
Strategies for Basing the CS Theory Course on Non-decision
Problems

John MacCormick
∗

Dickinson College

jmac@dickinson.edu

ABSTRACT
Computational and complexity theory are core components of the

computer science curriculum, and in the vast majority of cases

are taught using decision problems as the main paradigm. For ex-

perienced practitioners, decision problems are the best tool. But

for undergraduates encountering the material for the first time,

we present evidence that non-decision problems (such as optimiza-

tion problems and search problems) are preferable. In addition,

we describe technical definitions and pedagogical strategies that

have been used successfully for teaching the theory course using

non-decision problems as the central concept.

CCS CONCEPTS
• Theory of computation → Complexity classes; Problems,
reductions and completeness; • Applied computing → Edu-
cation;

KEYWORDS
theory course; decision problems; computability theory; complexity

theory

ACM Reference Format:
John MacCormick. 2018. Strategies for Basing the CS Theory Course on

Non-decision Problems. In SIGCSE ’18: The 49th ACM Technical Symposium
on Computer Science Education, Feb. 21–24, 2018, Baltimore, MD, USA. ACM,

New York, NY, USA, 6 pages. https://doi.org/10.1145/3159450.3159557

1 INTRODUCTION
Many undergraduate computer science curricula include a “theory”

course, covering some aspects of automata theory, computability,

and complexity. Central questions addressed by a theory course

include: (a) Given a computational problemC , can we solveC using

a computer program? (b) If so, can we do so in polynomial time?

A strong majority of popular theory textbooks focus on computa-

tional problems that are in fact decision problems—problems that

have a yes/no answer. An alternative approach, advocated by this

paper, is to consider general computational problems—including

non-decision problems such as optimization problems and search

∗
Also affiliated with School of Computing Sciences, University of East Anglia, 2017–19

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SIGCSE ’18, Feb. 21–24, 2018, Baltimore, MD, USA
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5103-4/18/02. . . $15.00

https://doi.org/10.1145/3159450.3159557

problems—while narrowing in on decision problems when appro-

priate.

There are two principal objectives of this paper. First, we ex-

plain why non-decision problems are pedagogically advantageous

for introductory theory courses, supporting the explanation with

empirical evidence based on a survey of computer science majors.

Second, we describe technical details and pedagogical strategies

for using non-decision problems as the central concept in the CS

theory course, based on experience with four years of course offer-

ings and a recent textbook [16]. The use of non-decision problems

is the single most important idea for the suggested approach, but

additional strategies for making the CS theory course accessible

are also described. This includes the use of real computer programs

processing ASCII strings, instead of the more common model of

Turing machines processing symbols from an arbitrary alphabet.

The nature of the audience is crucial to our considerations. In this

paper, the primary target is undergraduate students who are seeing

computability and complexity theory for the first, and quite possibly

the last, time. We will refer to such students as the novice audience.
We focus only on the novice audience in this paper, ignoring other

theory course scenarios such as graduate courses or hybrid courses

taught to a mixture of graduate students and advanced undergrad-

uates. We also ignore the possibility of theory courses that focus

mostly on automata theory, assuming instead that computability

and complexity theory comprise at least a majority of the course.

For this audience, the key advantage of non-decision problems

is that they are more realistic: they match the previous program-

ming and algorithms experience of undergraduates more closely.

As a concrete example (details are given later), a decision problem

may ask the yes/no question, “Does this graph have a Hamilton cy-

cle?” The corresponding non-decision problem is, “Please give me a

Hamilton cycle of this graph if it has one.” A program that solves the

non-decision version produces a useful result that could conceiv-

ably be used in a real-world application, whereas a program solving

the decision version yields only a single bit: it tells us whether or

not a Hamilton cycle exists, but gives no additional information.

For the novice audience, focusing on these single-bit decision prob-

lems potentially positions the course as abstruse and irrelevant.

Focusing on non-decision problems with meaningful solutions, on

the other hand, provides more direct connections to earlier courses.

In section 4, we provide a combination of educational theory and

empirical evidence to support these claims.

However, it is important to note at the outset that we do not

suggest decision problems should be jettisoned from the theory

course. On the contrary, there are some compelling reasons to

incorporate decision problems into any theory course, including:

(i) some theorems and proofs are more concise and elegant when

phrased in terms of decision problems; (ii) the vast majority of

https://doi.org/10.1145/3159450.3159557
https://doi.org/10.1145/3159450.3159557

SIGCSE ’18, Feb. 21–24, 2018, Baltimore, MD, USA John MacCormick

existing CS theory literature considers only decision problems,

so it is essential that any student planning to take a subsequent

graduate-level theory course has been exposed to the decision

problem framework. Therefore, in this paper we advocate a hybrid

approach, whereby the earlier topics in the theory course are taught

with a focus on non-decision problems. When NP-completeness is

introduced—typically sometime in the second half of a one-semester

course—we suggest transitioning to the classical approach and

focusing only on decision problems (with some minor exceptions

described later). This hybrid approach allows the novice audience to

establish an initial appreciation of the relevance and importance of

CS theory via non-decision problems, while still being well-versed

in the classical approach by the end of the course.

As a basis for comparing and contrasting various approaches to

the theory course, we will refer to a selection of ten textbooks cov-

ering the relevant material [2, 5, 10–13, 18, 19, 21, 24]; please see the

technical report [15] for details about the selection of comparison

textbooks.

2 RELATEDWORK
There are several strands of related work aiming to make CS theory

courses more practical, accessible, or meaningful. We might classify

these strands as: (i) interactive automata software tools such as

JFLAP and DEM [3, 22, 23]; (ii) lab assignments and visualizations

for NP-completeness, an approach sometimes described as “NP-

completeness for all” [4, 6, 14]; (iii) recasting the theoretical ideas

themselves, for example by emphasizing non-decision problems

and including holistic discussions about the implications of NP-

completeness and P-versus-NP [8–10, 17, 20]. The present paper

falls firmly in category (iii). The ideas described here are orthogonal

to categories (i) and (ii). Indeed, the ideas of this paper have been

employed over a four-year period in a course that also uses JFLAP

and practical programming assignments, thus benefiting from all

three strands of literature on the CS theory course.

To the best of our knowledge, Goldreich’s position paper [9] and

subsequent textbook [10] comprise the previous work most similar

to the present paper. Goldreich makes several important, insightful,

and useful suggestions for improving the theory course, including

strong advocacy for the use of non-decision problems. The novel

contribution of the present paper is to recast the use of non-decision

problems in a manner that is more accessible to the novice audience,

thus enabling instructors to focus on non-decision problems and

deliver the consequent educational benefits to students.

3 A PRACTICAL DEFINITION OF
COMPUTATIONAL PROBLEMS

Before the advantages of non-decision problems can be explained,

we review some elementary background material to establish no-

tation and give a formal definition of a “computational problem,”

which can of course be either a decision problem or a non-decision

problem. The background review in this section also includes sev-

eral ancillary recommendations for how to present this material to

a novice audience.

Computational theory is often developed in terms of an arbi-

trary alphabet (i.e. a finite set of symbols) denoted Σ. The set of all
possible strings (i.e. finite sequences of symbols) on Σ is denoted Σ∗.

Experienced practitioners understand that the choice of alphabet is

irrelevant for most purposes. But for students being introduced to

complexity theory for the first time, it may be preferable to employ

a more familiar and obviously relevant alphabet—one that is used

by programmers to describe the inputs and outputs of computer

programs in practice. This motivates us here to take the ASCII

alphabet as our primary example of Σ.
For similar reasons, we use real computer programs as our main

computational model, rather than the Turing machines which are

more common in the theory literature. A program P receives a single

ASCII stringw as input and the output is either undefined (e.g. if

P crashes or enters an infinite loop) or is an ASCII string denoted

P(w). When P(w) is defined, we say P rejects w if P(w) = “no” and
P accepts w if P(w) , “no”.

A central concept in complexity theory is a language (sometimes

called a formal language), defined as a subset of Σ∗. The intuitive
notion of “solving a problem” is usually formalized as “deciding

a language.” Thus, a central concept in many treatments is that a

program P decides a language L if P accepts all strings s ∈ L and

rejects all s < L.
What is the connection between “deciding a language” and “solv-

ing a problem”? For so-called decision problems, there is a direct
and simple connection. Informally, decision problems are compu-

tational questions that have a yes/no answer, such as “Given an

integerm > 0, ism prime?” or “Given a graph G, does G contain a

Hamilton cycle?”. Formally, one could define a decision problem as

a function from Σ∗ to {“yes”, “no”}. When taking Σ as the ASCII

alphabet, we first agree an encoding of the relevant mathematical

objects into ASCII. For example: the integerm = 43552 might be

encoded as the ASCII string “43552”; a graph that is a three-cycle

with three vertices labeled a,b, c might be encoded as the ASCII

string “a,b b,c c,a”.
For a given decision problem D, strings for which the answer is

“yes” are called positive instances ofD and all other strings are nega-
tive instances. This leads to a simple and obvious mapping between

languages and decision problems. Any language L corresponds to a

decision problem DL defined as follows: for s ∈ Σ∗, DL(s) = “yes”
if and only if s ∈ L. The reverse mapping is also simple and obvi-

ous: a decision problem D corresponds to a language LD with the

property that s ∈ L if and only if DL(s) = “yes”.
As a result of the exact correspondence between decision prob-

lems and languages, the theory of computability and complexity is

usually described in terms of languages. As already mentioned in

the introduction, the advantages of doing so include simple nota-

tion and compact statements of certain theorems, but disadvantages

for the novice audience include a high level of abstraction and the

restriction to decision problems, which may appear unfamiliar and

irrelevant.

To illustrate the distinction between decision and non-decision

problems, we will use two running examples throughout the paper:

• Factor: The input is a string representing a positive integerm
in decimal notation (e.g. “35”), and a solution is any factor of

the input other than 1 andm (e.g. “5” or “7” form = 35), or “no”
if no such factor exists. FactorD is the corresponding decision

problem, with solution “yes” if m has a non-trivial factor and

“no” otherwise.

Strategies for Basing the CS Theory Course on Non-decision Problems SIGCSE ’18, Feb. 21–24, 2018, Baltimore, MD, USA

• HamCycle: The input is a string representing a graph G (e.g.

“a,b b,c c,a”), and a solution is any Hamilton cycle of G (e.g.

“a,b,c” for the given example of G), or “no” if no such cycle

exists. HamCycleD is the corresponding decision problem, with

solution “yes” if G has a Hamilton cycle and “no” otherwise.

We also assume the reader is familiar with Sat (which asks for a

satisfying assignment to a Boolean formula) and SatD (the decision

variant, which asks whether a satisfying assignment exists).

Several important differences between the decision and non-

decision variants should be immediately obvious from the Factor

and HamCycle examples:

• Non-decision problems can have multiple solutions (e.g. an inte-

germ can have multiple non-trivial factors; a graph G can have

multiple distinct Hamilton cycles), whereas decision problems

always have a unique solution (“yes” or “no”).
• It is possible for decision and non-decision variants of the same

problem to have apparently different complexity properties. Fac-

tor is a classic example here, since FactorD can be solved in

polynomial time by the AKS algorithm [1], whereas Factor has

no known polynomial-time method of solution.
1

• Non-decision variants appear to be more “natural.” For example,

it is hard for the novice audience to imagine an application where

it is useful to determine the mere existence of a Hamilton cycle,

rather than determining the sequence of vertices in the cycle.
2

A significant fraction of theory textbooks give no formal defini-

tion of a non-decision problem. In our sample of ten books, seven

give no formal definition [2, 5, 11–13, 18, 24]. One [21] gives a brief

definition; Papadimitriou [19] and Goldreich [10] give detailed def-

initions and analysis. These last two define non-decision problems

in terms of binary relations with certain technical properties: they

are polynomially decidable and polynomially bounded (or balanced).
This approach is correct and concise, but perhaps more abstract

than necessary for a novice undergraduate audience. Instead, the

following concrete definition is recommended for the novice audi-

ence:

A computational problem (which may or may not be

a decision problem) is a function F , mapping ASCII

strings to sets of ASCII strings. If F (x) = {s1, s2, . . .},
we call {s1, s2, . . .} the solution set for x , and each si is
a solution for x . If F (x) = {“no”}, then x is a negative
instance of F ; otherwise x is a positive instance. If F has

unique solutions, F is a function problem. For function

problems, we can drop the set notation, for example

writing F (x) = y instead of F (x) = {y}.

For example: “35” is a positive instance of Factor, and we have

Factor(“35”) = {“5”, “7”}; “29” is a negative instance, and we have
Factor(“29”) = {“no”}. Note that neither Factor nor HamCycle is
a function problem, since both problems can havemultiple solutions.

The definition of computational problem can obviously be adapted

to non-ASCII alphabets, but we omit those details here.

1
For NP-complete problems like HamCycleD, however, this never happens: given

a non-decision problem C whose decision variant is an NP-complete problem C ′
,

it is known that C always has a polynomial time reduction to C ′
. This property is

sometimes known as self-reducibility [10].

2
In contrast, expert practitioners know that sometimes the single-bit decision is useful.
For example, determining whether an integer is prime or composite is important in

cryptographic applications.

1. Extremely useful
2. Very useful
3. Mildly useful
4. Only a little useful
5. Not at all useful

non-decision
problems

(mean 1.8)

decision
problems

(mean 3.1)

Figure 1: Students perceive programs solving non-decision
problems as considerably more useful than programs solv-
ing decision problems. The red bars represent 99% confi-
dence intervals for the mean.

The above definition has an intuitive connection to computer

programs that produce meaningful output (as opposed to a single

accept/reject bit). Formally, we say a computer program P solves
the computational problem F if P(x) ∈ F (x) for all x . That is, the
program always terminates and outputs a correct solution.

4 EMPIRICAL EVIDENCE FOR
PEDAGOGICAL BENEFIT OF
NON-DECISION PROBLEMS

The core motivation for our approach is the well-established peda-

gogical principle that students learn new concepts more effectively

when those concepts are placed in a familiar context. The effective-

ness of learning is further enhanced if the new concept is perceived

as useful or applicable [7]. Non-decision problems conform to these

two criteria—familiarity and applicability—much more closely than

decision problems. The familiarity criterion is indisputable, since

almost every computer program written by students, beginning

with the first programming course and continuing throughout their

careers, computes meaningful answers to general problems rather

than producing a single-bit accept/reject decision. The second cri-

terion of perceived usefulness or applicability also seems plausible,

but requires supporting evidence. To investigate this, a sample of

41 computer science majors were given descriptions of four com-

puter programs which solved decision and non-decision variants

of two different problems. Participants rated the usefulness of each

program on a Likert scale from 1 (extremely useful) to 5 (not at all

useful). The order of presentation (decision versus non-decision

variants) was varied to eliminate ordering effects. We control for

the intrinsic perceived usefulness of any given problem by present-

ing decision and non-decision variants of the same problems. A

total of n = 81 paired (i.e. decision versus non-decision) responses

were received from the 41 participants. Further details of the survey

design, demographics, and results are available in an accompanying

technical report [15].

The results show that programs solving non-decision problems

are perceived as significantly more useful than programs solving

decision problems (mean 1.8 vs 3.1 on the Likert scale, with standard

deviations of about 0.7 and 0.8 respectively, leading to standard er-

rors of less than 0.1 in both cases). A 99% confidence interval for the

population mean, formed from plus-or-minus three standard errors,

is shown on figure 1; the intervals suggest a large and significant

difference. Two more rigorous tests confirm this: (i) a Wilcoxon

signed-rank test for asymmetry of the paired differences has a neg-

ligible p-value (p < 10
−11

); (ii) the same test run on shifted data,

SIGCSE ’18, Feb. 21–24, 2018, Baltimore, MD, USA John MacCormick

with the non-decision responses shifted away from “useful” by an

entire Likert gradation, also has a negligible p-value (p < 10
−6
). We

conclude that the difference in student perceptions of usefulness is

rather large—certainly more than one Likert gradation and hence

exceeding the distinction between “very useful” and “mildly useful,”

as shown on figure 1.

It is worth emphasizing here that this difference in perceived

usefulness exists in a novice audience (as defined in section 1), and

this underpins the key pedagogical point of the paper. Experienced

practitioners know that decision programs can often be converted

to equivalent non-decision programs with only a logarithmic in-

crease in running time. But because the novice audience does not

share this intuition, we should exploit the novices’ perception that

non-decision programs are useful. We conclude that elementary

concepts in an introductory computer science theory course should

be taught using non-decision problems whenever possible.

5 COMPUTABILITY FOR NON-DECISION
PROBLEMS

The previous section established the key pedagogical advantages of

non-decision problems: familiarity and applicability. The remainder

of the paper describes technical details of how to teach the standard

material of a CS theory course using non-decision problems. This

brief section tackles computability theory, and the following section
tackles complexity theory.

We say a computational problem is computable if there exists
a program that solves it. Note that computability is a generaliza-

tion of decidability, which applies only to decision problems. Most

undergraduate theory treatments use undecidability as the central

concept to convey the profound idea that “there are some problems

that computers can’t solve.” In the approach advocated by this pa-

per, the notion of uncomputability replaces undecidability as the

central concept. We can still use classical decision problems as ex-

amples of uncomputable problems (e.g. the halting problem, or the

question of whether a given program computes a given function).

But in addition, we can discuss other interesting uncomputable

problems that are not decision problems (see [15, 16]). In all cases,

we retain the pedagogical advantage of working in a framework

that is perceived by the novice audience as familiar and applicable.

6 ELEMENTARY COMPLEXITY THEORY FOR
NON-DECISION PROBLEMS

We now move from computability theory to complexity theory.

Here, the use of non-decision problems as the central focus requires

some new notation and terminology, compared to the traditional ap-

proach. The most fundamental classical complexity classes (P, NP,
Exp) contain only decision problems, so we need new notation for

analogous classes that contain both decision and non-decision prob-

lems. Here, we will denote these new classes by Poly, NPoly, and
Expo respectively. Formally, then, Poly is the set of computational

problems for which there exists a program (or Turing machine) that

solves the problem in polynomial time. NPoly is the same but we

allow nondeterministic programs
3
; and Expo is the same but we

allow exponential time.

The literature already has classes FP and FNP, which are similar

in spirit to Poly and NPoly respectively—so we need good justi-

fication for introducing new terminology into such well-trodden

territory. One reason is that FP is sometimes defined in terms of

function problems only (which excludes problems with multiple

solutions such as Factor and HamCycle). And even when FP is

defined in terms of general problems, it is usually done via the

polynomially bounded relations mentioned above, which is unnec-

essarily complicated for the novice audience. Therefore, we prefer

to introduce the new classes Poly, NPoly, and Expo.
A comparison with our ten sample books is interesting here: five

do not mention FP, FNP, or any analogous complexity class [5, 11–

13, 24]; three briefly cover one or both of FP and FNP [2, 18, 21];

and two give more thorough analyses of FP and FNP or analogous

classes (Papadimitriou [19], Goldreich [10]). Papadimitriou’s defi-

nitions of FP and FNP are closest to the Poly and NPoly defined

here. However, they are not equivalent, because of the restriction to

polynomially balanced relations mentioned above. Goldreich is the

only one of the ten sample books to adopt non-decision problems

as a central concept. Goldreich defines the interesting non-decision

complexity classes PF (for “polynomial time find”) and PC (for

“polynomial time checkable”), but they are again not equivalent to

Poly and NPoly. Moreover, PF is not a subset of PC (in contrast to

the intuitive relationships P⊆NP, Poly⊆NPoly, FP⊆FNP), making

PF and PC less than ideal for the novice audience. The overall con-

clusion from analyzing the selection of textbooks is twofold: (i) few

textbooks discuss non-decision problems in any detail, even via the

well-established complexity classes FP and FNP; and (ii) for techni-

cal reasons, the various non-decision classes FP, FNP, PF, and PC
are unsuitable for the novice audience and we instead recommend

Poly, NPoly, and Expo as defined above.

Introducing novice audiences to complexity theory via the non-

decision classes Poly, NPoly, and Expo has a striking advantage

that is worth discussing further: the concrete impact of polynomial

time algorithms on cryptography is more obvious. To see this, note

that one way to crack the popular RSA cryptosystem is to factor a

large integer. So, if it turned out to be true that Factor∈Poly, the
extraordinary consequences (namely, that RSA would be vulnera-

ble to attack) are immediately obvious to the novice audience. In

contrast, the consequences are unclear when the same concepts

are taught in terms of decision problems: we already know that

FactorD∈P, but that doesn’t help to crack RSA since we get only

the existence and not the value of the factors. There are ways of

rephrasing factorization in terms of decision problems,
4
but the

extra technical complexity of rephrasing the problem obscures the

key point for novice audiences.

What about more abstract problems such as HamCycle or Sat?

In these cases, the pedagogical advantages of familiarity and appli-

cability are compelling. To see why, first note that both HamCycle

and Sat can be reduced fairly easily to their decision variants.

3
The details of defining the outputs of nondeterministic programs that can produce

more than a yes/no solution are interesting and important, but are omitted here for

space reasons. See [16] for details.

4
Specifically, we can ask if there exists a factor within a given range. The search

problem of finding a factor reduces to this decision problem, via binary search.

Strategies for Basing the CS Theory Course on Non-decision Problems SIGCSE ’18, Feb. 21–24, 2018, Baltimore, MD, USA

Therefore, to an experienced practitioner, it makes absolutely no

difference whether we discuss algorithms for HamCycle or Ham-

CycleD (and similarly for Sat vs SatD). But to the novice audience,

the act of finding a Hamilton cycle or satisfying assignment is much

more compelling than determining their existence. This distinction

becomes especially important when discussing nondeterminism,

since nondeterministic programs can easily and efficiently com-

pute factors, Hamilton cycles, and satisfying assignments. In fact, a

beneficial and enlightening homework assignment is for students

to write multithreaded programs that compute solutions to these

problems in nondeterministic polynomial time. As emphasized in

section 4, the fact that the outputs of such programs are perceived

as “useful” is an important factor in achieving positive learning

outcomes.

7 THE VERIFIER-BASED DEFINITION OF
NPOLY

It is well-known that NP has two equivalent definitions: (i) decision

problems that can be decided by a polynomial time nondeterministic

program; and (ii) decision problems whose positive instances can

be verified in polynomial time by a deterministic program, when

provided with a suitable certificate (also known as awitness, or hint).
Most modern textbooks cover both definitions, usually introducing

(ii) first and later proving the equivalence to (i). Can we generalize

these definitions to non-decision problems in a way that appeals to

the novice audience? Yes we can, but with some caveats.

Definition (i), based on nondeterminism, was discussed in the pre-

vious section. Here we focus on definition (ii), based on verification.

According to this definition, NPoly is the class of computational

problems which have polynomial time verifiers. And NP is defined

in a precisely analogous way: it is the class of decision problems

which have polynomial time verifiers. When we move to defining

verifier, however, there are key differences in the decision (NP) and
non-decision (NPoly) scenarios. Details of these differences can be

found in the accompanying technical report [15]. Here, we mention

just one key aspect. Recall that every positive instance of an NP
problem must be verifiable in polynomial time when provided with

some certificate c . Typically, the certificate c encodes a solution to

the underlying non-decision problem. For example, a HamCycleD

instance can be verified by providing a legitimate Hamilton cycle

as the certificate. But unfortunately, it turns out that certificates

for NP problems can also work in less intuitive ways. For exam-

ple, it is possible to define a HamCycleD verifier that uses only

partial Hamilton cycles as certificates. This discrepancy between

certificates and underlying solutions is a source of confusion for

the novice audience.

It turns out that if we work with non-decision problems, this

potentially confusing “looseness” in the definition of certificates is

eliminated. In essence (and please see the technical report [15] or

textbook [16] for additional details), the certificate c is replaced by

two separate strings: a solution s and hint h. Both strings are given

as input to the verifier. For successful verifications of positive in-

stances, the solution s really is a solution for the given instance; the

hint h provides any additional information needed for verification.

The explicit roles of s and h provide additional clarity to the novice

audience.

To the best of our knowledge, no textbook other than [16] em-

ploys this formulation, which ensures that verified solutions are

meaningful while still permitting hints for problems that need them.

This is one key difference between the approach of this paper and

that of Goldreich [10].

8 REDUCTIONS AND NP-COMPLETENESS
We noted in the introduction that some of the theorems and proofs

in computational complexity theory are more elegant when ex-

pressed in terms of decision problems, and the vast majority of

literature takes this approach. Therefore, even if we choose for

pedagogical reasons to introduce elementary concepts in terms

of non-decision problems, it makes sense to eventually transition

to the decision problem viewpoint. Over a four-year period, we

experimented with making this transition at various points in the

course. For reasons discussed below, we found the best choice is to

make the transition when students first encounter polynomial time

reductions, and hence also before introducing NP-completeness.

For the novice audience it seems preferable to focus on the sim-

plest type of reduction, which is variously known as a Karp reduc-
tion, polynomial time mapping reduction, or many-one reduction.
In focusing on Karp reductions, we are now in line with eight of

our ten sample textbooks (with the same two outliers [10, 19] as

previously). However, we still break slightly from the eight standard

treatments, because instead of defining reductions between decision
problems, we define reductions from decision computational prob-

lems to general problems (i.e. to, but not from, general problems).

This difference again calls for new terminology, and we use the

term “polyreduction” for this.

Formally, a polyreduction from the decision problemD to the gen-

eral computational problemG is a map r : Σ∗ → Σ∗, such that r (w)

is a positive instance ofG if and only ifw is a positive instance of D.
We also require that r is computable in polynomial time. With this

definition, students can first examine trivial polyreductions such as

HamCycleD→HamCycle, then move on to more interesting ones

such as DirectedHamCycleD→UndirectedHamCycleD.

With a little more effort, we can define polyreductions between

general problems F and G. To do so, we need polynomial time

maps in both directions. First, r : Σ∗ → Σ∗ maps instances of F
to instances of G. Then r ′ : Σ∗ → Σ∗ maps solutions of G back to

solutions of F . The correctness condition is that, given any program

G that solves the problem G, we must have r ′(G(r (w))) ∈ F (w) for

all w . (In words, the solution of G for r (w) must map back to a

solution of F for w .) We have experimented with teaching this

concept to novice audiences and met with a certain amount of

success. Goldreich also recommends this approach [9]. However, as

already stated, on balance we recommend avoiding this extra level

of generality, instead restricting polyreductions to be maps from

decision problems to general problems via the simpler definition in

the previous paragraph.

In the same spirit, wemight attempt to teach “NPoly-completeness”

for general computational problems. But in this case, our experience

has been that the benefits of using non-decision problems are clearly

outweighed by the disadvantages of dealing with arbitrary solutions

when stating and proving theorems about NPoly-completeness.

Therefore, it seems preferable to stay solidly in the traditional

SIGCSE ’18, Feb. 21–24, 2018, Baltimore, MD, USA John MacCormick

realm of decision problems when teaching NP-completeness. As a

small bonus, the fact that our definition of polyreduction allows

decision problems to be reduced to general problems leads to an

elegant definition of NP-hardness: a problem G is NP-hard if some

NP-complete problem D polyreduces toG . Holistic discussions of P
versusNP (although defined formally in terms of decision problems)

also take on a more practical tone when the majority of concepts

earlier in the course have been taught in terms of non-decision

problems.

9 CONCLUSION
The paper advocated the use of non-decision problems in CS the-

ory courses. The paper consisted of two separate strands: (i) an

explanation of why non-decision problems are preferable, based

on a combination of empirical survey results and educational the-

ory; and (ii) an explanation of how to use non-decision problems

in the theory course, using reformulations of classical concepts.

In the first strand (section 4), we demonstrated via an empirical

survey of CS majors that programs solving non-decision problems

are perceived as much more useful and applicable than programs

solving decision problems. Invoking the well-known educational

principle that learning outcomes are likely to be better for a course

that uses materials perceived as “useful,” we concluded that non-

decision problems should be used if possible. In the second strand

(sections 3 and 5–8), we suggested new definitions, terminology,

and notation that are designed to employ non-decision problems

and to maximize the accessibility of CS theory concepts for the

novice undergraduate audience. The approach has been tested and

refined over four years of teaching, culminating in a recent text-

book [16]. Looking to the future, we hope this approach will not

only improve learning outcomes for undergraduates receiving their

first taste of computer science theory, but will also lead to theory

courses that are taught earlier in the curriculum, to a wider range

of undergraduates, at a wider range of institutions.

REFERENCES
[1] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. 2004. PRIMES is in P. Annals

of Mathematics 160, 2 (2004), 781–793.
[2] S. Arora and B. Barak. 2009. Computational Complexity: A Modern Approach. Cam-

bridge University Press. https://books.google.com/books?id=8Wjqvsoo48MC

[3] Carlos I. Chesñevar, María L. Cobo, and William Yurcik. 2003. Using Theoretical

Computer Simulators for Formal Languages and Automata Theory. SIGCSE
Bulletin 35, 2 (June 2003), 33–37. https://doi.org/10.1145/782941.782975

[4] Pierluigi Crescenzi, Emma Enström, and Viggo Kann. 2013. From Theory to

Practice: NP-completeness for Every CS Student. In Proc. ITiCSE. 16–21. https:
//doi.org/10.1145/2462476.2465582

[5] Martin Davis, Ron Sigal, and Elaine J Weyuker. 1994. Computability, Complexity,
and Languages: Fundamentals of Theoretical Computer Science (2nd ed.). Morgan

Kaufmann.

[6] Emma Enström and Viggo Kann. 2010. Computer lab work on theory. In Proc.
ITiCSE. 93–97.

[7] L Dee Fink. 2013. Creating significant learning experiences: An integrated approach
to designing college courses (2nd ed.). John Wiley & Sons.

[8] Lance Fortnow. 2013. The golden ticket: P, NP, and the search for the impossible.
Princeton University Press.

[9] Oded Goldreich. 2006. On Teaching the Basics of Complexity Theory. Springer,
348–374. https://doi.org/10.1007/11685654_15 In Theoretical Computer Science:
Essays in Memory of Shimon Even, ed. Goldreich, Rosenberg, Selman.

[10] Oded Goldreich. 2010. P, NP, and NP-Completeness: The Basics of Computational
Complexity. Cambridge University Press.

[11] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. 2006. Introduction to
Automata Theory, Languages, and Computation (3rd ed.). Pearson.

[12] Harry R Lewis and Christos H Papadimitriou. 1997. Elements of the Theory of
Computation (2nd ed.). Prentice Hall.

[13] Peter Linz. 2011. An Introduction to Formal Languages and Automata (5th ed.).

Jones & Bartlett.

[14] Andrea F. Lobo and Ganesh R. Baliga. 2006. NP-completeness for All Computer

Science Undergraduates: A Novel Project-based Curriculum. J. Comput. Sci. Coll.
21, 6 (June 2006), 53–63. http://dl.acm.org/citation.cfm?id=1127442.1127450

[15] John MacCormick. 2017. Strategies for basing the CS theory course on non-decision
problems. Technical Report. Dickinson College.

[16] John MacCormick. 2018. What Can Be Computed?: A Practical Guide to the Theory
of Computation. Princeton University Press.

[17] Dino Mandrioli. 1982. On teaching theoretical foundations of Computer Science.

ACM SIGACT News 14, 3 (1982), 36–53. Part 2 appears in 14(4):58–69.

[18] Cristopher Moore and StephanMertens. 2011. The Nature of Computation. Oxford
University Press.

[19] Christos H. Papadimitriou. 1994. Computational Complexity. Addison Wesley,

Massachussetts.

[20] Christos H Papadimitriou. 1997. NP-completeness: A retrospective. In Interna-
tional Colloquium on Automata, Languages, and Programming. Springer, 2–6.

[21] Elaine Rich. 2007. Automata, Computability and Complexity: Theory and Applica-
tions. Pearson.

[22] Susan H Rodger and Thomas W Finley. 2006. JFLAP: an interactive formal
languages and automata package. Jones & Bartlett Learning.

[23] Susan H Rodger, Eric Wiebe, Kyung Min Lee, Chris Morgan, Kareem Omar, and

Jonathan Su. 2009. Increasing engagement in automata theory with JFLAP. In

ACM SIGCSE Bulletin, Vol. 41. ACM, 403–407.

[24] Michael Sipser. 2013. Introduction to the Theory of Computation (3rd ed.). Cengage.

https://books.google.com/books?id=8Wjqvsoo48MC
https://doi.org/10.1145/782941.782975
https://doi.org/10.1145/2462476.2465582
https://doi.org/10.1145/2462476.2465582
https://doi.org/10.1007/11685654_15
http://dl.acm.org/citation.cfm?id=1127442.1127450

	Abstract
	1 Introduction
	2 Related work
	3 A practical definition of computational problems
	4 Empirical evidence for pedagogical benefit of non-decision problems
	5 Computability for non-decision problems
	6 Elementary complexity theory for non-decision problems
	7 The verifier-based definition of NPoly
	8 Reductions and NP-completeness
	9 Conclusion
	References

