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We calculate the magnetic field around a current loop consisting of a regtdated polygon by
successively rotating the field obtained from a straight, finite, current-carrying wire. This involves
developing and applying a vector field rotation operator, which transforms vector fields the way a
rotation matrix transforms scalar fields. Using this result, we explore the various magnetic field
components about the current loop and notice an interesting structure that results from the geometry
of the polygons. The magnetic field on the axis of the current loop as well as the field at all points
around a circular loop are considered as limiting cases20@ American Association of Physics Teachers.

I. INTRODUCTION Il. MAGNETIC FIELD DUE TO CURRENT LOOPS
OF REGULAR POLYGONS

A standard calculation that often appears in an introduc- ) o _
tory physics course is the magnetic field due to a constant To obtain the magnetic field of a current loop in the shape
current flowing through a finite length of wifeStudents are  0f anN-sided polygon, we simply need to add up the contri-
then asked in homework problems to find the magnetic fieldutions fromN different current segments arranged in the
of a current arrangement at some point of symmetry, such aghape of a regular polygon. To sum the fields in a straight-
the center of a square or a circle. Even in more advancetprward manner, imagine introducing a new coordinate sys-
treatments of electromagneti€students are not usually tem,x’y’, that is rotated by an anglé=2=/N with respect
asked to calculate the magnetic field at an arbitrary pointo thexy system. This will place the second segment of the
about these configurations, presumably due to the difficultypolygon in an identical position in the primed coordinate
of the calculations involved. In fact, it is often not until system as the first segment is in the unprimed coordinate
graduate school that a student finally witnesses the full calsystem. Thus, the magnetic field of this new segment will be
culation of the magnetic field due to a circular currentgiven by Eq.(2), with x—x', §—8&,, y—Yy’, etc. That is,
loop3# The approach used here is conceptually not muchhe field of the second segment will look identical in the
more difficult than the calculation for a finite wire, thus pro- primed coordinate system to the field of the first segment in
viding a relatively straightforward, albeit somewhat tedious,the unprimed system. Similarly, one can imagine a se\l of
method for obtaining the field of a current-carrying polygoncoordinate systems rotated by angtes=27n/N (for 0<n

or circle. <N-1), each of which gives rise to an identical formula for
‘We begin with the magnetic field due to a finite length of the magnetic field in reference to a different coordinate sys-
wire. This is written most simply as tem. The total magnetic field would then be just the sum of
these,
Bz'u—ol(sina —sinay) (1)
ypm— 2 1 Bo=B+B'+B"+---+B""", &)

with a direction given by the right-hand rule. Heieis the ~ where the final termwith N—1 primes refers to the mag-
current,d is the length of the perpendicular segment from thenetic field of theNth segment in théth coordinate system.
axis of the wire to the observation poiftanda; anda, are  Of course, since this result referendeslifferent coordinate

the angles formed between this perpendicular segment argystems, it is not all that useful in this form. Therefore, we
lines drawn from the observation point to the ends of themust rotate each term in E(B) so that they all refer to the
wire. This is shown in Fig. 1. If the length of the current same coordinate system. This is more subtle than it sounds
segment is taken to bea2and we orient it parallel to thg ~ because it involves rotating a vector field. Although this
axis with its center a distand@along thex axis (see Fig. 1, sounds simple, the traditional “coordinate system rotation”
Eq. (1) becomes does not completely accomplish this task. Because this topic
is not typically covered in undergraduate tekise will give

a fairly detailed description in the following subsections.

B Mol y+a y—a )
~ Amd 2 2 2 — 2
mdd (y+a)® V' (y-a) A. Rotating a scalar field
z Xx—R
X aé)(— Téz , (2 To begin, let us consider a coordinate systghy, z’, that

has been rotated about thexis by an angle with respect
to a second coordinate systexiyz The relationship between
where d=[(x—R)?+7?, and the direction of the field is points in the primed systenx/, and those in the unprimed
now explicitly written. systemy, is given byx’ =Rx, where
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Pl,y,z) (rotated position. Thus, a coordinate rotation does not result
in a true rotation of a vector field.

Let us extend our previous example and consider the vec-
tor field A(x) =x&,. This function has all vectors pointing in
the =x direction. In addition, each of the “equifield” lines,
X=Dh, contains vectors with the same magnitude and direc-
tion. The scalar functionA,(x)=x, rotates to giveA(x’)
=A(Rx)=(xcosf+ysin )&, and hence the new equifield
lines are described by=—xcoté+bcscd. Not surpris-
ingly, the equifield lines have been rotated exactly the same
way as in the previous example. Note, however, that these
Fig. 1. A finite wire segment with constant currenis shown with an  vectors are still pointing in the- x direction. To accomplish
appropriate coordinate system. The magnetic field of this segment is givep true rotation of the vector field requires that s@n the
by Eq_. (1), where use of the right-hand rule is implied, and also in Cartesiany,actors by an angl@ in addition to rotating their positions.
coordinates by Eq2). To spin the vectors, we appeal to the rotation matrix once
again and considek’ (x) =RA(X). This will spin every vec-
tor in a direction opposite to that of a function under a coor-
dinate rotatiorx’ = Rx.8 Since we want to spin the vectors in

R| —sind cosd O (4)  the same direction as their positions rotate, we must trans-
0 0 1 form according toA’ (x) =R(— 6)A(X) =R~ 1(8)A(x). For
an arbitrary vector field, the transformed components are
is the matrix representing rotations about #exis. The first  then given by A ,AjA))=(A coso—A sindAsing
thing we would like to consider is what happens to a scalar_,_Aycose’Az). Returning once again to our exampke(x)
function under this “coordinate system rotation.” For ex- % C AT ATy . :
ample, given the functioms(x), what doesy(x')=p(Rx) ' We have £y,Ay,A;) =(x cosoxsing,0). This new
' ' vector field still has equifield lines given by=b, indicating

N . , .
Lﬁzk “l:ﬁq.ezhiggfgf;tlessth?(xx) I%%I;sse?:cilﬁ/ethsnsarﬁelg that the locations of the vectors have not changed. The com-
P H(x) P ponents of these vectors, however, are given by

coordinate$. In other words, viewed in thenprimedcoor- ; :
dinate systemy(Rx) is rotated about the axis by an angle ;tr)]c;ri;,ge&gg)a(ej;rrr;%nstratlng that they have been spun by

0 with respect toy(x).

That this is true is most easily seen by considering a spe-
cific example. If we lety/(x) =X, this leads to the rotated
function (Rx)=x cosf+ysind. To determine how the C. Rotating a vector field
function has been altered, consider the “equipotentials”
¥(x)=b, whereb is a constant. Clearly(x) is constant on
the linesx=b. We can infer the behavior af(Rx) by ask-
ing, “what are the equipotentials af(Rx)?" In this case,
they are found by solving cosé+ysin6=b, which gives
y=—xcotf+bcsch. A straightforward check reveals that —RIA. Rotating a vector field is then achieved by com-

this isdindeed th? eguationbof th(; Iimgcg after it r;as bﬁen bining these two operations, which defines a vector field ro-
rotated counterclockwise about thexis by an angle. This .. operator®R(6), by’

implies, as we claimed earlier, tha{x’) looks the same in
the primed coordinates ag/(x) does in the unprimed A (X)=R{AX)} =R IA(RX). (6)
coordinates.

cosfd sing O

In the last two subsections, we have seen that the rotation
matrix R can be applied to a vector field in two different
ways. Rotating the positions of the vectors by an arfjie
carried out with a coordinate transformatiah=7Rx, and
spinning the vectors by an angteis accomplished via'

Equation(6) is valid for rotations about any axis provided
_ o _ the rotation matrix is changed accordingly. For rotations
B. Moving and spinning a vector field about thez axis, the component functions are given‘by

Next, let us consider what happens to a vector functiona’ = cosg A,(x cosf+y sin6, —x sin §+y cos6,z)
A(x), subjected to a coordinate rotatiod,=Rx. Although ) ) )
it is tempting to say thaf\(x’) looks identical in the primed —sing Ay(xcosf+y sing, —xsinf+y cosb,z),
system aA\(x) looks in the unprimed system, this is not the
case. Since each componentAdfx) is a scalar function, we
have +cosf Ay(xcosf+ysind,—xsing+ycosh,z), (7)

A(RX) =A(RX) 8 AY(RX) &+ A(RX)&,. (®)  Al=A,(xcosf+ysing, —xsind+y coss,z).
Viewed in the unprimed coordinates, each of the transformeg,|Sing our example function one last time, the rotated com-
scalar functions in Eq(5) has been rotated by an angke L . ;L
with respect to the original functions. Notice, however, thatpone_nts of A(,x)—xex are _g|ve_n by ij(x cose
the unit vectors have not changed. This means the compaty Sinf)cose, Ay=(xcosf+ysing)sing, and A,;=0. As
nents of each transformed vector are exactly the same as théfore, the equifield lines are given by=—xcoté
components of the original vector. To put it another way, thet+bcscé, indicating that the positions have been rotated. In
vector itself has not changed, it has simply moved to a nevaddition, the components of the vectors on these lines are

Aj=sind A,(x cosf+y sind,—xsinf+y cosb,z)
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Field Strength (ugi/4nR)

z=01 z=0.5 z=1.0

Fig. 2. Contour plots oB,, B,, and|B| for the hexagonal current loop shown in the upper left coriiote thatB,=0 everywhere in they plane) The field
strength is indicated by shading as shown on the color scale and is the same for all graphs. In contrast, two different sets of coisiquerimg®sed on
the color scalpare used, one for the=0 andz= 0.1 graphs, and another, with a spacing about seven times smaller, for €h& andz=1 graphgRef. 12.

(b cosé,bsing,0), illustrating that they have been spun asconstraint between the length of a segment and the “radius”
well. of the polygon given by = Rtan(m/N). Inserting this single-
segment field into Eq(8) yields the final result,

D. Application to magnetic fields

N—1 . .
Armed with this vector field rotation operator, each termg _ §° Kol | tan(@/N)+(x sin6,—y coséy)
0

in Eq. (3) can now be written in terms of a single coordinate n=o 47R H,
system. The result is )
N_1 N_1 N tan(w/N)—(xsin6,—y cosé,)
Bl ¥)= 2 R{B(X)}= 2 R, 'B(RyX) ®) H-
tot' =0 n =0 n n 1

2C0s0,8,+zsin 6,8+ (1—xcosd,—ysind,)e,
(1—xcosf,—ysiné,)°+z° ’

where the subscriph designates a rotation angle @k,
=2mn/N. This formula sums the magnetic field contribu-
tions fromN current-carrying segments of a regular polygon ©)
centered at the origin. The field of a single segment of a

polygon is obtained from Eq2) by including a geometric where

H. = r?+sed(m/N)—2(x cosé,+Yy siné,) = 2(x sin 6, —y cosé,)tan(7/N) (10)

are the distances from the observation point to the ends afach term in the sum is equally important, this result is not
the wire segments and= X2+ y2+ Z2 is the distance of the Vvery convenient for analytic calculations. However, modern
observation point from the origin. Here, and for the remain-numerical analysis programs such as Mathematica or Maple
der of this paper, we use dimensionless coordinatgsand  can handle equations such as these with relative ease. As an
z that have been scaled by the radius of the polygott, example, Fig. 2 shows a series of constaabntour plots of
Equations(9) and (10) represent the exact result for the By, B,, and|B| for a hexagon. In this figure, lighter regions
magnetic field of a current loop in the shape of a regularrepresent largefpositive) values and darker regions corre-
N-sided polygon centered at the origin. Unfortunately, sincespond to smallefor more negativevalues. Because subtle
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than that of the circle for small values nf This reflects the

1.6 N=3 fact that points on the polygons are, on average, further from
the origin than points on the circle. Asis increased, the
1.4 on-axis fields of the polygons become larger than that of the

circle and their ratio appears to level off to a constant value.

This reflects the dipole behavior of the fields for lamyend

the fact that the polygons have a larger area than the circle.

1 = N-soo Quantitatively, the fields at the center of the current loops
are obtained by takingz=0 to get B,/B.=(N/m)

sin (7/N). The largez behavior is obtained by expandiriy,

andB_ for z=1. In this case, the fields can both be written

Fig. 3. The ratio of the on-axis field of a polygon to that of a circle for 3 — ﬂ 21A
<N=<®6. These curves have a value dfi/@r) sin (w/N) at z=0 and ap- 4 (ZR)3'
proach (/=) tan (@/N) asz— as described in the text.

By/Bc

0.8

(13

whereA is the area of the current loop. Note that this is just
the on-axis field of a magnetic dipole with dipole moment

features of the field are difficult to discern by relying solely M=iA.** For a circle and polygon, the areas are given by
on the coloring scheme, we have included some contouf.=mR? and A,=NR?tan (@/N). Thus, we see that as
lines on these graphs. Since the range of field values dencreases, the ratio of the fields in Fig. 3 asymptotically ap-
creases dramatically for increasimgwe have used two dif- proaches the ratio of their areasB,/B.—A,/A;
ferent sets of equally spaced contour lines, one for zhe =(N/) tan (@/N).
=0 and z=0.1 plots, and another, with a spacing about
seven times smaller, for the=0.5 andz=1.0 plots? These
two sets of contour lines are superimposed on the color scal
A surprising feature in this figure is the appearance o

“islands” of local maxima and minima in th@, and |B| A more challenging calculation is to find the magnetic
plots. This behavior is present in all polygons, but becomesie|q at all points due to a circular current loop. This is ac-
Ieﬁs ?r?d Iegsl prgnounced Itisilrl}cria?les. Explainirt'lrg]] eéac'[#t’ complished by taking the limiN—o in Eq. (9). We begin

w ese islands appear will challenge even the brighte - : B
stu)(glents. Because ofptphese extrema, itgcan be a bit cor?fusiiég expanding to lowest order inN/ which yields
to try and match up the contour lines on the graphs with "~ i

those on the color scale. For example, there are six curves ddr= 2 —

. A circular current loop

the graph of|B| for z=0 even though the color scale shows  "~° 4mR

only three positive contour lines. This is because there is a zcosfn&+zsinb,g,+(1—xcosh,—ysind,)g,
maximum (on top of the wire on this graph that results in X [15 12— 2(xcosb, 1y sin )72

two contour lines for each of the magnetic field values cho- nTY n

sen. Also, it is worth mentioning that the outermost curves  x Ag, (14)

on the graphs ofB| for z=0.5 andz=1 correspond to the

smallest positive contour line on the color scale. whereA #=2m/N is the angle subtended by one segment of

the polygon. In the limitN—oo, this sum becomes an inte-

Ill. SPECIAL CASES gral,
A. On the axis g Mo
L . . 47R
The magnetic field on the axis of the current loop is . o o
easily found by setting=y=0 in Eq.(9) to get y fZWZCOSHGXJFZSln 0&,+(1—xcosf—ysino)e,
N-1 0 [1+r2—2(xcosf+y sing) ]2 ’

Mol 2tan(w/N)

»~ 2 4R Jse@ (7IN) + 22 (19
. A giving the magnetic field of a circular current loop in terms
ZCOSOnE+zsind&y+ &, of Cartesian coordinates.

1+2° Because of the underlying symmetry, it is appropriate to
Thex andy terms sum to zero by symmetry and each of thecqnv_ert this result into cyllndrlcal coordmate,s,(p,z). Sup-.
z terms are identical, giving stituting for the coordinates and unit vectors, defining

w=¢— 0, and exploiting the periodicity of the trig functions,

B

. (17

uoi 2N tan(w/N) 1\ we end up with
Bp: 2 . (12) . ~ N
47R \[se@ (wIN)+2?2\1+z pol  [272COSw8,+(1—p cOSw)&,
.. . . . . B(plz): 4 R 1 2 2 2 3/2 w.
It is instructive to compare this result to the magnetic field on 7R Jo [1+p“+2z°—2p cosw]
the axis of a circular current loop, obtained by taking the (16)

limit N— e in Eq. (12) to get Bc=(Mpi/2R)(1+Zz)_3/2éz- As expected, thep-component has integrated to zero. Al-
Figure 3 shows the ratio of these fields,/B., for 3<N  though a bit tedious, this result can be written in terms of
<6. Notice that the on-axis fields of the polygons are smallecomplete elliptic integrals,
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Fig. 4. Contour plots 0B, , B,, and|B| for the circular current loop shown in the upper left corner. For comparison, the same color scheme and contour lines
have been used as in Fig. 2.

1+ p?+ 22 IV. CONCLUSION

(1-p)?+z

B — ILL0| 22
P 4R p\[(1+p)%+z

2B~ K(k)}’ We have calculated the magnetic field of a current loop in
(17)  the shape of a regulaN-sided polygon centered at the ori-
gin. We obtained this result by applying a vector field rota-

. 5 1 p2— 72 tion operator to the magnetic field of a straight, finite,
B.= Hol p 5 z 2E(k)+K(k)} current-carrying wire. This problem has a rich mixture of
“ 4nR 1+ p)2+ 2 (1-p)*+z ’ analytic and computational aspects that make it useful as an

(18) advanced undergraduate student project. Alternatively, it
would make a nice addition to a course on electromagnetism

wherek=\4p/[(1+ p)?+Z%]. Equationg17) and(18) rep- ~ OF mathematical physics, either as part of the lectures or as
resent the magnetic field due to a circular current loop ofhe basis for a series of homework problems.
radiusR centered at the origifi Figure 4 shows some con-
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replaced byy(Rx), which means that the valug(Rx) has moved from  “"We have made the variable substitutioris=x/R, y'=y/R, z'=2/R and
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ANTHROPIC REASONING

This sort of reasoning is called anthropic, and it has a bad name among physicists. Although |
have used such arguments myself in some of my own work on the problem of the vacuum epergy,
| am not that fond of anthropic reasoning. | would personally be much happier if the values pf all
the constants of nature could be precisely calculated on the basis of fundamental principles| rather
than having to think about what values are favorable to life. But nature cares little about |what
physicists prefer.

Steven Weinberg, “Before the Big Bang,” New York Review of Books, June 12, 1997.
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