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The analysis of visual motion against dense background clutter is a challenging
problem. Uncertainty in the positions of visually sensed features and ambiguity
of feature correspondence call for a probabilistic treatment, capable of maintain-
ing not simply a single estimate of position and shape but an entire distribution.
Exact representation of the evolving distribution is possible when the distribu-
tions are Gaussian and this yields some powerful approaches. However normal
distributions are limited when clutter is present: because of their unimodality,
they cannot be used to represent simultaneous alternative hypotheses.

One powerful methodology for maintaining non-Gaussian distributions is based
on random sampling techniques. The effectiveness of “factored sampling” and
“Markov chain Monte Carlo” for interpretation of static images is widely accep-
ted. More recently, factored sampling has been combined with learned dynam-
ical models to propagate probability distributions for object position and shape.
Progress in several areas is reported here. First a new observational model is de-
scribed that takes object opacity into account. Secondly, complex shape models
to represent combined rigid and nonrigid motion have been developed, together
with a new algorithm to decompose rigid from nonrigid. Lastly, more powerful
dynamical prior models have been constructed by appending suitable discrete
labels to a continuous system state; this may also have applications to gesture
recognition.
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1. Introduction

This paper addresses some problems in the interpretation of visually observed
shapes in motion, both planar and three-dimensional shapes. Mumford (1996),
interpreting the “Pattern Theory” developed over a number of years by Gren-
ander (1976), views images as “pure” patterns that have been distorted by a
combination of four kinds of degradations. This view applies naturally to the
analysis of static, two-dimensional images. The four degradations are given here,
together with comments on how they need to be extended to take account of
three-dimensional objects in motion.

(i) Domain warping in which the domain of an image I is transformed by a

mapping g:
I(r) = I(g(r)).
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The three-dimensional nature of the world means that the warp g may be com-
posed largely of “projective” or “affine” transformations. The dynamical nature
of the problems addressed here will require time-varying warps g(r, t).

(ii) Superposition: objects may overlap and in certain forms of imaging this may
produce linear combinations, which is fortuitous because they can be analysed
by linear spectral decomposition. In images of opaque,three dimensional objects,
however, far surfaces are obscured by near ones.

(iii) Distortion and noise: image measurements are corrupted by noise and
blur:

I(r) = f(I(r),mn).
Image degradations may be most effectively modelled as applying to certain image
“features” obtained by suitable pre-processing of an image, rather than directly
to an image itself.

(iv) Observation failure: disturbance of the observation process; often caused,
in the work described here, by distracting background clutter.

A key idea in pattern theory is recognition by synthesis, in which predic-
tions following from particular hypotheses play an important role. The predic-
tions are generated and tested against the products of analysis of an image.
Bayesian frameworks, which have gained significant influence in modelling per-
ception [Knill et al., 1996], seem to be a natural vehicle for this combination of
analysis and synthesis. In the context of machine perception of shapes we can
state the problem as one of interpreting a posterior density function p(X|Z) for
a shape X in some appropriate shape-space S, given data Z from an image (or
data (Z1,Z,,...) from a sequence of images). The posterior density must be com-
puted in terms of prior knowledge about X and inference about X based on the
observations Z. Bayes’ formula expresses this as follows:

p(X|Z) o p(Z|X)po(X), (1.1)

in which po(X) is the prior density for X and the conditional density p(Z|X)
conveys the range of likely observations to arise from a given shape X. All this
links in directly with the four degradations above. In particular, type 1 (warping)
is represented in the prior pg. Types 3 and 4 (noise and observation failure) are
incorporated into the observation density p(Z|X).

The framework for Bayesian inference of visual shape and motion that forms the
basis of this paper is set out in detail in [Blake and Isard, 1998]. This paper aims
to summarise that framework and introduce several new ideas. The organisation
of the paper is summarised by section, as follows.

2. Statistical modelling of shape — how to choose a suitable shape-space S and
a prior pg, or to learn them from a set of examples.

3. Statistical modelling of image observations — how to construct an effective
observation density p(Z|X) that takes into account image intensities both within
the shape of interest and in the background.

4. Sampling methods — using random sample generation to construct an ap-
proximate representation of the posterior for X, given that the complexity of
p(Z|X) can make exact representation of the posterior infeasible.

5. Modelling dynamics — extending the Bayesian framework to deal with se-
quences of images demands priors for temporal sequences X1, Xo,.... These can
either be constructed by hand or learned from examples.
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6. Learning dynamics — the most effective way to set up dynamical models is
to learn them from training sets.

7. The Condensation algorithm — a random sampling algorithm for interpret-
ation of shapes in motion.

8. Dynamics with discrete states — extending the dynamical repertoire to mod-
elling of motion with several modes, for example walk—trot—canter—gallop.

2. Statistical modelling of shape

This section addresses the construction of a prior model po(X) for a shape.
This can be done in a somewhat general way if the dimensionality of the shape-
space S is fixed in advance to be small, for example just translations in the plane.
Then extended observation of the positions of moving objects in some area can be
summarised as a histogram which serves as an approximate representation of the
prior py [Fernyhough et al., 1996]. In higher dimensional shape-spaces, involving
three-dimensional rigid motion and deformation of shape, histograms are less
practical. Here we focus on Gaussian distributions.

A Gaussian distribution is specified by its mean and variance and these can
be estimated from a training sequence Xy, Xo, ... of shapes by taking the sample
mean X and the sample variance

M
¥ = % > (X = X) (X - X)"

k=1
Moreover, Principal Components Analysis (PCA) [Rao, 1973] can be used to re-
strict the shape-space S to explain most of the variance in the training set while
keeping the dimension of & small, in the interests of computational efficiency
[Cootes et al., 1993, Baumberg and Hogg, 1994, Lanitis et al., 1995, Beymer and Poggio, 1995,
Baumberg and Hogg, 1995a, Vetter and Poggio, 1996]. An example is given in
figure 1.
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Figure 1. PCA for faces. A shape-space of facial expressions is reduced here by PCA to the
two-dimensional space that best covers the expressions in a certain training sequence.

However, the resulting shape-space, though economical, is not especially easy
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to interpret because Principal Components need not be meaningful. More mean-
ingful “constructive” shape-spaces can be generated by acknowledging three-
dimensional projective effects and constructing affine spaces for instance whose
components are directly related to rigid body transformations [Ullman and Basri, 1991,
Koenderink and van Doorn, 1991]. In addition, named deformations can be in-
cluded in a basis for S as “key-frames” [Blake and Isard, 1994], as in figure 2.

.

Template Qg Key-frame: opening Q1  Key-frame, protrusion Qo

Figure 2. Key-frames. Lips template followed by two key-frames, representing interactively
tracked lips in characteristic positions. The key-frames are combined linearly with appropriate
rigid degrees of freedom, to give a shape-space suitable for use in a tracker for non-rigid motion.

A constructive shape-space S¢ can be combined with PCA to give the best of
both worlds. “Residual PCA” operates on a constructive shape-space that does
not totally cover a certain data-set, and fills in missing components by PCA.
Then the constructive subspace retains its interpretation and only the residual
components, covered by PCA, cannot be directly interpreted. This is done by
constructing a projection operator E¢ that maps S to §¢ and applying PCA to
the residual training-set vectors X7, X35, ... where

X"=X - E°X.

Full details of the algorithm are given in [Blake and Isard, 1998] and an example
of its application is shown in figure 3.
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Figure 3. Sampling from a prior for lip-shape, excluding translation Random sampling
illustrates how a learned prior represents plausible lip configurations. Any rigid translations in
the training set, due to head-motion, are separated out as a constructive shape-space in residual
PCA.
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Finally, some complex issues arise when dealing with mixed rigid and non-
rigid deformation. For example, one application is to track the facial motion
of an actor and channel the coded motion to a graphical animation. It can be
argued [Bascle and Blake, 1998] that the composition of expression and pose can
be expressed bilinearly to give shape parameters

X! =Y

where J; is the weight associated with the sth expression and Y/ is the jth compon-
ent of an affine transformation. Decomposition of such products can be achieved
using Singular Value Decomposition (SVD) [Barnett, 1990], as has been done
elsewhere for structure and motion [Tomasi and Kanade, 1991], and shape and
shading [Freeman and Tenenbaum, 1997]. The practical result is good isolation
of pose from expression, as figure 4 shows.
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