s algorithm is
well suited for a distributed implementation, an observa-
tion independently made by Johnson and Colbrook [16].

Since the algorithm to implement the B-link tree can
already deal with thread concurrency within a single ma-
chine, our design extends this design to multiple ma-
chines by ensuring two simple constraints are met:

• Threads executing on multiple machines use global
locks for synchronizing access to shared data.

• Data stored by one thread running on a machine can
be accessed by another thread on any other.

The first constraint is readily provided by our distributed
lock service described in Section 3.3. To meet the second



requirement, we could use an existing virtual (or log-
ical) disk or logical volume manager, but we decided
against this for the following reasons. Existing logi-
cal/virtual disk systems would still require us to do our
own management of physical/virtual space. Most sys-
tems we know of did not support our needs for fault-
tolerance, incremental expansion, and scalability. The
few systems that do (e.g., Petal [21] or FAB [9]), im-
plement their own logging and recovery schemes, which
duplicate much of the logging and recovery required at
the B-link tree level, increasing our bookkeeping over-
heads, and making it difficult to implement certain opti-
mizations that were possible in our design.

2.3 Chunk Data Store

The data store used by the B-tree abstraction is provided
by a chunk manager. The principal function of the chunk
manager is to hide the details of the physical storage me-
dia and to provide a level of address mapping so that the
B-tree algorithm can deal with opaque pointers to stored
data. The chunk manager acts much like a memory al-
locator, in that it hands out variable length chunks of the
data store that can subsequently be written to, read from,
or deallocated.

The chunk manager carves out chunks of storage by
using the services of a lower layer called the replicated
logical device (RLDev) layer. Each RLDev provides ac-
cess to a fixed amount of chain-declustered storage. An
RLDev is implemented on two machines using two sep-
arate physical disk drives for replication.

2.4 Infrastructure Services

In addition to the software modules that implement the
various abstractions, Boxwood contains three important
modules that provide essential distributed system ser-
vices. These are heavily used within the Boxwood sys-
tem to implement the abstractions, and can also be used
directly by the external clients of the Boxwood system.
These services are:

• Paxos service. This is an implementation of the
Paxos part-time parliament algorithm [20]. It is
used to store global system state such as the number
of machines and the number of RLDevs in the sys-
tem. It is also used by the distributed lock service to
keep track of client information and the identity of
the lock master for recovery when the lock service
has a transient failure.

• Lock Service. This provides a distributed lock
service that handles multiple-reader, single-writer
locks. This service is used by the RLDev module,
the chunk manager, and our multi-node NFS server.

• Transaction Service. This service provides a redo-
undo logging facility and transaction support for
the recovery of the B-tree module and in the NFS
server.

3 Boxwood Design

This section describes the design of the various com-
ponents of the Boxwood system in more detail. Since
there are several interdependencies amongst these com-
ponents, we describe them in an order that minimizes
forward references.

3.1 Paxos Service

The Paxos service is a “general-purpose” implementa-
tion of the state machine approach using the Paxos part-
time parliament algorithm. We refer to our service as
general-purpose because clients of the service can de-
fine arbitrary client-specific state and pass client-specific
“decrees” to modify and query this state by making RPC
calls to the Paxos service. The state maintained by the
Paxos service is replicated on a collection of independent
machines. The Paxos algorithm provably guarantees that
the state changes occur in the same order on each replica
and that the state is available and is consistent as long as
a majority of these replicas are non-faulty.

Boxwood depends on three different types of client
states maintained within Paxos. Each client state typi-
cally refers to the essential state required by an internal
Boxwood service such as the lock service, or the RLDev
layer, or the chunk manager. This state is consulted by
each service as appropriate to perform recovery or recon-
figuration of that layer. Typically, the state includes the
machines, disks, and other resources like network port
identifiers used by the client.

The Paxos service is implemented on a small collec-
tion of machines, typically three, with two machines con-
stituting a quorum or majority. We do not dedicate an en-
tire machine to implementing the service; the Paxos ser-
vice instance on a machine is restricted to a single server
process. Paxos state is maintained on disks that are lo-
cally attached to the machines hosting the server. We do
not rely on these disks to be fault tolerant, but merely that
they are persistent. The failure of the disk storage or the
machine is considered as a failure of the Paxos server.
Our choice of three machines is arbitrary; it allows us to
tolerate the failure of one machine in our small cluster.
We can tolerate the failure of k machines by running the
service on 2k + 1 machines.

We draw a clear distinction between the characteris-
tics of the Paxos service and the characteristics of the
rest of the storage- and abstraction-related services. We
have isolated the scaling of the overall system from the



scaling of Paxos. Client state stored on Paxos can be
dynamically changed with the addition of new RLDevs,
new chunk managers, new machines, or new disks. This
does not require us to dynamically change the number of
Paxos servers that store the state. It is conceivable that at
extremely large scales, we might wish to increase on the
fly the number of Paxos servers in the system to guard
against increased machine failures. If so, we will need
to implement the protocols necessary to increase or de-
crease dynamically the number of Paxos servers per se.

We ensure that Paxos is only involved when there are
failures in the system or there are reconfigurations of the
system. This allows us to avoid overloading the servers
for the common case operations such as reads and writes,
which need to complete quickly.

We implement a slightly restricted form of Paxos by
decreasing the degree of concurrency allowed. In stan-
dard Paxos, multiple decrees can be concurrently exe-
cuted. In our system, we restrict decrees to be passed se-
quentially. This makes the implementation slightly eas-
ier without sacrificing the effectiveness of the protocol
for our purposes.

To ensure liveness properties in a consensus algorithm
like Paxos, it can be shown that it is only necessary to
use a failure detector with fairly weak properties [5]. In
principle, we too only need such a weak failure detector.
However, we need failure detectors with stronger guar-
antees for our RPC and lock server modules. Rather than
implement multiple failure detection modules, we use a
single one with more restrictions than those required by
Paxos.

3.2 Failure Detector

Our failure detection module is implemented by having
machines exchange periodic keepalive beacons. Each
machine is monitored by a collection of observer ma-
chines with which it exchanges keepalive messages. A
machine can check on the status of any machine by
querying the observers. A machine is considered failed
only when a majority of the observer machines have not
heard keepalive messages from it for some threshold pe-
riod. The invariants we maintain are that, (a) if a ma-
chine dies, the failure detector will eventually detect it,
and that, (b) if the failure detector service (not to be con-
fused with an individual observer) tells a client that a ma-
chine is dead, then that machine is indeed dead.

Figure 2 sketches the message protocol assuming a
single observer, rather than a majority. Our messages
are sent using UDP and may fail to arrive or arrive out of
order, albeit with very low probability on a LAN. We do
not assume a synchronized clock on each machine, but
we do assume that the clocks go forwards, the clock drift
on the machines is bounded, and UDP message delays

are non-zero.
A client (Client A in the figure) periodically (at inter-

vals of ∆T) sends out beacon messages to the observer.
These messages may or may not be delivered reliably.
The observer echoes each beacon message it receives
back to the client. At any point in time, the observer con-
siders a client dead if it has not received a beacon from
the client in the preceding GracePeriod. The client
considers the receipt of the echo as an acknowledgement
from the observer. The client keeps track of the last time
it sent a beacon that was acknowledged by the observer.
If more than GracePeriod time elapses without an ac-
knowledgement, it considers itself dead and kills itself.

  Time 
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Figure 2: Message protocol for the failure detector as-
suming a single observer and two clients. Time ad-
vances to the right. If B thinks A is dead, then A must be
dead.

Another client (Client B in the figure) that wishes to
monitor the first client (Client A) sends a query message
to the observer. The observer then sends B its view about
A. If B receives a reply from the observer claiming A is
dead, it considers A dead; otherwise it considers A alive.
Given our assumptions about clock drift and non-zero
message delay, this protocol is conservative and main-
tains our invariants.

In reality, we don’t use a single observer, but use a
collection of observers for reasons of fault-tolerance. In
this case, client B in the figure pronounces A dead only
if it gets replies from a majority of observers (instead of
the observer) that all pronounce A dead. If B does not
receive a majority of responses that pronounce A dead, it
assumes that A is alive. A, on the other hand, considers
itself dead as soon as GracePeriod time elapses with-
out an acknowledgement from a majority. This protocol
can lead to a state where A considers itself dead, while
B thinks A is alive. But more to the point, if B thinks
A is dead (because a majority pronounces A dead), then
A cannot have received an acknowledgement from a ma-
jority, and will consider itself dead. This maintains our
invariant that if B considers A dead (because the failure
detector said so), then A must be dead.



Our protocol, as sketched, only works if clients that
die do not get resurrected later and start sending beacons.
We ensure this in practice by having each client use a
monotonically increasing incarnation number each time
it has a transient failure.

The values of GracePeriod, ∆T, and the number
of observers are tunable parameters. We have found one
second, 200 ms, and three to be suitable in our environ-
ment. We use the same observer machines for all the
clients in the system for convenience, although it is fea-
sible to use different subsets of machines as observers for
each specific client.

3.3 Distributed Lock Service

The lock service provides a simple general purpose lock-
ing mechanism that allows its clients to acquire multiple-
reader single-writer locks. Our design borrows tech-
niques used in earlier work [4, 6, 12, 32]; we describe
the details of our scheme to underscore our rationale for
particular choices.

Locks are uniquely identified by byte arrays on which
the lock service does not impose any semantics. Al-
though locks have no explicit timeouts associated with
them, the failure detector is used to time out unrespon-
sive clients. So in essence, our locks act as degenerate
leases [12].

Clients of the lock service have a clerk module linked
into their address spaces. Leases are cached by the clerk
and are only revoked by the service if there is a conflict-
ing request by another clerk. A clerk blocks an incom-
ing revocation request until all currently outstanding lo-
cal uses of the lease have completed. An optimization,
which we don’t currently support, is for the clerk to re-
lease a lease when it has not used it for some time.

Clients can optionally arrange with the lock service
to call a recovery function on another instance of the
same client if the first instance were to fail. The lock
service guarantees that the leases acquired by a client
that has subsequently failed will not be released until
this recovery is successfully completed. This is a modest
extension to Gray and Cheriton’s standard lease mech-
anism (which primarily focused on write-through client
caching) to deal with residual state that exists in a client
after the lease has timed out. An example of such us-
age can be found in the B-tree module described in Sec-
tion 3.7.

The failure of a lock client is determined by the failure
detector. Notice that for our scheme to work correctly,
both the client and the lock service must use the failure
detector in a consistent fashion. Otherwise, the lock ser-
vice could revoke the lease, while the client believed it
had the lease. We ensure correct behavior by requiring
two conditions of our failure detector. First, if a client

dies, then the failure detector will eventually notice that
it is dead. Second, if the failure detector claims that a
client is dead, then the client must have died some time
prior (but perhaps is alive now if it was a transient fail-
ure). We also ensure that a client that comes alive and
finishes recovery always assumes that it holds no leases
and registers with the lock service.

For fault-tolerance, the lock service consists of a sin-
gle master server and one or more slave servers running
on separate machines. In our cluster, we typically use
only a single slave server, but if multiple machine fail-
ures are common, additional slaves can be used. Only the
master server, whose identity is part of the global state in
Paxos, hands out leases. The lock service also keeps the
list of clerks as part of its Paxos state.

If the failure detector pronounces the current master
dead, the slave takes over after passing a Paxos decree
that changes the identity of the current master. The new
master recovers the lease state by first reading Paxos state
to get a list of clerks. Then it queries the clerks for their
lease state. It is possible that some of the clerks are dead
at this point. In this case, the lock service calls recovery
on behalf of these clients on the clients that are alive, and
considers all leases held by the dead clients as free. If
no recovery procedure has been established for a dead
client, the lock service considers all leases held by that
client as free.

Lock service clerks query Paxos to determine the iden-
tity of the master server. This information is cached until
an RPC to the currently master returns an exception, at
which point it is refreshed. RPCs to a machine return an
exception if the failure detector claims the target is dead.

The lock service fails if all (both) servers fail. Clients
cannot make forward progress until it is re-established.

We use a simple master-slave design for the lock ser-
vice because we believe other more elaborate, scalable
schemes are unnecessary in most storage-centric envi-
ronments. Our rationale is that even in elaborate schemes
with several active lock servers, a specific lock will be
implemented by a single lock server at any given time.
If this is a highly contended lock, then lock contention
due to data sharing becomes a performance problem on
the clients long before the implementation of the lock
server itself becomes a bottleneck. Our experience with
deploying Petal/Frangipani, which had a more scalable
lock service, seems to bear this out.

3.4 RLDevs: Replicated, Logical Devices

Boxwood implements storage replication through a sim-
ple abstraction we call a replicated, logical device
(RLDev). An RLDev is logically a block device in that
it expects block-aligned accesses in multiples of block
units.



We chose to implement replication at a fairly low level
in the abstraction hierarchy for two principal reasons.
First, by providing replication at a low level, all higher
layers, which are typically more complex in nature, can
depend on fault-tolerant storage, which makes the logic
of the higher layers simpler to reason about. For in-
stance, our implementation of the chunk manager (to
be described in Section 3.5) was considerably easier be-
cause of the RLDev layer. Second, by replicating at a
low level of abstraction, the relevant replication, map-
ping, and failover logic, as well as internal data struc-
tures, can be made simple.

RLDevs implement chained declustering. A single
RLDev is of fixed size and consists of two segments of
equal size located on disks on two different machines. A
single disk will contain segments from multiple RLDevs.
The list of RLDevs, the segments belonging to them, the
identity of machines that host the primary and the sec-
ondary segments, and the disks are all part of the global
state maintained in Paxos. If an RLDev is added or if
the locations of the segments belonging to an RLDev are
changed, a Paxos decree must be passed.

The replication protocol is fairly standard. One replica
is designated the primary, and the other the secondary.
On initialization, a replica reads its state from the Paxos
service and monitors its peer using the failure detector.
When both replicas are up, writes are performed on both
and reads on either. A client sends write requests to the
primary, which forwards the request to the secondary and
waits for completion.

Clients of the RLDev use hints to determine where the
replicas are located. Hints can sometimes be wrong and
can be updated by reading the Paxos state. An RLDev
clerk linked in with the clients handles the details of deal-
ing with hints and refreshing them as appropriate.

When one of the replicas dies, the surviving replica
continues to accept writes (and reads). We call these de-
graded mode writes because the system is accepting new
data but not replicating it on the dead replica. A sub-
sequent failure of the surviving replica (the one that has
accepted the degraded mode data) before the first replica
has finished recovering will lead to data loss. Before
it accepts these “degraded mode” writes, the survivor
passes a decree to that effect so that if the dead replica
were to come back after a transient failure, it knows to
reconcile its stale data, and more importantly, not to ac-
cept new reads or writes if it cannot reconcile its stale
data. This can happen because the replica that was work-
ing in “degraded mode” now happens to be dead. All
blocks that have degraded mode writes on them are put
in a log (called the degraded mode log) so that reconcili-
ation is fast and only involves the affected blocks.

Notice that in the worst case, the entire segment could
have been written in degraded mode. Thus, when a pre-

viously dead replica comes up, we have to be prepared
to copy the entire segment. We can leverage this mech-
anism to implement the automatic reconfiguration of an
RLDev. By a reconfiguration operation, we mean the re-
distribution of the data in an RLDev to a different disk
and/or machine to enable load balancing. Making an
RLDev relatively small makes it easy to copy its data
quickly on a high-bandwidth LAN link, thereby cutting
down reconfiguration time.

As mentioned previously, when both replicas are up,
the primary waits for the secondary to commit the write
before returning to the client. In order to cope with a
transient failure when the writes are in flight, an RLDev
implements a dirty region log, which serves a different
purpose than the degraded mode log mentioned previ-
ously. The dirty region log on the primary keeps track
of writes that are in flight to the secondary. When the
secondary replies, the log entry can be removed from the
primary in principle. To recover from a transient failure,
the primary consults its dirty region log to determine the
writes that were in flight and sends the secondary the cur-
rent contents of its disks for these writes.

In cases where the client can deal with the two replicas
differing after a crash, RLDevs allow the client to turn
off the dirty region log. Such clients must explicitly read
and write each replica to reconcile the differences after
a crash. In Boxwood, all such clients already maintain
a log for other reasons, and there is no added cost for
maintaining the equivalent of the dirty region informa-
tion, except a modest violation in layering. We felt this
tradeoff was justified for the performance gain of saving
an additional disk write.

Recovering an RLDev is fairly straightforward. There
are two failure cases: a permanent failure of a disk or
the transient failure of processor and its attached disks.
When there is a permanent disk failure, the RLDevs that
are hosted on that disk must be reconstituted on a new
(or perhaps more than one) disk, but the recovery of each
RLDev proceeds independently. An RLDev recovering
from a permanent disk failure contacts the RLDev on the
machine that hosts its surviving segment and copies the
contents of the entire segment. In contrast, if the fail-
ure was transient, then the data retrieved from the peer is
limited to any degraded mode writes the peer has for the
recovering segment. After degraded mode writes have
been applied on the recovering segment, the dirty region
log of the surviving segment is read and sent to the re-
covering server to apply any in-flight writes. When the
recovering segment is up to date, the recovering server
passes another Paxos decree indicating that the state of
the RLDev is normal and stops recording degraded mode
writes.



3.5 The Chunk Manager

The fundamental storage unit in Boxwood is the chunk.
A chunk is a sector-aligned sequence of consecutive
bytes on an RLDev, allocated in response to a single re-
quest. Every chunk is identified by an opaque handle
that is globally unique in the system.

Chunks are managed by the chunk manager module,
which supports four operations: allocate, deallocate,
read, and write. Deallocated handles are guaranteed
never to be reused. Reading or writing an unallocated
handle raises an exception.

Since an RLDev can be accessed by any machine with
a suitable clerk linked in, it is possible, in principle,
to have any chunk manager allocate chunks from any
RLDev. In fact, as long as a single chunk manager is
alive, we can manage all the RLDevs that are non-faulty.
However, for simplicity, ease of load balancing, and per-
formance, we designate a pair of chunk managers run-
ning on two different machines to manage space from a
given set of RLDevs. Typically, these RLDevs will have
their primary and secondary segments located on disks
that are local to the two chunk managers. This reduces
the number of network hops required to perform chunk
operations. One of the pair of chunk managers acts as the
primary initiating all allocations and deallocations, while
either can perform reads and writes.

The mapping between the opaque handle and the
RLDev offset is replicated persistently on RLDevs. This
mapping information is accessed often: an allocate call
requires a new mapping to be created; a deallocate call
deletes the mapping; reads and writes require this map-
ping to be consulted. We therefore cache the mapping on
both the primary and the secondary.

A map lock from the lock service protects mappings.
Only the primary makes changes to the mappings; this
lock is therefore always cached on the primary in exclu-
sive mode. When the primary changes the mappings, it
writes the new mapping to the RLDev and sends an RPC
to the secondary, which directly updates its cached copy
of the mappings without acquiring the lock.

On startup, the secondary has to read the latest map-
ping state from the RLDev so that subsequent RPCs from
the primary can update it correctly. In order to get the lat-
est state from the RLDev, the secondary acquires the map
lock in shared mode, reads the mapping from the RLDev,
releases the lock, and never acquires it again. The pri-
mary, on the other hand, always acquires the map lock
in exclusive mode before making mapping changes. The
ordinary locking mechanism will then ensure the consis-
tency of the data.

If the primary dies, the secondary will notice it via the
failure detector, whereupon it acquires the map lock in
exclusive mode and acts as a primary. If the secondary

dies, the primary will also detect it via the failure detec-
tor. It continues to update the mappings on the RLDev,
but does not make RPCs until it gets a revocation for the
map lock indicating that the secondary has come alive
and wants to read the state.

Our design of the chunk manager is very simple,
largely because of our decisions to (a) implement repli-
cation below the level of the chunk manager, and (b) use
the locking service to do the failover.

Figure 3 shows the relationship of the chunk manager
and the RLDev layer.
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Chunk Manager

Cached

Mapping state

RPC to update mapping

RLDEV

(Secondary)

Chunk Manager

Cached

Mapping state

Read/Write

Mapping

Read 

Mapping

Figure 3: The chunk manager pair relies on a shared
RLDev and RPCs to keep the mapping information
consistent.

Mapping From Opaque Handles to Disk Offsets

An opaque handle consists of a 32-bit chunk manager
identifier and a 64-bit handle identifier. A chunk man-
ager identifier corresponds to a pair of chunk managers.
The locations of the primary and secondary chunk man-
ager, which may change over time, are maintained in
Paxos and cached by the chunk manager clerk. The clerk
uses this mapping to direct chunk requests to an appro-
priate manager. If the cache is out of date, there is no cor-
rectness issue with misdirecting the RPC because the in-
correct chunk manager will return an error, which causes
the clerk to refresh its mappings.

The translation of the handle identifier to the RLDev
is performed by the chunk manager responsible for the
handle. It consults its cached mapping table to translate
to the RLDev offset. It then invokes the RLDev clerk,
which accesses the physical disks as necessary. In most
cases, at least one segment of the RLDev will be on a
local disk, so accesses incur little network overhead.

The chunk manager module guarantees that an opaque
handle is never reused. It enforces this condition by
never reusing a handle identifier once it is deallocated.
The 64-bit identifier in our current implementation seems
adequate for this purpose; but we may reconsider that de-
cision after we gain more experience with the system.



The mapping between handles and disk offsets is
stored as stable state on an RLDev. The state on the
RLDev consists of a checkpoint and a separate list of
incremental changes that have not been applied to the
checkpoint. The list is updated synchronously whenever
the mapping changes, but the checkpoint is only accessed
infrequently. We periodically apply the changes in the
list to the checkpoint and truncate the list.

Recovering the chunk manager is simple as long as the
RLDev holding the stable state is available. The primary
chunk manager applies the list of incremental changes
to the current checkpoint to get the updated state, which
it caches in memory and stores stably on disk. Then it
truncates the list and is ready to service new requests.
Since the chunk manager depends on the RLDev for its
recovery, the RLDevs have to be recovered first.

3.6 Transaction and Logging Service

Boxwood provides simple transaction and logging sup-
port to clients. We provide logging to perform both redo
and undo operations of transactions. Logs are duplexed
by storing them on an RLDev so that they are resilient to
single failures and universally accessible from any ma-
chine. Thus, recovery for a service can be done on any
machine. The logging system supports group commits
and also allows clients the option of selectively flushing
the volatile in-core log to disk on every transaction com-
mit.

Our transaction system does not provide isolation
guarantees; instead clients explicitly take out locks us-
ing the lock server. Clients do deadlock avoidance by
using lock ordering. With the current set of clients in our
system, deadlock avoidance is the more attractive alter-
native to providing deadlock detection as in a traditional
transaction system.

3.7 The B-tree Module

We assume the reader is familiar with the B-tree [3], and
its variant the B*-tree [33], which has the same struc-
ture as a B-tree, except that all genuine keys reside in the
leaf nodes. Non-leaf nodes contain shadow keys acting
purely as an index for finding the desired key in a leaf.
A B-link tree [22] is a B*-tree with one extra pointer per
node: this extra link points to the next node of the tree
at the same level as the current node. The extra links
make it trivial to enumerate keys in a B-link tree (one
just follows the extra links from one leaf node to the
next). But even more importantly, the extra links make
efficient concurrent operations possible. We do not give
details here, but the main intuition is that certain opera-
tions can recover from unexpected situations by follow-
ing the extra links, so some concurrent operations that

would otherwise require several locks can proceed with
fewer locks.

The B-link tree, together with algorithms for efficient
concurrent operations, was first introduced by Lehman
and Yao [22], and significantly improved by Sagiv [28].
Sagiv’s algorithms require no locks for lookups. Inser-
tions require only a single lock held at a time even if the
insertions cause node splits at many levels of the tree.
Each lock protects a single tree node that is being up-
dated. Deletions are handled like insertions, and hold a
single lock on the updated node. Thus, these operations
are provably deadlock free. Deletions can leave a node
empty or partially empty; and such nodes are fixed up as
a separate activity by one or more background compres-
sion threads. Each compression thread must lock up to
three nodes simultaneously. Each B-link tree operation
provides all ACID properties when only a single tree is
involved. ACID properties across multiple trees must be
maintained by clients using the transaction and locking
services described earlier.

We implement a distributed version of Sagiv’s al-
gorithm in a conceptually simple fashion by using the
global lock server instead of simple locks, and by using
the chunk manager for storage instead of ordinary disks.
Each instance of the B-tree module maintains a write-
ahead log on an RLDev.

Recovering the B-tree service is done by replaying the
write-ahead log. The records in the log refer to handles
implemented by the chunk manager. Thus, before the
B-tree service can be recovered, both the RLDev service
and the chunk manager must be available. If a B-tree
server were to crash, the active log records (i.e., records
for those operations that haven’t made it to disk) will be
protected by leases. When the leases expire, the lock ser-
vice will initiate recovery using some other B-tree server
and the write-ahead log. (Recall from Section 3.3 that
clients of the lock service can designate a recovery func-
tion to be invoked on lease expiration, when the lock ser-
vice will consider the client as having failed.) When re-
covery is complete, the expired leases are made available
for other servers to acquire. It is possible that all B-tree
servers are dead, in which case, the lock server will not
be able to call recovery on any machine when the leases
expire. It therefore defers the recovery until the first B-
tree server registers with it, at which point all server logs
will be replayed before any new leases are handed out.

4 Performance of the Boxwood Prototype

4.1 Experimental Setup

Boxwood is deployed in our lab on a cluster of eight
machines connected by a Gigabit Ethernet switch. Each
machine is a Dell PowerEdge 2650 server with a single



2.4 GHz Xeon processor, 1GB of RAM, with an Adaptec
AIC-7899 dual SCSI adapter, and 5 SCSI drives. One of
these, a 36GB 15K RPM (Maxtor Atlas15K) drive, is
used as the system disk. The remaining four 18GB 15K
RPM drives (Seagate Cheetah 15K.3 ST318453LC) store
data.

Each machine executes the Boxwood software, which
runs as a user-level process on a Windows Server 2003
kernel. The failure detector observers, the Paxos service,
and the lock service run as separate processes; the rest
of the layers are available as libraries that can be linked
in by applications. Boxwood software is written in C#,
a garbage-collected, strongly typed language, with a few
low-level routines written in C.

The networking subsystem provided by the kernel is
capable of transmitting data at 115 MB/sec using TCP.
Using a request response protocol layered on TCP, our
RPC system can deliver about 110 MB/sec.

4.2 RLDev Performance

On each machine we run an RLDev server, which man-
ages several RLDevs on its locally attached disks. For
some of these RLDevs, the server is a primary and for
others it is a secondary. We measure the performance us-
ing a simple benchmark program that performs read and
write accesses.

Size Write Read
bytes Xput Util. % Xput Util. %

MB/s CPU Disk MB/s CPU Disk

512 0.3 2 99 0.3 20 100
8192 5 9 99 5.3 15 99
64K 40 73 98 48 70 85
256K 110 52 76 110 70 60

Table 1: Aggregate random write and read through-
put on a two machine configuration. Disk queue length
is constrained to be one. Each write request involves one
local disk write and one remote disk write. Each read re-
quest involves one RPC call and a disk read on a remote
disk.

Table 1 shows the performance of replicated random
writes and reads in the smallest (two machine) configu-
ration. All the write accesses made by the benchmark
are to RLDevs where the primary server is local. Thus,
each write will result in a local disk write and an RPC to
a remote server to update the mirror. All read accesses
are made to a remote RLDev server. CPU utilization
represents the average CPU usage on each server. We
constrain the kernel disk access routines to allow only a
single outstanding request per disk. This represents the
most pessimistic performance.
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Figure 4: Scaling of writes in the RLDev.
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Figure 5: Scaling of reads in the RLDev.

Figures 4 and 5 show the scaling as the number of
servers is increased from 2 to 8. Read are slightly faster
than writes in general. This is because the disk inher-
ently has slightly better (about 5%) read performance
than write according to the manufacturer’s specification
sheet. At small packet sizes, the throughput is limited by
disk latency. For large packet sizes, we get performance
close to the RPC system imposed limit. In all cases, we
observe good scaling.

4.3 Chunk Manager Performance

We next discuss the performance of the chunk manager.
The read and write performance of the chunk manager
closely matches the performance of the RLDev described
above and is not repeated here. We instead describe
the performance impact of allocations and deallocations.
Our chunk manager implements a performance optimiza-
tion that defers some of the work of an allocation to a
later time. When possible, we log the allocation locally
on the client, but avoid an RPC to the server. A whole set
of allocation requests are subsequently sent in a batch to
the server.

Table 2 shows the performance effect as the amount
of batching is varied. As part of allocating a handle, the



Batch Size Amortized
Latency (ms)

1 24
10 3.3
100 1.0
1000 1.0

Table 2: Effect of batching on allocations. Each allo-
cation is for a single 8KB region, which is zeroed out on
disk. Latency is amortized over the batch size.

storage allocated for it is zeroed out on disk. Thus al-
location costs will vary somewhat with chunk size; we
show a typical size of 8KB. For single allocations (i.e.,
with no batching), the latency cost is high. This is be-
cause we require three RLDev writes to stably record the
new mapping. However, batching is very effective even
at small numbers; we typically more than a dozen allo-
cations that can be batched in our tests.

Deallocations are somewhat easier than allocations.
The cost of a single deallocation as seen by a client is
about 5.3 milliseconds and is independent of the number
of servers. In addition, if a handle whose allocation re-
quest has not yet been sent to the server is deallocated,
we can avoid making both operations at the server. This
brings the time down even further.

4.4 B-tree Performance

We report on the performance of two sets of experiments
for the B-tree. In the first experiment we have a number
of machines each inserting keys into a separate B-tree.
In a subsequent phase, each machine looks up these keys
and in a final phase deletes them. Before each of the three
phases, all entries in the B-tree caches are evicted. Since
the B-trees are private, there is no lock contention, but
there is contention for storage on the underlying RLDevs,
which are evenly distributed across all machines.
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Figure 6: Performance of B-link tree operations. Each
machine performs operations on a separate tree, starting
with a cold cache.

Figure 6 reports on the aggregate steady state through-
put across all machines. For all phases, we observe good
scaling within experimental error. This is not surprising
since there is no contention for the locks, and the RLDev
performance is known to scale from Figures 4 and 5.
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Figure 7: Performance of B-link tree operations. All
machines perform operations on a single shared tree,
starting with a cold cache.

We next study the performance of B-tree operations
under contention. In this experiment, we redo the previ-
ous experiment but use a single B-tree that all machines
contend for. To avoid the extreme case where every in-
sertion contends for a global lock, we partition the keys
so that each client acts on a disjoint region of the key
space. This arrangement still leads to lock contention in
the upper levels of the tree. Once again we perform three
phases with cold caches. Figure 7 shows the aggregate
throughput across all machines. Under contention, the
performance of the B-link operations tends to flatten rel-
ative to Figure 6. Also, relative to the first experiment,
the size the shared tree is proportionately larger in the
second experiment. This leads to lowered hit rates in the
cache, which slows the performance of lookups in the
second case.

In general, the performance of B-trees is dependent on
several parameters, which include the branching factor,
the distribution of keys, and the size of the keys and data.
We have not yet done an exhaustive characterization of
our B-tree module at various parameter values. The par-
ticular trees we measure have 10-byte keys and data and
each tree node has a branching factor of 6.

5 BoxFS: A Multi-Node NFS Server

The previous sections showed the functional character-
istics of Boxwood’s abstractions. To test these abstrac-
tions, we built BoxFS: a file system using Boxwood B-
trees, exported using the NFS v2 protocol. It runs at user-
level and directly or indirectly depends on all the services



described earlier.
BoxFS implements a conventional file system contain-

ing directories, files, and symbolic links. Each of these
is stored as a Boxwood B-tree. Each tree contains a sin-
gle well-known distinguished key to hold attributes such
as access times, protection and owner information simi-
lar to a UNIX inode. In addition, directories, files, and
symbolic links also have regular keys as described below.

A B-tree storing a directory is keyed by the name of
the file, directory, or symbolic link. The data correspond-
ing to the key refers to a byte array that is the on-wire
representation of the NFS file handle. The NFS file han-
dle is not interpreted by the client, but BoxFS stores in
it bookkeeping information including the B-Tree handle
that represents the file, directory, or symbolic link.

A B-tree storing a file is keyed by block number. The
data corresponding to the key is an opaque chunk han-
dle. The actual data in the file is stored in the chunk as
uninterpreted bytes. Our usage of B-trees for directories
and chunks for file data is consistent with the idea that
strict atomicity guarantees are needed in the file system
metadata, but not in the file user data. Alternatively, we
could have stored user data as part of the file B-tree, but
every file write would translate into a relatively expen-
sive B-tree insert operation, with attendant overheads of
redo and undo logging.

A B-tree storing a symbolic link is a degenerate tree
containing a single special key and the byte array refer-
ring to the target of the link.

Obviously, all the B-trees are maintained via Box-
wood B-tree operations — and any single such operation
has all the ACID properties even when the same B-tree
is simultaneously being accessed by different machines.
However, many file system operations require multiple
B-tree operations to be performed atomically. For ex-
ample, a rename operation requires the combination of a
delete from one B-tree and an insertion into another B-
tree to be atomic. This atomicity is achieved using the
transaction service described in Section 3.6. But as we
explained earlier, clients have to provide isolation guar-
antees themselves. BoxFS ensures isolation by acquir-
ing locks on the appropriate file system objects from the
Boxwood lock service in a predefined lock order. After
the locks are acquired, it performs the required operation
as part of a transaction, commits, and releases the locks.

All B-tree operations benefit from the B-tree cache
built into Boxwood’s B-tree module. In contrast, file
data is not stored in B-trees; it is accessed via the chunk
manager interface and requires a separate cache within
BoxFS. This cache is kept coherent by acquiring the ap-
propriate shared or exclusive lock from the Boxwood
lock service for every data read or write.

Typical file operations that do not involve user file data
access result in one or more B-tree operations encapsu-

lated within a single transaction. These B-tree operations
will generate log entries that are committed to the log
when the transaction commits. Where possible the trans-
action system will do a group commit. In any event, a
single transaction commit will cause only a single disk
write in the usual case unless the log is full. The actual
B-tree nodes that are modified by the transaction will re-
main in the B-tree’s in-core cache and do not make it to
disk. Thus, BoxFS can perform metadata intensive file
operations efficiently.

BoxFS makes three simplifying assumptions to
achieve acceptable performance. We do not believe these
assumptions materially affect the usability of our system
or the validity of our hypothesis that it is easy to build
file systems given higher-level abstractions. By default,
the data cache is flushed once every 30 seconds, which is
not strictly in accordance with NFS v2 semantics. Also,
the B-tree log that contains the metadata operations is
flushed to stable storage with the same periodicity. Thus,
file system metadata is consistent, but we could lose 30
seconds of work if a machine crashes. Finally, we do not
always keep the access times on files and directories up
to date.

The BoxFS system runs on multiple machines simul-
taneously and exports the same file system. The file sys-
tem is kept consistent by virtue of the distributed lock
service. However, since we are exporting the file system
using the NFS protocol, clients cannot fully exploit the
benefits of coherent caching.

Locking in BoxFS is quite fine-grained. Since all file
system metadata is stored as key-data pairs in a B-tree,
metadata modifications made by different machines are
automatically locked for consistency by the B-tree mod-
ule through the global lock server. In addition, BoxFS
protects individual file blocks by taking out locks for
each block. Thus, two machines writing different blocks
in the same file will contend for the metadata lock to up-
date the file attributes, but not for the individual block.
This reduces lock contention as well as cache coherence
traffic due to false sharing.

Using the Boxwood abstractions enabled us to keep
our file system code base small. The actual file system
code is about 1700 lines of C# code, which is a more
verbose language than C. The BoxFS code implement-
ing a simple LRU buffer cache is an additional 800 lines,
which is largely a reuse of the code in the B-tree cache
module. The size of the code compares favorably with
Mark Shand’s classic user-level NFS daemon, which is
about 2500 lines of C for read-only access to a UNIX
file hierarchy [30]. In addition, we wrote code to support
NFS RPC (both UDP and TCP) and XDR in C#, which
accounted for an additional 2000 lines, and about 1000
lines of C to interface BoxFS to the native Windows net-
working libraries.



5.1 BoxFS Performance

Table 3 shows Connectathon performance benchmarks
(available at http://www.connectathon.org/nfstests.html)
for BoxFS. For comparison we show the performance
of a stock NFS server running on the same hardware.
We run BoxFS on a single machine in our cluster. The
RLDevs are on four locally attached disks and have no
replication enabled. The stock NFS server is the Win-
dows 2003 Services for Unix (SFU) NFS server that runs
in-kernel on the NTFS local file system on the same four
local disks. Our client is a Linux 2.4.20-8 NFS client in
both cases. We mount the file system so that NFS RPCs
are made with UDP send and receive sizes of 8KB, the
maximum supported by the kernel.

Description Time (secs)
BoxFS NFS

Create 155 files and 62 dirs 0.7(1.9) 1.0
Remove 155 files and 62 dirs. 0.5(1.7) 0.4
500 Getwd and stat calls 0.1(0.1) 0.8
1000 Chmods and stats 1.5(4.8) 8.4
Write a 1MB file 10 times 3.7(12.4) 10.8
Read a 1MB file 10 times 0.2(0.2) 0.2
Reads 20500 dir. entries and 1.5(2.7) 0.6
200 files and unlinks them
200 Renames and links on 0.9(2.3) 1.9
10 files
400 Symlinks and readlinks 1.4(3.7) 6.7
on 100 files
1500 Statfs calls 1.2(1.3) 1.1

Table 3: Connectathon benchmarks. BoxFS writes file
data asynchronously. The test that reads a 1MB file re-
peatedly is an anomaly because the reads hit in the cache
on the client. The numbers in parenthesis indicate perfor-
mance when the in-core metadata log is flushed to disk
on each transaction commit instead of periodically.

We show the performance of BoxFS when the meta-
data log is lazily flushed to disk and also when it is not.
In general, the performance of BoxFS is comparable to
the native NFS server on top of a local NTFS file sys-
tem. We have a slight edge on some meta-data intensive
operations, which we attribute to our usage of B-trees.
Depending on whether we synchronously update the log
or not, the fifth test shows a marked difference (12.4 ver-
sus 3.7 seconds) even though file data is being updated
asynchronously in both cases. This is because file write
requires a metadata update, which involves a log write.

To show the benefit of lazily updating the metadata log
where possible, we report our results from running Post-
Mark, a metadata intensive benchmark. This benchmark
models the expected file system work load imposed by
electronic mail, web based commerce, and netnews [18].
It creates an initial set of files of varying sizes. This

Parameter Value

Num. Initial Files 500
Num. of Transactions 500
File Sizes 0.5–9.8KB
Create/Delete Ratio 5
Read/Append Ratio 5
Read/Write Block Size 512

Table 4: Postmark parameters. We use Unix buffered
I/O and use a default random number seed of 42.

Metric BoxFS
Async. Sync.

File Creations/sec 63 27
File Read/sec 81 24
File Append/sec 85 25
File Deletions/sec 63 27
Data Read KB/sec 116 50
Data Write KB/sec 379 162

Table 5: Postmark Results. We gain substantial per-
formance by flushing the meta data log to disk periodi-
cally, without significant change in the semantics of the
file system.

measures the performance of the file system in creating
small files. Next it measures the performance of a pre-
determined number of “transactions”, where a transac-
tion is either the creation or deletion of a file followed by
either a read or append to a file. We ran the benchmark
with the settings shown in Table 4. Our results are shown
in Table 5. Since the benchmark emphasizes metadata
intensive operations, BoxFS performs well.
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Figure 8: Performance of BoxFS sharing experiments.
MKDirEnt Latency is the elapsed time to insert all 100
files.

Since benchmarks for multi-node file systems like
BoxFS are difficult to obtain, we show scaling character-
istics of BoxFS on three simple experiments in Figure 8.
In all three experiments, we run the Boxwood abstrac-
tions on all 8 machines in our cluster. We export a single
shared NFS volume from one or more of these machines.



By the nature of NFS mounting, the single volume ap-
pears as separate file systems to the client.

In the first experiment (ReadFile in Figure 8), a sin-
gle 1 MB NFS file is read from multiple mount points,
with a cold client cache and a cold server cache. As
we would expect, the aggregate throughput increases lin-
early as the number of servers is increased since there is
no contention.

In the second experiment (MkDirEnt in the figure), we
create 100 files with unique names in the root directory
of each NFS volume. This results in NFS Create RPC
requests to each BoxFS machine, which in turn modifies
the B-tree corresponding to the single shared directory.
There are two potential sources of conflict traffic. First,
we are inserting into a shared B-tree, which will result
in locking and data transfer in the B-tree module; sec-
ond, BoxFS has to acquire a lock to ensure that the meta-
data update and the B-tree insertion is consistently done.
Since our experiments in Figure 7 show that we can per-
form in excess of 300 insertions a second into the B-tree,
we believe the performance bottleneck is the traffic to
keep the metadata up to date. For comparison, the per-
formance when there is no sharing (single machine case)
is 0.6 ms.

In the final experiment (WriteFile in the figure), we
write data to a shared file, but at non-overlapping offsets.
Each write results in an NFS Write RPC to a different
BoxFS machine. Since BoxFS implements fine-grained
locking at the file block level, the coherence traffic and
lock contention, which determines scaling, is limited to
what is required to keep the file metadata up to date. For
comparison, the performance in the single machine (no
contention) case is 4 MB/sec.

6 Related Work

Some early seeds of our work are present in the “scal-
able distributed data structures” (SDDSs) of Litwin et
al. [24, 25, 26]. Litwin’s SDDSs offer algorithms for
interacting in a scalable fashion with a particular fam-
ily of data structures. Our focus in Boxwood is sig-
nificantly different, in that we are concerned with sys-
tems issues such as reliability and fault-tolerance in gen-
eral abstractions—issues that were largely ignored in
Litwin’s work.

The “scalable distributed data structure” approach of
Gribble et al. [13] is the previous work most similar
to Boxwood. We view our work as complementary
to theirs. The implementation of different data struc-
tures (hash tables versus B-trees) offers very different
tradeoffs. Furthermore, our failure models are differ-
ent, which also lead to very different system design tech-
niques. Gribble et al. designed their system assuming
the availability of uninterruptible power supplies, so tran-

sient failures that take down the entire cluster are ex-
tremely rare. They rely on data always being available
in more than one place (in RAM or on disk on multiple
machines) to design their recovery protocols.

Production systems like BerkeleyDB [15] and Data-
Blade are related to our approach and were sources of
early inspiration for our work. These systems offer much
more functionality than we do at the moment, but neither
is distributed.

Petal [21] is another related approach to scalable stor-
age. Petal provides similar durability and consistency
guarantees to Boxwood, but it presents applications with
a single sparse address space of blocks. Applications
must coherently manage this space themselves, and im-
plement their own logging and recovery mechanisms for
any data structures they employ. Many of the basic ser-
vices that Petal uses are similar in spirit to ours. Sim-
ilarly, the overall structure of the B-link tree service is
reminiscent of Frangipani [32].

Distributed databases are another approach to scal-
ably storing information (e.g., [23]). However, we view
our system as lower-level infrastructure that we hope
database designers will use (and we plan to use it in this
way ourselves). We have deliberately avoided mecha-
nisms that we felt are unnecessary in the lower levels of
storage architecture: query parsing, deadlock detection,
and full-fledged transactions.

Distributed file systems also enable storage to scale
in some respects (e.g., [2, 10] to name but two). But,
once again, our view is that these will be layered over
the facilities of Boxwood.

Boxwood’s layering of a file system on top of B-trees
is related to Olson’s Inversion File System, which is lay-
ered on top of a full-fledged Postgres database [27]. The
Inversion File System is capable of answering queries
about the file system that our implementation cannot.
Since our file system is layered on a simpler abstraction,
all things being equal, we expect a performance increase
at the expense of reduced querying capability.

Recent work on Semantically Smart Disks [31] is also
related to Boxwood. Like Boxwood, semantically smart
disks strive for better file system performance by exploit-
ing usage patterns and other semantics within the lower
layers of the storage system. Unlike Boxwood, seman-
tically smart disks present a conventional disk interface
(e.g., SCSI) to higher levels, but try to encapsulate (or in-
fer) semantic knowledge about the file system to enhance
performance.

Many projects, including FARSITE [1],
OceanStore [19], and the rapidly-growing literature
on distributed hash tables (e.g., [34]), have attempted
to provide scalable storage over a wide area network.
These all address a set of trade-offs quite different to
those of Boxwood. The wide-area solutions must deal



with untrusted participants, frequent reconfiguration,
high network latency, and variable bandwidth. Thus,
these solutions do not take advantage of the more benign
conditions for which Boxwood was designed.

There are also many projects using local area clusters
to provide scalable services or persistent distributed ob-
jects. Typically, these rely on a file system or database to
manage their storage (e.g., [7, 8]) or build an application-
specific storage service (e.g., [29]) and do not offer
easily-utilized, atomically-updating data structures.

Network attached secure disks (NASD) [11] are also
related to Boxwood in that they provide a storage ab-
straction at a higher level than raw blocks.

Our choice of the B-link tree was motivated by the ob-
servation that it is well suited for distributed implemen-
tation. A similar observation was made independently
by Johnson and Colbrook [16], who proposed B-link
tree variants called DE- and DB-trees for shared mem-
ory multiprocessors. Their scheme explicitly replicates
internal nodes on specific processors and stores contigu-
ous sets of keys on a processor. Our implementation is
more dynamic and our algorithm is simpler at the cost of
having a distributed lock service.

7 Conclusions

Our initial experience indicates that using scalable data
abstractions as fundamental, low-level storage primitives
is attractive. To be sure, it appears difficult to settle on a
single, universal abstraction that will fit all needs. How-
ever, our particular combination of abstractions and ser-
vices seem to offer a sound substrate, on top of which
multiple abstractions may be readily built.

Our use of the chunk manager as a generalized storage
allocator obviating the need for address space manage-
ment elsewhere in the system seems to be widely appli-
cable. In our case, it enabled us to distribute a compli-
cated data structure with modest programming effort.

Our strategy of isolating the use of the Paxos module
to a relatively small part of the system has worked well
in practice. It allows us to continue to scale the rest of
the system dynamically without much hindrance.

Does the design of BoxFS support our claim that
building scalable applications using the Boxwood infras-
tructure is easy? This is a subjective question, but our
feeling on this is positive. BoxFS is a distributed file
system with good resilience and scalability. Yet it does
not require complicated locking, logging, or recovery
schemes, making it very easy to implement. We need fur-
ther performance analysis to make more objective com-
parisons.
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