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An impressive demonstration of magnetism can be accomplished by placing some metal paperclips
on a horizontal surface and then applying a vertical magnetic field. As the field is increased, the
paperclips suddenly jump up, do a little dance, and then stand at attention. This behavior is related
to the more common demonstration of paramagnetic and diamagnetic materials, which consists of
hanging a small aluminum �paramagnetic� or glass �diamagnetic� cylinder horizontally in a strong
horizontal magnetic field. A paramagnetic cylinder aligns its axis parallel to the applied field while
a diamagnetic cylinder aligns its axis perpendicular to the field. This paper investigates these
demonstrations by analyzing a magnetic spheroid in a uniform external field. Although this analysis
explains the behavior of the paperclips, it predicts that both paramagnetic and diamagnetic cylinders
will align themselves parallel to a uniform external field, in contrast to the common demonstration
experiment. © 2006 American Association of Physics Teachers.
�DOI: 10.1119/1.2173279�
I. INTRODUCTION

The first time I taught electrodynamics at the advanced
undergraduate level, I discovered a surprising demonstration
of a magnetic phenomenon that I was eager to share with my
students. While fooling around with a pair of Helmholtz coils
oriented to provide a uniform vertical magnetic field, I found
that metal paperclips that are initially lying down will spon-
taneously stand on end as the magnetic field is increased.
This behavior typically occurs at a field strength of
�10−2 Tesla �T� and is a dramatic event as the paperclips
“scramble” to get onto their “feet.” Figure 1 shows a picture
after the paperclips are standing at attention. Students are
very impressed by this phenomenon.1 The paperclips repel
each other because they are all magnetized in the same di-
rection. This repulsion is easily verified by moving a paper-
clip around with your hand.

When I first saw this phenomenon, I was so impressed that
I immediately showed it to my class. Unfortunately, I had not
taken the time to think about what was actually happening
and I was unprepared when one of the students asked why
the paperclips suddenly stood up. At first I thought it was
obvious, but as I stammered for an answer I realized that I
didn’t really know. By the next class session I was able to
give a satisfactory qualitative explanation �which seemed ob-
vious in hindsight�, but it wasn’t until much later that I also
worked out a satisfactory quantitative explanation as well.

It is worth mentioning that this experiment is closely re-
lated to a slightly different but relatively standard demonstra-
tion experiment designed to show the behavior of paramag-
netic and diamagnetic materials.2 These materials become
magnetized in an applied field and the magnetization de-
pends on the applied field. When this relationship is linear,
we have M=�H with ��0 for paramagnetic materials and
��0 for diamagnetic materials. In a typical experiment a
small cylinder of aluminum �paramagnetic� or glass �diamag-
netic� is hung horizontally from a thread in a strong horizon-
tal magnetic field. If the material is paramagnetic, the axis of
the cylinder aligns parallel to the applied field, and if the
material is diamagnetic, the axis of the cylinder aligns per-

pendicular to the applied field.
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Although it is relatively easy to give a qualitative expla-
nation for this phenomenon, a more in depth investigation
shows that the situation is much more subtle. One way of
explaining this phenomenon is to assume that the cylinders
become magnetized along their axes. Then when a paramag-
netic cylinder is aligned with the magnetic field, the induced
magnetization is such that this cylinder looks like a magnetic
dipole that is aligned with the field. Any change in this ori-
entation results in a restoring torque that causes the cylinder
to return to its original orientation. A diamagnetic cylinder
with its axis aligned in the field looks like a magnetic dipole
that is antialigned with the field. This cylinder is in an un-
stable configuration and any change in orientation will result
in a torque that rotates it until its axis is perpendicular to the
field.

This qualitative explanation relies on the assumption that
the magnetization is along the axis of the cylinder. But when
the concept of magnetization is typically introduced in an
undergraduate course, it is assumed that the magnetization is
parallel �or antiparallel� to the applied field. This assumption
means that the cylinders will magnetize along the direction
of the applied field regardless of their orientation. If the ap-
plied field is uniform, then the magnetization will be uniform
and the net magnetic moment of the cylinder will be inde-
pendent of its orientation. Furthermore, the magnetic mo-
ment will be either parallel or antiparallel to the applied field
so that there will be no net torque on the cylinder regardless
of its orientation. Thus, we immediately see that this demon-
stration is not as simple as it seems and a correct explanation
must include some subtle issues such as a nonuniform ap-
plied field, a nonuniform magnetization in the object, or a
preference to magnetize along a particular axis of the object.

In this paper I show that a long, ferromagnetic rod has a
strong preference to magnetize along its axis. Paramagnetic
and diamagnetic rods will also have a directional preference
when magnetized but the effect is extremely weak. That is,
the direction of magnetization is almost parallel �or antipar-
allel� to the applied field. Interestingly, while a paramagnetic
rod shows a preference to magnetize along its axis, a dia-
magnetic rod shows a preference to magnetize perpendicular

to its axis. This behavior causes both paramagnetic and dia-
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magnetic rods to align themselves in a uniform external field,
in contrast to what is seen in the standard demonstration. A
more careful look at the standard demonstration reveals that
the magnetic field is highly nonuniform. Taking this nonuni-
form field into account allows us to qualitatively understand
the behavior of a diamagnetic cylinder.

II. A SIMPLE ANALYSIS

To try to obtain a qualitative understanding as to why an
object might prefer to magnetize along a particular axis, let
us first examine this problem in a simple manner. We con-
sider a long thin rod in an applied magnetic field and assume
that there are microscopic magnets �tiny dipoles� within the
material. For a paramagnetic �or ferromagnetic� material
these microscopic magnets will try to align in the applied
field; the dipoles will antialign in a diamagnetic material. If
we consider only the interaction between the dipoles and the
applied field �neglecting any dipole-dipole interactions�, the
material should become magnetized to the same extent re-
gardless of the orientation of the rod. Thus, to understand
any preferential alignment we must investigate how the in-
dividual dipoles interact with each other. If we consider the
rod as one dimensional, then it is easy to see that one con-
figuration is energetically preferred over the other.

Figure 2 shows a schematic of a magnetizable rod with its
axis parallel and perpendicular to an applied magnetic field,
assuming that there are no dipole-dipole interactions. Be-
cause like poles repel and unlike poles attract, the dipole-
dipole interactions favor the alignment shown in Fig. 2�a�

Fig. 1. A picture of standing paperclips �painted black� in the presence of a
vertical magnetic field. The paperclips are magnetized and thus repel each
other but why do they stand on end?

Fig. 2. A magnetizable rod is imagined to consist of a one-dimensional line
of dipoles with no dipole-dipole interactions. In �a� the applied field is
parallel to the axis of the rod and in �b� the applied field is perpendicular to

the axis.
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compared to Fig. 2�b�. Thus, it should take less energy to
orient the dipoles parallel to the rod than it is does to orient
them perpendicular to the rod.

This explanation can be made quantitative by considering
two dipoles that can rotate freely but are at fixed locations
with no external field �see Fig. 3�. Beginning with the inter-
action energy for a magnetic dipole m in an applied field B,
it is straightforward to find the interaction energy between
two magnetic dipoles with separation vector r as

U = − m · B =
�0

4�r3 �m1 · m2 − 3�m1 · r̂��m2 · r̂�� , �1�

where �0 is the magnetic permeability of free space. Stu-
dents can be asked to minimize this energy to find the stable
configurations of the two interacting dipoles.3 Not surpris-
ingly, this calculation leads to �1=�2=0 �or ±�� and
�1=−�2= ±� /2. The lowest energy state is for �1=�2=0. It
is not too difficult to imagine that a long line of dipoles in an
applied field would then favor the orientation given in
Fig. 2�a�.

Although this simple model gives a reasonably good pic-
ture of why a rod would prefer to magnetize along its axis, it
suggests that both paramagnetic and diamagnetic materials
will have the same preference. This model neglects how the
magnitude of the dipoles depends on the external field. For
example, in Fig. 2�a�, if the material is paramagnetic, then
the applied field points from left to right. When the field of
the dipoles is added to the applied field, we see that the
magnetic field at the location of each dipole is increased due
to the field of its neighbors. This larger field strength will
lead to an increase in the magnitude of the dipoles, thereby
strengthening their tendency to align. Conversely, if the ma-
terial is diamagnetic, then the external field points from right
to left. In this case, the field of the dipoles leads to a smaller
field strength at the location of each dipole. Correspondingly,
the magnitude of the dipoles will be decreased, thereby
weakening their tendency to align. Therefore, in the case of a
diamagnetic rod, the preference for alignment along the axis
�due to dipole-dipole interactions� is inhibited by the de-
crease in the local field. Consequently, it is not obvious—
even qualitatively—whether or not a diamagnetic rod will
have a preference to magnetize along its axis. Thus, a more
complete treatment is necessary to understand how such an
object becomes magnetized.

III. A MORE COMPLETE ANALYSIS

A. Magnetized object with no external field

Before beginning a more complete calculation of a mag-
netizable object in an applied field, it is useful to first con-
sider a uniformly magnetized object with no externally ap-
plied field. A standard undergraduate problem is to determine

Fig. 3. Two magnetic dipoles at fixed locations but free to rotate will inter-
act with each other to obtain a preferred �lowest energy� orientation.
the magnetic field of a uniformly magnetized sphere �or the
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equivalent problem of the electric field of a uniformly polar-
ized sphere�. For a magnetization M, the fields inside the
sphere are �surprisingly� uniform:4

B = 2
3�0M and H = − 1

3M . �2�

Note that H points in the opposite direction of the magne-
tization M. For this reason, it is often referred to as a demag-
netizing field. This demagnetization effect is usually de-
scribed by the demagnetizing factors nx, ny, nz defined by
Hx=−nxMx, Hy =−nyMy, and Hz=−nzMz.

5 The demagnetiz-
ing factors are dimensionless geometry-dependent quantities
between 0 and 1 such that nx+ny +nz=1. For a sphere, Eq.
�2� �and symmetry� dictates that nx=ny =nz=1/3. An infi-
nitely long cylinder with its axis along the x direction has
nx=0 and ny =nz=1/2, and an infinite slab of finite thickness
in the x direction has nx=1 and ny =nz=0. These values can
be verified by using the magnetic boundary conditions and
symmetry to find the fields of a uniformly magnetized cylin-
der or slab. �The demagnetizing factors for ellipsoids are
given in the Appendix.�

The demagnetizing factors tell us how large a demagnetiz-
ing field we can expect to find inside the object. This demag-
netizing field is related to how much energy is required to
magnetize the object. The energy required to assemble a
magnetized domain assuming there is no externally applied
magnetic field is given by6

Em = −
1

2
�0� M · H dV , �3�

where the integration is over the volume of the object V, and
H is the field arising from the magnetization M. If the mag-
netization is directed along one of the principal axes of the
object, then H=−nM, where n is the demagnetizing factor
associated with the particular axis. If we substitute this rela-
tion into Eq. �3�, we find

Em = 1
2�0nM2, �4�

which implies that for a given magnetization, the lowest en-
ergy state corresponds to magnetizing the object along the
axis with the smallest demagnetizing factor �or the smallest
demagnetizing field�. For an infinite cylinder, this axis is
along the axis of the cylinder �nx=0 compared to ny =nz
=1/2�, and for an infinite slab of finite thickness this axis
will be parallel to the slab �ny =nz=0 compared to nx=1�.

It is not trivial to determine the demagnetizing factors ex-
cept for a few symmetric objects. However, there is a rela-
tively easy way of determining qualitatively whether the de-
magnetizing factor is large or small. For uniformly
magnetized objects, we can calculate H from a fictitious
magnetic surface charge density given by �m=M · n̂, where n̂
is the unit normal to the surface of the object.7 Thus, if we
look at the object in terms of its surface charges, it is easy to
see when there will be a large internal field rather than a
small internal field. For example, a cylinder with a radius
large compared to its length looks like a capacitor with
closely spaced plates. This geometry will give rise to a rela-
tively large internal field and therefore a demagnetizing fac-
tor close to unity.8 On the other hand, a cylinder that is long
compared to its radius will be a capacitor with plates that are
very far apart. This geometry will give rise to a much smaller
internal field and therefore a demagnetizing factor close to
zero. Thus, we can see that it will take less energy to mag-

netize a long cylinder along its axis than to give it an equiva-
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lent magnetization perpendicular to its axis. On the contrary,
a disk will be more difficult to magnetize along its axis than
to magnetize it perpendicular to its axis.

B. Magnetizable object in an external field

Let us now consider a magnetizable object in an external
field. We will consider an ellipsoid composed of a homoge-
neous linear material in a uniform external magnetic field.
The restriction to linear materials is made for simplicity, but
even ferromagnetic materials are typically linear �with initial
relative permeabilities ranging from 10–104� as long as the
applied field is very small.9 As for a sphere, a magnetizable
ellipsoid in an applied field can be solved exactly and results
in uniform fields �and magnetization� inside the object. A
long thin rod and a flat plate are two limiting cases that are
easily approximated by choosing appropriate parameters for
the ellipsoid. These geometries are also easily solved for
isotropic and homogeneous ferromagnetic materials.10

We first note that another standard problem in an interme-
diate level course in electromagnetism is a magnetic sphere
in a uniform magnetic field �or the equivalent problem of a
dielectric sphere in a uniform electric field�. When written in
terms of demagnetizing factors, the solution for an ellipsoid
looks exactly like the solution for a sphere. For an applied
field given by B0 along one of the principal axes, the ellip-
soid obtains internal fields of

B = B0 + �0�1 − n�M �5�

and

H = H0 − nM , �6�

where n is the demagnetizing factor for the object along the
particular axis. Note that Eqs. �5� and �6� are valid for any
relation between B and H; if they are linearly related by
B=�H where � is the magnetic permeability of the material,
then the magnetization is given by

�0M = � �

1 + n�
�B0, �7�

where � is the magnetic susceptibility.11

Note that a change in the demagnetizing factor n has a
qualitatively different effect on the magnetization M for
paramagnetic and diamagnetic materials. Equation �7� shows
that increasing n for a paramagnetic material leads to a de-
crease in the magnitude of the magnetization M. Conversely,
increasing n for a diamagnetic material leads to an increase
in M. As we shall see, this behavior affects the direction of
the net magnetization and the resulting torque on the object.

We next consider a spheroid �see Appendix� with its axis
of symmetry along the x axis at an angle � with respect to the
applied field �see Fig. 4�. Prolate spheroids are cigar shaped
and have n�1/3 along the symmetry axis and oblate sphe-
roids are disk shaped and have n�1/3 along the symmetry
axis. When the external field is not applied along one of the
principal axes, the magnetization will still be uniform but it
will no longer be in the same direction as the applied field. In
this case, the components of magnetization are given by

�0Mi = � �

1 + ni�
�B0i, �8�

where i=1, 2, 3 represents the x, y, z components, respec-

tively. The different values of the demagnetization factors
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lead to a difference between the direction of the applied field
and the direction of the object’s magnetization. The result is
a torque acting on the object.

Before continuing, let us briefly consider the direction of
the magnetization. For paramagnetic and diamagnetic mate-
rials, the susceptibility is typically on the order of 10−5.
Thus, for any value of ni, Eq. �8� gives �0Mi	�B0i. If we let
� be the angle between the object’s magnetization and the x
axis, we have

� = arctan�My

Mx
� 	 arctan�B0y

B0x
� . �9�

Thus we see that the direction of magnetization for a para-
magnetic object is essentially aligned with the applied field
�	�. For a diamagnetic object ��0, so Mx and My have
signs opposite to Bx and By, respectively. Therefore, �	�
+� and the magnetization is essentially antialigned with the
field. By using Eq. �8�, the angle between the applied field
and magnetization is found to be less than 0.0001° for a
typical paramagnetic or diamagnetic object with nx	0
and ny 	1/2 �very prolate�. This small angular difference
will lead to a very small torque even for quite strong
magnetic fields.

A ferromagnetic material has �	1 so that Eq. �8� gives
�0Mi	B0i /ni �as long as ni�0�. Thus,

� = arctan�My

Mx
� 	 arctan�nxB0y

nyB0x
� , �10�

and as long as we are dealing with a very prolate object, �

1 unless B0y 	B0x. For the extreme case of an infinite
cylinder �nx=0 and ny =1/2�, we have My /Mx	2By /�Bx, so
we obtain the same behavior that �
1 unless B0y 	B0x. The
fact that �
1 means that a very prolate ferromagnetic object
will be magnetized almost completely along its axis of sym-
metry unless the field is applied nearly perpendicular to this
axis. For example, using Eq. �8� with �=200 gives a mag-
netization angle of only �	7° for an applied field with
�	81°. This strong preference to magnetize along the
axis will lead to a very large torque that tends to align the
object with the direction of the field.12

We now turn our attention to the energy of a magnetizable
object in an applied field. Similar to Eq. �3�, this energy can
be written as13

Em = −
1

2
�0� M · H dV , �11�

but now M is the induced magnetization and H is the field

Fig. 4. A uniform magnetic field is applied at an angle � with respect to the
object’s axis of symmetry. Because of the different demagnetizing factors in
the x and y directions, the magnetization will not �in general� be in the same
direction as the applied field.
that would have been present in the absence of the object
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�the applied field�.14 Because the applied field and magneti-
zation are both constant in our problem, the integration in
Eq. �11� is trivial. With B0=B0 cos � êx+B0 sin � êy and the
components of magnetization given in Eq. �8�, we obtain

Em = −
B0

2

2�0
V�� cos2 �

1 + nx�
+

sin2 �

1 + ny�
� . �12�

The torque on the object can be calculated by taking the
cross product of the magnetic moment with the applied field
or by differentiating Eq. �12� with respect to �.15 The result is

�m = �MV� � B0 =
dEm

d�
êz �13a�

=
B0

2V�2�1 − 3n�sin � cos �

�0�1 + n���2 + �1 − n���
êz, �13b�

where n=nx is the demagnetizing factor along the axis of
symmetry and we have used the fact that ny =nz= �1−n� /2.16

Equation �13b� is relatively easy to understand qualitatively
once we realize that the denominator is always positive if
��−1 �which holds for all known materials�. The sign of the
torque is then governed by the factor �1−3n�sin � cos �. Pro-
late objects �n�1/3� experience a torque causing their
axis of symmetry to align with the external field and ob-
late objects �n�1/3� experience a torque causing their
axis of symmetry to align perpendicular to the external
field. It is easy to verify that �=0 is an energy minimum
for prolate objects and �=� /2 is an energy minimum for
oblate objects. In addition, a sphere �n=1/3� will experi-
ence no torque in an applied field as expected.

If you have not already realized, the most surprising as-
pect of this result is that it applies to both diamagnetic ma-
terials and paramagnetic materials. Consequently, prolate
spheroids made of a paramagnetic or diamagnetic material
will align their symmetry axis parallel to an external �uni-
form� magnetic field. I will now show how this result makes
good physical sense.

First, consider a paramagnetic sphere in which the demag-
netizing field is antiparallel to the applied field. �For a dia-
magnetic sphere the demagnetizing field is parallel to the
applied field.� Recall that the demagnetizing factor n is a
measure of the strength of the demagnetizing field. Thus, for
a paramagnetic object a larger value of n means a larger
demagnetizing field and therefore a smaller total field and a
smaller magnetization. On the contrary, for a diamagnetic
object a larger value of n means a larger demagnetizing field
and therefore a larger total field and a larger magnetization.
This result can be understood mathematically from Eq. �7�.
For a given applied field B0, increasing the value of n leads
to a smaller M for a positive � and a larger M for a negative
�.

Next, consider a prolate object as shown in Fig. 4 and
assume for simplicity that �=� /4 so that the x and y com-
ponents of the applied field are equal. If the demagnetizing
factors are the same in the x and y directions, the magneti-
zation would be parallel �paramagnetic� or antiparallel �dia-
magnetic� to the applied field and there would be no torque
on the object. But for a prolate object nx�ny. Thus, a para-
magnetic material will have Mx�My, resulting in a magnetic
moment that points between �=0 and �=� /4. The direction
of this magnetic moment results in a torque that tends to

align the symmetry axis with the applied field. However, a
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diamagnetic material will have 
Mx 
 � 
My
 �both Mx and My
will be negative� resulting in a magnetic moment that points
between �=5� /4 and �=3� /2. Again, the direction of the
magnetic moment results in a torque that tends to align the
symmetry axis with the applied field.

This analysis shows that—contrary to the standard
demonstration—a long, thin diamagnetic rod should align
itself in a uniform magnetic field. Demonstrating this phe-
nomenon should be simple in principle; a strong uniform
magnetic field is all that is needed. Unfortunately, I am un-
aware of any experimental observation of this phenomenon.

If prolate diamagnetic objects tend to align their symmetry
axes in an applied field, why does the standard demonstra-
tion for paramagnetic and diamagnetic objects show diamag-
netic cylinders aligning perpendicular to the field? My analy-
sis above is based on spheroids in uniform applied fields.
The standard demonstration uses small cylinders between
two neodymium magnets. In our experiment,2 the cylinders
are approximate 32 mm long and 6 mm in diameter. To ac-
commodate these cylinders, the magnets need to be separated
by about 5 cm. These cylindrical magnets have a radius of
less than one centimeter. Thus, as the gap increases beyond a
centimeter, the field will become increasingly weak at the
midpoint between the magnets. As an example, the Pasco
instruction manual states that a gap spacing of 8.9 cm gives
a field strength at the midpoint that is over 50 times weaker
than immediately in front of the magnets—a very nonuni-
form field.

To consider the effects of a nonuniform field, recall that a
magnetic dipole in an external field will experience a force
given by F=��m ·B�. We have already determined that the
direction of magnetization is essentially parallel �antiparal-
lel� to the field direction for paramagnetic �diamagnetic� ma-
terials. Thus, the magnetic force on such a dipole will be F
= ±m�B, where the positive �negative� sign is for dipoles
parallel �antiparallel� to the field. Therefore, a dipole that is
parallel to the field will be drawn into regions of high field
strength. Conversely, a dipole that is antiparallel to the field
will be expelled from regions of high field strength. There-
fore, the ends of a paramagnetic cylinder will be attracted to
the poles of the magnets while the ends of a diamagnetic
cylinder will be repelled from the poles of the magnets.
Thus, it is relatively easy to understand the behavior of the
standard demonstration as long as the effects of the nonuni-
form field are included.

So far we have demonstrated that there are two possible
effects that result in torques acting on a rod in a magnetic
field—one due to a uniform applied field and one due to a
nonuniform applied field. Which of these effects is larger?
Equation �13b� gives the torque on an object in a uniform
external field. For a very prolate object �n	0� and a typical
paramagnetic or diamagnetic material, the magnitude of the
torque due to a uniform field is approximately given by

�u 	 B0
2V�2 sin � cos �/2�0. �14�

To estimate the torque due to a nonuniform field, we assume
that the rod consists of two magnetic dipoles located on the
ends of the rod. These dipoles are assumed to be parallel �or
antiparallel� to the field with magnitudes m	MV /2, where
M is the magnitude of the magnetization given in Eq. �7�.
The torque on the rod will then be given by �
=2�L /2�Fmag sin �, where the magnetic force is approxi-

mately given by Fmag=m�B. If we estimate the gradient
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of the field as �B	B0 / �L /2�, then the magnitude of the
torque due to a nonuniform field will be approximately
given by

�n-u 	 B0
2V� sin �/�0. �15�

Thus, we see that the torque from the nonuniform field is
greater than the torque from the uniform field by a factor of
	2/� cos �. For typical paramagnetic or diamagnetic ma-
terials, this factor is approximately five orders of magni-
tude. Therefore, unless the field is very uniform, �n-u will
dominate �u showing that the behavior in the standard
demonstration is almost certainly due to the nonuniform
field of the magnets. This estimate also suggests that to
set up an experiment to observe the interesting fact that a
diamagnetic cylinder should align itself parallel to a uni-
form field would require a very strong magnetic field. To
obtain a torque that is similar in strength to the standard
demonstration �which is quite weak� would require a mag-
netic field about 100 times stronger than the field near the
pole of the magnet �about 0.4 T�. Thus, a field of approxi-
mately 40 T would be required. Producing such a strong
uniform field over a relatively large region of space is
nontrivial and probably explains why this phenomenon
has not been observed.17

C. Magnetizable object in an external field with gravity:
The dancing paperclips

It is now relatively straightforward to extend our results to
explain the behavior of the “dancing” paperclips described in
Sec. I; the only thing missing is gravity. We assume the
external field is applied vertically and the object’s axis of
symmetry defines the x axis at an angle � with respect to the
applied field �see Fig. 4�.18 The geometry of the spheroid
makes the calculation of the gravitational potential energy
cumbersome. For simplicity we will consider a very prolate
object; the object is long and thin such that its aspect ratio
m=a /b	1. This geometry allows us to approximate the de-
magnetizing factors as nx	0 and ny 	1/2. We write the
mass density as  and the length of the rod as L=2a. The
gravitational potential energy will then be given by Eg
	Vga cos �. If we add this energy to the magnetic energy
given in Eq. �12� and divide by Vga, we obtain a total
�dimensionless� energy for a prolate object of

Ẽp = cos � − C��2 + � cos2 �

2 + �
� , �16�

where C=B0
2 / ��0gL� is a dimensionless number that gives

the relative strengths of the magnetic and gravitational
forces.19 Because �0, , g, and L are assumed constant for a
given experiment, the number C is essentially a measure of
magnetic field strength. We will therefore refer to C as the
magnetic number.

For a given � the general behavior of the total energy
given by Eq. �16� is simple and is summarized in Fig. 5.
When there is no magnetic field �C=0�, the energy is just
given by a cosine curve. This function has a maximum at
�=0 and minima at �= ±� /2.20 As the magnetic field is in-
creased �C�0�, the point �=0 undergoes a pitchfork bifur-
cation from a maximum to a �local� minimum while the
points at �= ±� /2 remain minima. Thus there are now local
maxima that act as energy barriers between the minimum

energy states. At this point, a prolate object will be stable if
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lying on the table or if stood on end. This behavior is easily
verified experimentally. As the magnetic field is increased
further, the minimum at �=0 becomes deeper and the barrier
between this minimum and the minima at �= ±� /2 becomes
smaller as the local maxima move closer to ±� /2. Of course,
the paperclips are not sitting exactly at � /2, only close to it.
Thus, at some point the paperclips find themselves on the
other side of the barrier allowing them to spontaneously
stand on end.

It is interesting to determine the critical value of the field
at which the bifurcation occurs ��=0 changes from being a
minimum to a maximum�. Differentiating Eq. �16� twice and
setting �=0 will tell us whether �=0 is a maximum or mini-
mum. The zero of the first derivative gives the critical point
for a prolate object as

Cp
* =

2 + �

2�2 . �17�

From the definition of C, Eq. �17� tells us that the critical
magnetic field grows as the square root of the object’s length
B0

*��L. Although this dependence seems easy to check
experimentally, it is not simple for several reasons. First,
unless you have a very strong magnetic field constant over
a large region of space, you must use ferromagnetic ma-
terials which are subject to hysteresis effects. Second,
these results are strictly valid only for very prolate sphe-
roids or infinitely long cylinders which are not easy to
obtain �this approximation simplified the analysis consid-
erably�. Nevertheless, to make some connection with the
real world, we made some very crude measurements using
small �ACCO #1 trombone style� paperclips. Beginning
with a relatively strong magnetic field so a paperclip will
be stable when standing upright, we slowly decrease the
field strength and note when the paperclip falls over. A
series of 10 trials using a fresh paperclip each time gave a
fairly consistent critical field value of B0

*�2.7�10−3 T.
For a paperclip of length L�3 cm and density �8
�103 kg/m3, the magnetic number C�2.5�10−3, giving a
magnetic susceptibility of �	200. Most ferromagnetic
materials behave linearly for small applied fields with
typical initial susceptibilities ranging from 10 to 104 so
this result is reasonable.9 An extensive search21 revealed
that paperclips are typically made from low carbon �mild�
steel which has an initial susceptibility of around 150–

Fig. 5. The �dimensionless� total energy of a very prolate ferromagnetic
object with �=200 for different magnetic field strengths as given by Eq.
�16�. The maximum at �=0 undergoes a pitchfork bifurcation and becomes
a �local� minimum as the magnetic number C is increased. The energy
barrier between the minima at �=0 and �= ±� /2 becomes smaller as C is
increased further.
250.
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It is easy to show that the energy barrier in Fig. 5 never
completely disappears as the magnetic field is increased. By
differentiating Eq. �16�, we find that the local maxima occur
when

cos � =
2 + �

2C�2 . �18�

Thus, we see that as C→� the local maxima approach �
→ ±� /2. Therefore, the angles �= ±� /2 will remain local
minima for all finite applied fields. Having said that, the
energy barriers will become arbitrarily small for large ap-
plied fields. For example, if �	1, we see from Eq. �18� that
cos �	1/2C� so that

� 	 ± �/2 when C 	 1/2� . �19�

For �=200 Eq. �19� suggests that we should see spontane-
ous standing when C	2.5�10−3. We did a series of ex-
periments with paperclips and observed that spontaneous
standing typically occurs for a field strength of B0
�10−2 T.22 This field corresponds to a magnetic number
of C�2.8�10−2 which is consistent with Eq. �19�.

In an analogous manner to the calculations for a very pro-
late object, we can also determine the behavior of a very
oblate �disklike� object �m=a /b
1� with nx	1 and ny 	0.
In this case the length of the object is the diameter of the disk
L=2b, and because the axis of symmetry lies along the x
axis, the gravitational energy is given by Eg	Vgb 
sin �
.
The results are similar to those for a prolate object except
that �=0 when the disk is lying down and �=� /2 is the
angle that switches from being an energy maximum to an
energy minimum causing the disk to stand on end.23 For
completeness, the expressions equivalent to Eqs. �16� and
�17� are

Ẽo = 
sin �
− C��1 + � sin2 �

1 + �
� �20�

and

Co
* =

1 + �

2�2 . �21�

It might seem surprising that the critical field for an oblate
object is slightly smaller than for a prolate object. This result
can be traced to the larger difference between nx and ny for
an oblate object compared to a prolate object.24 However, for
the large susceptibilities typical of ferromagnetic materials, it
would be very difficult to experimentally determine any dif-
ference between Eqs. �17� and �21�.

IV. CONCLUSION

When a vertical magnetic field is applied to paperclips that
are horizontal, there is a field for which the paperclips spon-
taneously stand on end. This behavior makes a wonderful
demonstration for an undergraduate course in electrodynam-
ics. The main goal of this paper was to investigate this phe-
nomenon qualitatively and quantitatively by modeling the
paperclips as prolate spheroids in a uniform magnetic field.
By calculating the energy of this geometry, it was shown that
a rod standing on end becomes a stable configuration at a
critical value of the magnetic field. A simple experiment was

performed that gave reasonable agreement with the theory.
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Surprisingly, this analysis shows that both paramagnetic
and diamagnetic objects behave similarly and in the absence
of gravity, these cylinders will align parallel to a uniform
magnetic field. This behavior contradicts the standard dem-
onstration that shows diamagnetic cylinders align perpen-
dicular to an applied field. This observation can be explained
by noting that the applied field is highly nonuniform in the
standard demonstration. Thus, the rotation of the cylinders is
a direct result of the forces due to the nonuniform field.
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APPENDIX: DEMAGNETIZING FACTORS FOR
ELLIPSOIDS AND SPHEROIDS

Consider an ellipsoid whose axial directions coincide with
a Cartesian coordinate system defined by

x2

a2 +
y2

b2 +
z2

c2 = 1. �A1�

The semiaxes a, b, and c give the radius of the ellipsoid
along the x, y, and z axes, respectively. The demagnetizing
factor nx for an ellipsoid is given by25

nx =
1

2
abc�

0

� ds

�s + a2�Rs
, �A2�

where Rs=��s+a2��s+b2��s+c2�; the expressions for ny and
nz are obtained by replacing the denominator in Eq. �A2� by
�s+b2�Rs and �s+c2�Rs, respectively. We are interested in
prolate �cigar shaped� or oblate �disk shaped� spheroids
which have a�b=c or a�b=c, respectively. The demagne-
tizing factors for these objects are as follows.26

Prolate spheroid �m=a /b�1�,

nx =
1

�m2 − 1�� m

2�m2 − 1
ln�m + �m2 − 1

m − �m2 − 1
� − 1 , �A3�

and ny =nz= �1−nx� /2.
Oblate spheroid �m=a /b�1�,

nx =
m2

2�1 − m2�� 1

m�1 − m2
arcsin�1 − m2 − 1 , �A4�

and ny =nz= �1−nx� /2.
Figure 6 shows the demagnetizing factors for prolate and

oblate spheroids as given by Eqs. �A3� and �A4�. As is clear
in Fig. 6, the limiting cases of a flat plate �m→0� and a long
thin rod �m→ � � give the expected demagnetizing factors of
nx=1, ny =nz=0 and nx=0, ny =nz=1/2, respectively.

1In hindsight, I can remember a related phenomenon that I experienced as
a graduate student. We used to bring in nonscience students to briefly

encounter a very strong magnetic field from an old cyclotron. I can dis-
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tinctly remember that this tendency to align in the field is so strong �for
ferromagnetic objects� that it was virtually impossible to hold a long
�4–5 in. � iron bolt perpendicular to the field.

2We use a magnetic demonstration system available from Pasco Scientific,
item EM-8644A. This demonstration consists of a variable gap magnet
and various accessories for demonstrating magnetic forces and eddy cur-
rents.

3Although no connection is made to the experiments discussed here, this
problem is discussed by D. J. Griffiths, Introduction to Electrodynamics,
3rd ed. �Prentice-Hall, Upper Saddle River, NJ, 1999�. Problem 6.21, pp.
281–282.

4See, for example, Ref. 3, pp. 264–265.
5We are assuming that the coordinate axes are aligned with the principal
axes of the object. In general the demagnetizing effect is described by a
demagnetizing factor tensor and nx, ny, and nz are the principal values of
this tensor. See L. D. Landau, E. M. Lifshitz, and L. P. Pitaevski�, Elec-
trodynamics of Continuous Media, 2nd ed. �Pergamon, New York, 1984�.

6C. Kittel, “Theory of the structure of ferromagnetic domains in films and
small particles,” Phys. Rev. 70, 965–971 �1946�.

7See, for example, J. D. Jackson, Classical Electrodynamics, 2nd ed.
�Wiley, New York, 1975�, pp. 193–194.

8Technically speaking, demagnetizing factors are only defined for objects
that have uniform internal fields.

9See Ref. 7, p. 190.
10The magnetization can still be expressed as M =��H where �� is no

longer constant but a field-dependent proportionality factor. Therefore,
the results for a ferromagnetic sphere can be obtained from the results for
a non-ferromagnetic sphere by replacing � by ��. See E. M. Pugh and E.
W. Pugh, Principles of Electricity and Magnetism �Addison-Wesley,
Reading, MA, 1960�, pp. 289–292.

11 Recall that the magnetic susceptibility is defined by a linear relation
between the magnetization and the applied field M=�H; ��0 for para-
magnetism and ��0 for diamagnetism. The magnetic permeability � of
an object is related to its susceptibility by 1+�=� /�0. The quantity �r

=� /�0 is the relative permeability.
12Note that this strong preference to magnetize along the axis of a long

ferromagnetic rod will make it difficult to hold such an object perpen-
dicular to a strong external field. See comment in Ref. 1.

13R. E. Rosensweig, Ferrohydrodynamics �Cambridge U.P., New York,
1985�, p. 98.

14Note that this expression for the energy does not include the work done
by the sources against the induced electromotive forces. For a brief dis-
cussion of this point, see Ref. 7, p. 216.

15Our definition of � is such that when � is increasing, the object is rotating
in the negative êz direction.

16The corresponding result for a dielectric ellipsoid in an applied electric
field is similar. See V. V. Batygin and I. N. Toptygin, Problems in Elec-
trodynamics �Academic, London, 1964�, pp. 44 and 229.

17The estimates in this section are only order-of-magnitude estimates and
should not be taken too seriously. Nevertheless, these estimates indicate
that a fairly strong uniform field would be necessary to observe the align-
ment of a typical diamagnetic cylinder.

18Due to the presence of the horizontal surface on which the paperclips lie,
the angle � is confined to lie between −� /2 and � /2.

19

Fig. 6. Demagnetizing factors for oblate �m=a /b�1� and prolate �m
=a /b�1� spheroids as calculated from Eqs. �A3� and �A4�.
This dimensionless number is proportional to the Cowling number
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�which is related to the Alfvén or Kármán numbers� that arises when
studying magnetohydrodynamics. See for example, K. Ražnjević, Physi-
cal Quantities and the Units of the International System (SI) �Begell
House, New York, 1995�, p. 185.

20The minima at ±� /2 are not “functional” minima in the sense that Eq.
�16� has minima at these point. Instead, these minima occur because the
angle � is restricted to lie between −� /2 and � /2. That is, we are dealing
with “boundary value” minima.

21The manufacturer responded to our request for information on the com-
position of their paperclips by saying it was proprietary information.

22The field strength at which spontaneous standing takes place depends on

whether the paperclips have been used and whether they are sitting on a
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flat smooth surface. Old paperclips on a rough surface will spontaneous
stand at a lower field strength than new paperclips on a perfectly smooth
surface.

23Spontaneous standing for disks is more difficult to achieve than for pa-
perclips. Presumably, this difficulty is due to the fact that the disks lie
much more flatly against the table than do the paperclips.

24This larger difference between nx and ny can be traced to the effective
dimension of the object. A long thin rod is essentially one dimensional
while a flat plate is two dimensional.

25See Ref. 5, p. 24.
26L. Sun, Y. Hao, C.-L. Chien, and P. C. Searson, “Tuning the properties of
magnetic nanowires,” IBM J. Res. Dev. 49, 79–102 �2005�.
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