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Modulational instability of nonlinear spin waves in easy-axis antiferromagnetic chains.
II. Influence of sample shape on intrinsic localized modes and dynamic spin defects

L. Q. English, M. Sato, and A. J. Sievers
Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853-2501

~Received 26 July 2002; published 6 January 2003!

An indirect method of producing intrinsic localized modes~ILM’s ! is to drive an unstable uniform mode to
large amplitude. In this investigation the intimate connection between the shape-dependent demagnetization
factor, the modulation instability, and ILM behavior is established. The stability of the antiferromagnetic
resonance~AFMR! against breakup into such ILM’s is shown to depend strongly on the frequency difference
between the linear AFMR and the long-wavelength limit of the spin-wave dispersion curve. This difference,
which stems from the long-range dipole-dipole interactions, depends on the demagnetization factor and hence
the sample shape. Here it is demonstrated initially with linear perturbation analysis and later with molecular-
dynamics simulations that the instability characteristics and ILM production properties depend strongly on the
sign and magnitude of the frequency difference. The simulations show that when the AFMR frequency is
coincident with the spin-wave band, a spatially coherent train of ILM’s appears, but this coherence is lost at
long times. When the AFMR frequency is inside the spin-wave band, the Suhl instability populates the
degenerate spin waves, whose subsequent modulational instability leads to traveling and decelerating ILM’s.
When the AFMR frequency is below the spin-wave band, a large-amplitude threshold for the instability
appears. Above this threshold ILM’s and localized dynamic spin flops occur, confined to specific lattice
regions.

DOI: 10.1103/PhysRevB.67.024403 PACS number~s!: 75.10.Hk, 75.50.Ee, 75.30.Ds, 45.05.1x
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I. INTRODUCTION

A wide variety of periodic, nonlinear systems can supp
spatially localized excitations in addition to plane-wa
ones.1–5 Such intrinsic localized modes~ILM’s ! involve only
a few sites in perfectly periodic lattices, are nonintegrab
and hence are outside the bounds of standard so
theory.6–8 For condensed-matter atomic lattices such ILM
should occur on the nanoscale but how best to produce
detect these individual ILM’s is still under investigatio
Present efforts focus on an indirect method, which involv
the modulational instability of the large-amplitude, nonline
uniform mode against breakup into such excitations.5,9–14

In magnetism the modulation instability of a homog
neous large-amplitude spin-wave mode has a long histo15

and it is usually referred to as the second-order S
instability.16–18 In high power ferromagnetic resonance t
uniform mode is made unstable against the exponen
growth of modulational sidebands, when driven to lar
enough amplitude;19,20however, because of the small ratio
the magnetic-resonance frequency to the spin-wave b
width the activation of this instability does produce lon
wavelength envelope solitons, but not ILM’s. Rece
numerical21,22and experimental23–25studies have shown tha
antiferromagnets provide a natural habitat for ILM’s, b
cause of their relatively large antiferromagnetic-resona
~AFMR! frequency, which essentially involves the geomet
mean of the anisotropy and exchange fields. So far the
lytical and numerical studies of instabilities in antiferroma
nets have focused on the particular case where the unif
mode is coincident with the bottom of the spin-wave bran
This study is described in Refs. 21 and 26, hereafter refe
to as ~I!. The inclusion of dipole-induced fields not on
0163-1829/2003/67~2!/024403~12!/$20.00 67 0244
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gives rise to an effective on-site spin anisotropy term but
also shift the frequency of the uniform mode with respect
the rest of the spin-wave spectrum.27–29 Since the dipole-
dipole interaction between spins generates a sha
dependent demagnetization field that can only modify
AFMR frequency, an effective spectral gap in the linear d
persion curve opens up at the zone center. This fea
should play an important role in the modulational instabil
and hence in the ultimate production properties of ILM’s.

In this paper the intimate connection between the sha
dependent demagnetization factor, the modulational insta
ity, and ILM behavior is established. To isolate this conne
tion, the same one-dimensional~1D! antiferromagnetic spin
chain model described in~I! is considered, but now the shap
dependence is included. The relative frequency position
the uniform mode and the long-wavelength spin waves tr
eling along the chain are varied by means of the sam
demagnetization field. The stability analysis for the result
uniaxial antiferromagnet is examined, and then these ana
cal results are compared with molecular-dynamics~MD!
simulation results. In this way it is possible to explore ho
the sample shape influences the modulational instability p
cess, while at the same time exploring numerically how
details of the short-time instability predictions impact t
emergence of ILM’s at longer times.

The next section presents the modulational stability ana
sis of the uniform mode in the presence of a demagnetiza
field. The detailed equations are given in the Appendix.
Sec. III, the analytical results are discussed and compare
numerical MD simulations. Since only the demagnetizat
part of the dipole-dipole field is considered in this 1D mod
it is possible to shift the uniform mode above or below t
dispersion curve and hence characterize all relative posit
that can arise in a three-dimensional crystal.25 The differ-
©2003 The American Physical Society03-1
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ences in the modulational instability characteristics of
three cases for the short-time scale are compared to the l
time evolution of ILM’s. Three fundamentally different cas
are identified: quasiperiodic ILM’s occur for no gap, trave
ing ILM’s that decelerate occur when the uniform mode
inside the linear spin-wave spectrum, and finally catastrop
ILM production occurs when there is a spectral gap. T
conclusions are given in Sec. IV.

II. INSTABILITY OF THE UNIFORM MODE

A. Analysis

The modulational instability of the uniform mode for a
antiferromagnetic chain with easy-axis anisotropy has b
investigated in Ref. 21. It is instructive to build on that stu
and to examine how the addition of the demagnetizing fi
alters the nonlinear dynamics. Rather than consider the
expression for the dipole-dipole interaction, only the part t
makes a finite sample different from an infinite one is int
duced below. To simplify the analysis further only ellipsoid
sample shapes with the symmetry axis parallel to the e
axis will be considered so that the two spin-wave branc
remain degenerate.

The simplest model Hamiltonian for such an antiferr
magnetic spin chain, which includes information abo
sample shape, is

H52J(
n

Sn•Sn112D(
n

~Sn
z!2

2
1

2

~gmB!2

V (
n,n8

Sn•NJ•Sn8 , ~1!

whereSn is the dimensionless classical spin vector on siten,
J is the antiferromagnetic exchange constant,D the single-
ion uniaxial anisotropy constant,g the spectroscopic slitting
factor,mB the Bohr magneton,V the sample volume, andNJ
denotes the demagnetization tensor. Here bothD and J are
positive and

NJ5S N' 0

N'

0 Nz

D 2
4p

3
IJ, ~2!

where the demagnetization factorsN' , Nz satisfy the added
constraint 2N'1Nz54p, and depend on the shape of th
crystal.

For this classical system, each spin moves in the effec
magnetic field produced by its two neighbors, the on-s
anisotropy and the sample shape. The effective magn
field at lattice siten is

g H n
eff522

J

\
~Sn211Sn11!12

D

\
Sn

zẑ2
M0g

S
NJ •^S&,

~3!

whereM0 is the sublattice magnetization andg is the gyro-
magnetic ratio. Here
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Sm ,

where the indexm goes over both sublattices. Note that
equilibrium atT50 K, ^S&50.

In this form, the respective roles of the on-site and d
magnetization terms become more apparent. Whereas th
site field at siten depends only on the spin at that site, t
demagnetization field at siten depends on the average ov
all spins. Thus, the Hamiltonian, given by Eq.~1!, incorpo-
rates both wavelength limits of the anisotropic interactio
The dynamics is given by the torque equation

dSn

dt
5gSn3Hn

eff . ~4!

With circularly polarized variables,sn
65(Sn

x6 iSn
y)/S, the

equation of motion for thenth site becomes

i
dsn

1

dt
522

JS

\
@~sn21

z 1sn11
z !sn

12~sn21
1 1sn11

1 !sn
z#

12
DS

\
sn

zsn
11gM0~N'24p/3!sn

z^s1&

2gM0~Nz24p/3!sn
1^sz&. ~5!

The first of the last two terms in Eq.~5! describes the dy-
namic demagnetization effect that gives rise to the freque
gap between the uniform mode and long-wavelength s
waves. Only for the uniform mode is this term different fro
zero. In contrast, the last term in Eq.~5! has an equal effec
on all modes, because the average is over thez components.
Its contribution appears at large amplitudes.

Here the focus in on the stability of the nonlinear unifor
mode, and the details of the analytical perturbation analy
are presented in the Appendix. The uniform mode freque
is given by Eq.~A4!. The perturbation variables, which me
sure the deviation of the spin system from the uniform mo
are introduced in Eq.~A7!, then a linearized system of evo
lution equations for these perturbation variables is obtain
see Eq.~A10!. The precise form ofTJ, the Jacobian matrix
whose eigenvalues determine the stability of the unifo
mode, is given in Eqs.~A11! and~A12!. Due to the presence
of the demagnetization field,TJ depends on a dimensionles
sample-shape parameter defined as

b[~gmBM0/4JS!~N'24p/3!, ~6!

which measures the ratio of the demagnetization energ
the exchange energy.

The eigenvaluest (n) of TJ determine the stability of the
uniform mode. We define the stability coefficientsl (n) as

2JS@ il~n!#[ i t ~n! . ~7!

The stability of the uniform mode requires the imagina
parts of alll (n) to vanish. With the stability parameter ass
ciated with the most unstable eigenvalue identified asl,
solving Eq.~A14! gives the solution forl, Eq. ~A15!.
3-2
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B. MD simulations

To make contact with the analytical predictions at sh
times as well as to examine the longer-time dynamics of
nonlinear system after ILM formation, MD simulations a
used. For this purpose, the classical dynamics of a chai
1024 spins is simulated, using the Runge-Kutta algorit
~fourth order! to numerically solve the equations of motio
The initial configuration of the spins is that of a unifor
mode of amplitudef. This means that the two sublattices a
given transverse amplitudes off and 2a f , respectively. A
small-amplitude noise field~0.004% of the exchange field! is
added at each iteration~256 times per uniform mode period!
to simulate the effects of random spin fluctuations. T
noise is important in that it seeds the instability process;
noise level fixes the initial amplitudes of theqÞ0 spin-wave
modes. A small Landau-Lifshitz damping term20 is incorpo-
rated in the simulations to stabilize the MD simulation r
sults. The accuracy of the constraint of constant spin len
is checked after each iteration and found to be on the orde
1027. Periodic boundary conditions are used througho
Much of the analysis requires reciprocal space informati
which is extracted by using the fast Fourier-transform al
rithm on the discrete spin-site data.

III. ANALYTICAL RESULTS AND COMPARISON
WITH MD SIMULATIONS

A. Initial modulational instability and the frequency gap

1. No spectral gap„bÄ0…

This case represents a uniform mode, which lies on
spin-wave dispersion curve and has been discussed in~I!.
Here the intent is to present real and imaginary parts of
stability coefficientl, defined in Eq.~7! to establish the con
nection with the frequency gap cases to be considered
sequently. MD simulations are used both to confirm the
ear stability analysis at short times and also to show
departure of the system from the predictions of the pertur
tion analysis at times close to ILM formation.

The main features of the instability forb50 are high-
lighted in Fig. 1~a!, wherel is plotted as a function of wave
vector for various amplitudesf. The linear case (f 2!1) is
the dashed curve, and reproduces the linear spin-wave
persion curve. Note that the linear AFMR frequency is su
tracted off in this representation sincel measures a fre
quency relative to that of the uniform mode. Asf increases,
all plane-wave modes shift to lower frequencies relative
the uniform mode, and at long wavelengths,l becomes
imaginary. The imaginary part ofl, represented by the dot
ted curves, identifies the important modulational wave v
tors associated with the instability.l vanishes asQ→0 in
accord with Eq.~A18!, and it attains its maximum value at
wave number that increases monotonically with the unifo
mode amplitudef.

Figure 1~b! depicts the spatial Fourier spectrum of t
transverse spin component from an MD simulation at t
different times before the emergence of ILM’s. The initi
uniform mode amplitudef 50.2 and the wave number o
maximum growth is found to beQmax50.085qBZ . For f
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50.1 ~not shown!, Qmax50.041qBZ . Both values are in good
agreement with the analytical prediction@see Fig. 1~a!#. An
additional feature in Fig. 1~b!, beyond linear stability analy-
sis, is the emergence of peaks at62 Qmax at times close to
the appearance of ILM’s~dotted line!. At this point the sys-
tem has diverged from the analytical predictions.

Plotting the logarithmic amplitude of the fastest growin
spin wave as a function of time forf 50.1 and 0.2 reveals
that the growth is indeed exponential at early times and
growth rate increases with increasingf, in accord with the
analytical result. Again, at times close to the emergence
ILM’s, the exponential growth of the modulation saturate

2. Spectral gap„bË0…

The uniform mode is now shifted to lower frequenci
relative to the spin waves, see Eqs.~A5! and ~A6!. Thus,
effectively there is a discontinuity in the dispersion curve
q50. This regime characterizes a flat platelike sample.

Figure 2~a! presents the real and imaginary parts ofl, the
stability parameter, plotted versus the wave number forb5
20.2. Shown is the small-amplitude dispersion cur
~dashed line! associated with the linear spin waves and a
the modulation curves for three different amplitudesf of the
uniform mode. Subsequently these modulations on the
cited uniform mode will be called nonlinear spin wave

FIG. 1. ~a! The real and imaginary parts of the stability coef
cient l versus modulation wave vectorQ for b50. The real part
represents the frequency of spin waves minus the AFMR freque
and the imaginary part gives the growth rate. The figure shows th
values for the uniform mode amplitudef. The dashed trace is th
linear dispersion curve. The other traces correspond tof 50.2 and
0.4. The imaginary part ofl is represented by dotted lines, and th
real part by solid lines.~b! Modulation amplitude versus wave vec
tor. MD simulation results for a chain of 1024 spins. A unifor
mode with f 50.2 is excited att50. The plots show the spatia
Fourier components at timest5150 and 200 AFMR periods~solid
and dotted lines, respectively!. Sidebands at a characteristic wav
number emerge~note the logarithmicy axis!.
3-3
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ENGLISH, SATO, AND SIEVERS PHYSICAL REVIEW B67, 024403 ~2003!
There are several clear differences in the figure when c
pared to theb50 cases shown in Fig. 1. Now there is
discontinuity in the linear dispersion curve atQ50, signified
by l(Q→0).0. As f increases, the frequency difference b
tween the nonlinear spin waves and the uniform mode
creases~solid curves!, until at the critical amplitudef crit , the
lowest nonlinear spin-wave frequency becomes coincid
with the uniform mode. Here the real part ofl vanishes, the
imaginary part appears~dotted curve!, and an instability de-
velops. In the range 0< f , f crit , the frequencies of all spin
waves remain real and the uniform mode is stable.

The Q dependence of the growth rate@ Im(l)#, shown by
the dotted curves in Fig. 2~a! for f . f crit , is quite different
from the b50 cases. Contrary tob50 where the growth
rate is sharply peaked at a particular nonzero wave numb
fairly flat Q dependence appears extending all the way
Q50. For f sufficiently large, only a shallow peak emerg
at nonzeroQ on this broad background.

The spatial Fourier components of the MD simulation
this case are shown in Fig. 2~b! for two times prior to the
development of spatial localization (t5100 and 150!. Here
time is measured in units ofTAFMR for the caseb50. The
distribution of spin waves is seen to extend fromQ50 to a
cutoff Qc( f ) consistent with the analytical result~marked in
the figure with vertical lines!.

In order to produce a modulational instability it is nece
sary to overcome the frequency gap created by the dem

FIG. 2. ~a! The real and imaginary parts ofl versus modulation
wave vectorQ for b520.2. The spin-wave dispersion curves
the presence of a demagnetization field are displayed for four va
of the AFMR amplitudef. The linear dispersion curve~dashed line!
has a gap atQ50, which decreases asf increases (f 50.2). The
stability coefficient becomes imaginary for someQ ~dotted lines! at
f 50.35 and 0.40. In contrast to Fig. 1~a!, now the imaginary parts
extend all the way toQ50. ~b! Modulation amplitude versus wav
vector at timest5100 ~solid line! and t5150 periods~dotted line!
for f 50.34. The cutoff wave number isQ50.051, in good agree
ment with the analytical prediction from~a! ~vertical lines!.
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netization field and this depends on the amplitude. Figur
quantifies this statement, by demonstrating exactly wher
gap in the stability region of the~f,Q! plane appears asb
becomes negative. In this figure the lines separating reg
of stability and instability are displayed. These lines are
fined by the equationl( f ,Q)50. Shown in the figure are the
instability regions forb50 ~solid line!, 20.1 ~dot-dashed
line!, and 20.2 ~dotted line!. For both valuesA51 @Fig.
3~a!# and 2 @Fig. 3~b!# of the dimensionless anisotropy pa
rameter, the region of instability shrinks asb is decreased
from zero. For sufficiently smallf and anyA the uniform
mode is stable for all modulation wave vectors. ForA51, we
see an instability ‘‘bubble’’ centered atQ50 for all b,
whereas forA52, a uniform mode of sufficient amplitud
becomes unstable to all wave numbersQ.

Figure 4 shows the amplitude threshold for the instabi
f crit , as a function of the demagnetization factor, obtain
both from analytical results and MD simulations. In th
simulations, the prefactor (gmBM0/4JS) is set to 1 in Eq.
~6!. The amplitudef crit is the smallest value for which insta
bility occurs. Analytically it is defined by the equatio
l( f crit ,Q→0)50, which is solved numerically to yield
f crit(b). The demagnetization factorN' ranges from 4p/3 to
0, corresponding to a sphere and a disk, respectively.
correspondingb goes from 0 to2 1

3 . The numerical data
represented by the open circles agrees nicely with the
dicted curve. The small offset is due to the inclusion of we
damping in the simulations. We see that asb decreases, the
critical amplitudef crit increases. This means that as the u
form mode moves further away from the spin-wave band~to

es

FIG. 3. Regions of modulational instability for the uniform
mode in the~f,Q! plane whenb<0. The labels S and U identify
stable and unstable regions in parameter space.~a! The anisotropy
parameterA51. Solid line,b50; dot-dashed line,b520.1, and
dotted line,b520.2. Asb becomes negative the uniform mode f
sufficiently small amplitude becomes stable to allQ. The largeQ
region is always stable regardless of the spin-wave amplitude~b!
The anisotropy parameterA52. Now the uniform mode with large
amplitude becomes unstable to perturbations of any wave vect
3-4
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MODULATIONAL INSTABILITY O F . . . II . . . PHYSICAL REVIEW B 67, 024403 ~2003!
lower frequencies! it becomes increasingly difficult to mak
the uniform mode unstable.

Consider the case where the uniform mode is excited
increasingly large amplitude by an external driver. The u
form mode breaks up when it reaches the threshold am
tude f crit and hence saturates. The energy in the unifo
mode just prior to breakup depends on the demagnetiza
factor (b,0), as shown in Fig. 4, hence, the smallerb, the
larger the energy in the uniform mode, and the more ene
that can be transferred into emerging ILM’s when the ins
bility occurs.

3. Second-order Suhl instability„bÌ0…

For a rod-shaped sample (b.0), the uniform mode is
shifted up into the spin-wave spectrum and becomes de
erate with a subset of spin-wave modes. For the 1D c
there are two isolated points atQ56qdeg where this occurs.
The analytical results are shown in Fig. 5~a! where the real
and imaginary parts of the stability parameterl are plotted
for b50.2. The dashed trace represents the linear disper
curve, and the solid and dotted traces are the real and im
nary parts ofl for f 50.4. Note that the instability region i
very asymmetric aboutqdeg, and highly oriented towards
larger q values. If damping is included in the equations
motion then an amplitude threshold appears. These re
illustrate the second-order Suhl instability for an antifer
magnet and extend the analysis of Ref. 18. The corresp
ing MD simulations shown in Fig. 5~b! demonstrate that the
modulational instability does indeed populate spin wa
near qdeg. The figure shows the Fourier transform at tw
times, as measured in units ofTAFMR for the caseb50, and
t5150 and 300 for an initial uniform mode amplitude off
50.2. By t5300 the amplitudes of the degenerate s
waves have grown appreciably, as evidenced by the em
gence of nonlinear spatial harmonics. With continued grow
these highly excited spin waves quickly become modulati
ally unstable themselves.

The regions of stability and instability are mapped out
Fig. 6, where the amplitude of the uniform mode is plott
versus the modulation wave number. Two values ofb50.1
~solid line! and 0.2~dotted line! display the systematics. In
Fig. 6~a!, A51, and in Fig. 6~b!, A52. For small f, the
instability shrinks to two points in reciprocal space,6qdeg.

FIG. 4. The critical amplitudef crit as a function ofb. The pref-
actor in Eq.~6! is set to 1 in the MD simulations sob ranges from
2

1
3 to 0. The solid line identifies the analytical curve and the op

circles are MD simulation results. The simulations yield sligh
higher values due to the presence of weak damping.
02440
to
i-
li-

on

y
-

n-
se

on
gi-

f
lts
-
d-

s

r-
h
-

Sinceqdeg depends on the position of the uniform mode w
respect to the spin-wave band, it will also depend both ob
andA, as seen in the figure. Note that for anyb.0 and for
both values ofA, there exists a region of stability in th
neighborhood ofQ50, separating the two instability re
gions. The region of instability becomes ever more asymm
ric with respect to6qdeg as f increases.

B. Short-time pattern formation and long-time-scale ILM
production signatures

1. Quasiperiodic ILM’s for bÄ0

Figure 7 shows the time evolution of the energy at ea
site in the form of a density plot of spin energy~gray scale!
as a function of spin site and time. Dark shades repres
areas of high energy. Att50 the uniform mode is excited
with a specific amplitude off 50.2 ~uniform shading over all
sites!. After about 200TAFMR a regularly spaced train of in
cipient ILM’s emerges. After some additional time, on th
order of 100 periods, the spatial phase coherence of the
riodic train of ILM’s is lost.

The details of the modulational instability process gove
the initial spacing of incipient ILM’s in the lattice since th
characteristic length scale of a pattern is often set by
most unstable wavelength found in the instability.30 Figure
8~a! shows the amplitude distribution att5285TAFMR in the
early stages of ILM formation. Here the amplitude, whi
shows roughly a Gaussian envelope, is plotted on a lin

n

FIG. 5. ~a! The real and imaginary parts of the stability coef
cient l versus modulation wave vectorQ for b50.2. The linear
uniform mode is now inside the spin-wave band, as evidenced
the negative frequencies at smallQ in the linear curve~dashed
trace!. For f 50.4 the imaginary part ofl is represented by dotted
lines, and the real part by solid lines.~b! Modulation amplitude
versus wave vector. MD simulations show the growth of spin wa
that are near frequency coincidence with the AFMR. The solid a
dotted traces show the spatial Fourier transform taken att5150 and
300 periods, respectively.
3-5
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ENGLISH, SATO, AND SIEVERS PHYSICAL REVIEW B67, 024403 ~2003!
scale. Two higher harmonic peaks can clearly be discerne
was already shown in Fig. 1~b! that when the first spatia
Fourier component had sufficient amplitude, second
peaks at twice the predicted wave number appeared. In
eral spatial harmonics are generated at integer multiple
the initial wave number. These spatial harmonics continu
grow until the incipient ILM’s emerge. The resultingq-space
distribution represents a reciprocal lattice with spac
Qmax50.085qBZ in agreement with our analytical predic
tions.

FIG. 6. Regions of modulational instability for the uniform
mode in the~f,Q! plane whenb.0. The labels S and U identify
stable and unstable regions in parameter space.~a! The anisotropy
parameterA51. Solid line,b50.1, and dotted line,b50.2. Asb
becomes positive the uniform mode becomes stable at all am
tudes for smallQ. However, the uniform mode even for very sma
amplitudes becomes unstable to a specificQ. ~b! The anisotropy
parameterA52. The results are similar to~a!.

FIG. 7. Time evolution of the uniform mode energy dens
distribution in real space forb50. f 50.2 att50. In this gray scale
dark shades represent areas of high energy. The large-amp
uniform mode is stable~uniform shading! until about att5200. It
then breaks up into spatially periodic ILM’s but this spatial coh
ence is lost at long times.
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Figure 8~b! shows the real-space picture for the same M
simulation taken att5285. This lattice spacing depends o
the initial amplitude of the uniform mode. In particular, fo
f 50.1 the ILM spacing is roughly twice as large as forf
50.2, sinceQmax is about half as large. At these short tim
the analytical predictions agree with the simulation result

2. Threshold for the creation of ILM’s
and localized spin flops forbË0

For the case of a frequency gap the MD simulations g
rise to a catastrophic production process. Typical results
shown in Fig. 9. Again, the gray scale represents the ene
plotted as a function of spin site versus time. From the r
dom noise a single initial region of localization forms
around t5175 periods. The amplitude of this ILM grow
very quickly, taking energy from the rest of the lattice, a
then very quickly it divides into a number of strongly loca
ized branches. For sufficiently large negative values ofb, as
shown here, so much energy rushes into the region occu
by the ILM that many of these branches represent locali
spin flops. In this arrangement a few of the spins on o
sublattice flip over into a locally canted ferromagnetic a
rangement with respect to their neighbors, thus creatin
dynamic point defect which is nearly stationary. Spin-wa
packets are emitted to either side of these high-energy t
trajectories.

To demonstrate that during the ignition process b
ILM’s and dynamic spin defects are produced, thez compo-
nent of the spins on the large-amplitude sublattice are ex
ined at different times. Thez component of spins on the othe
sublattice does not change sign. Figure 10~a! illustrates that
the spins in the regions of high energy~black lines in Fig. 9!

li-

de

-

FIG. 8. ~a! The Fourier spectrum of the transverse spin amp
tude versus modulation wave number fort5285. The reciprocal
lattice of ILM’s with a Gaussian-like envelope is clearly visible.~b!
Spin energy versus spin site revealing the periodic array of ILM’s
early times.
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flip through the plane of symmetry. This occurs aftert
5190 periods. Initially~at aroundt5180 periods) localiza-
tion begins in one region of the spin chain as shown in F
10~a!. The center of the initially broad ILM grows in strengt
@the dashed line in Fig. 10~a!# while the wings over a large
lattice region decrease. Att5190 periods the center contin
ues to accumulate energy from the lattice wings, causin
few sublattice spins at the center to flip over and align p
allel with their neighbors~dotted line!. These neighboring
spins on the other sublattice also precess at increased a
tude but never so much as to flip. A small amount of mixi
between the~1! and~2! modes is observed. Furthermore,
is found that the transverse spin component of a given s
remains very nearly out of phase with that of its neighbors
the other sublattice, even though the phase now va
throughout a sublattice. Thus the situation can be consid
the dynamic localized analog of the spin-flop transition o
served in antiferromagnets when one of the uniform mode
driven to zero frequency with an applied dc magne
field.28,31

Even more interesting is the slightly longer-time evoluti
of thez component of the sublattice spins. In Fig. 10~b! thez
components are plotted for timet5300 periods. By now all
of the strongly localized features shown in Fig. 9 are ass
ated with a spin flop and represent a stationary point def
With time, some of these point defects evolve back into
sharply localized ILM and thez-component spikes shrin
back to positive values. However at the time shown here
central region of Fig. 10~b! represents a very large defec
encompassing many spin sites. Its energy came from
plane-wave excitations, which have now essentially dis

FIG. 9. Time evolution of the uniform mode energy dens
distribution in real space forb520.2. The initial AFMR amplitude
is f 50.34, just above threshold for theA51 case. In this gray scale
dark shades represent areas of high energy. Initially only one b
ILM forms in the entire lattice of 1024 spins. Energy is rapid
transferred from the rest of the lattice to this region and the resu
excitation breaks up into a number of strongly localized and ne
stationary dynamic defects represented by the nearly parallel b
trajectories. The fact that these trajectories converge indicates
these dynamic defects attract each other. The numerous faint lin
645° indicate that spin waves are also emitted from this hig
excited region.
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peared. These dynamic defects appear to act as black h
Even for an initial uniform mode amplitude only slightl

abovef crit , the process of localization for this case happe
over a very short-time scale in a burstlike phenomenon
reciprocal space, this burst manifests itself as a very sud
transition from the excitation of spin waves to the bro
q-space distribution characteristic of ILM formation. Forb
,0, even at these short times the analytical results can
predict the dramatic MD simulation findings.

3. Beyond the Suhl instability: ILM’s forbÌ0

Exploring the intermediate- and long-time behavior of t
spin system when the uniform mode is inside the spin-w
band also has produced some interesting insights. Trave
ILM-like trains can emerge from the second-order instabil
of coincident spin waves. A typical MD simulation for th
case of a resonant interaction between the uniform mode
the spin-wave branch is shown in Fig. 11. Hereb50.2. The
time evolution of the energy at each site in the form of
energy density plot~gray scale! is presented as a function o
spin site versus time. A standing-wave pattern forms fr
the uniform mode at about 250 periods. This pattern is du
the excitation of6qdeg. Almost immediately this is replaced
by a diagonally striped pattern in Fig. 11. ILM’s traveling
the group velocity emerge out of this distribution. Within

ad

nt
ly
ck
at
at

y

FIG. 10. Time evolution of thez component of the larger-
amplitude sublattice near the time of localization for the case of
energy gap.~a! The z component of the larger-amplitude sublattic
at three times:t5180 ~solid!, 185 ~dashed!, and 190~dotted!. Far
from the excitation thez component grows with increasing tim
indicating smaller excitation energy here. In the excitation regi
the z component decreases and the energy grows with increa
time. Finally for t5190 the dotted trace drops belowsz50, indi-
cating that the spin has flipped through the plane of symmetry.~b!
Plot of thez components for the different lattice sites as in~a! but at
t5300, after the creation process is completed. Now there are e
regions that have undergone spin flips. Each of the localized reg
of high energy shown in Fig. 9 corresponds to a localized spin fl
which requires more energy than does an ILM.
3-7
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ENGLISH, SATO, AND SIEVERS PHYSICAL REVIEW B67, 024403 ~2003!
few 100 periods as they become strongly localized, the I
quickly decelerate, and at long times become nearly stat
ary large-amplitude ILM’s. This observation is consiste
with the early findings from numerical studies on movi
ILM’s. 32 Also see Ref. 26, where the trapping of ILM’s
connected to the lattice discreteness.

It is instructive to examine the double Fourier transfo
of the transverse spin variables over a specific time inte
of Fig. 11 to follow the excitation inq space. Figure 12
shows the population of normal modes, i.e., points in (v,q)
space, as well as local modes, i.e., straight lines in (v,q)
space, for two different time windows of 200-periods wid
In Fig. 12~a!, the time window starts att5300. Some energy
remains in the uniform modes but most has been transfe
to the spin excitation atq5qdeg and along the incipient tan
gent line to the spin-wave dispersion curve at this point. T
signature in (v,q) space is identified with the initial travel
ing spin-wave packets, which are evolving into movi
ILM’s. Our studies of such reciprocal space plots indica
that the initial traveling ILM’s always avoid overlap with th
spin-wave band, i.e., the tangent line is shifted with resp
to the dispersion curve.

To illustrate the evolution inq space, Fig. 12~b! shows the
results starting att5800 periods. Here the entire norma
mode spectrum is populated and in addition, at the bottom
the spin-wave spectrum three ILM’s appear. Two of the
local modes are moving since the linear excitation patt
has finite slope, while the lowest-frequency ILM is statio
ary. All three of these line features have large localized tra
verse spin amplitude. The evolution of the ILM dynamics
q space is as follows: after the shifted ILM tangent line
formed at6qdeg then, because of the lattice discreteness,
center position moves down in frequency with the tang
line following the dispersion curve at that point. At slo

FIG. 11. Time evolution of the uniform mode energy dens
distribution in real space forb50.2. The initial AFMR amplitude is
f 50.2 for theA51 case. In this gray scale dark shades repres
areas of high energy. The uniform mode is stable until about
5200 after which it breaks up into a standing-wave pattern ass
ated with the degenerate spin waves. This standing-wave patte
then replaced by the diagonal stripes, due to the modulationa
stability of these spin waves. Traveling ILM’s form, decelerate, a
become large-amplitude stationary ILM’s.
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enough speed it finally appears completely below the disp
sion curve.

Now lets examine Fig. 12~a! in more detail and make the
connection to the next step beyond the Suhl instability. D
ing the first stage, the uniform mode transfers energy to
coincident spin waves at6qdeg. Spatial harmonics appear a
62 and63qdeg. Thus at short times, a nonlinear standin
wave pattern is created. In the second stage, ILM’s eme
due to a secondary instability. In this stage, the spin wave
6qdeg become modulationally unstable.21

To isolate this second instability we examine the line
perturbation analysis of the specific case where the in
large-amplitude excitation is not atq50 but instead atq5
6p/8a. ~The transfer of energy fromq50 to finite q is
already considered to have taken place with one-half of
initial energy at each location.! Figure 13 illustrates this sec
ondary instability, showing analytical results for the real a
imaginary parts ofl, for a spin wave atq5p/8a, one of the

nt

i-
is

n-
d

FIG. 12. Fourier-space representation (v,q) of the time evolu-
tion of the transverse spin deviation. The parameters are the sam
in Fig. 11. ~a! t5300, Dt5200: the excitation is transferred from
the uniform mode to the spin waves with the same frequency. Th
large-amplitude spin waves are unstable and excite resonant tr
ing ILM’s near6qdeg, whose signature is the density in the shifte
tangent to the spin-wave band.~b! t5800, Dt5200: the resonant
traveling ILM’s at large wave vector lose energy due to the latt
discreteness and evolve into the nearly stationary ILM’s with f
quencies below the dispersion curve shown here.
3-8
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MODULATIONAL INSTABILITY O F . . . II . . . PHYSICAL REVIEW B 67, 024403 ~2003!
q56p/8a pair, each with amplitudef 50.15. The dashed
line represents the linear dispersion curve. The solid and
ted traces identify the real and imaginary parts of the sta
ity coefficient l. The instability region is characterized b
two peaks in the imaginary part appearing on either side
q5p/8a. This means that spin-wave modes of those t
wave-number bands will rapidly grow in amplitude. The
~real! frequencies are determined by the solid line, which
tangential to the dispersion curve atq5p/8a. Thus, the
original large-amplitude spin wave will become modulatio
ally unstable against certain modes that lie on the solid
in Fig. 13.

To examine the long-time behavior of this case, at50
spin configuration with a pair of excitedq56p/8a spin
waves forb50 has been used as the initial condition for t
MD simulations. The results are shown in Fig. 14. Again t

FIG. 13. The real and imaginary parts of the stability coefficie
l versus modulation wave vector for a nonlinearly excited s
wave atq5p/8a. The dashed line represents the linear dispers
curve. For theq5p/8a spin wave of amplitudef 50.15 the solid
and dotted traces are the real and imaginary parts ofl, respectively.
Note that the solid trace is tangential to the linear dispersion cu
at q5p/8a.

FIG. 14. Time evolution of theq56p/8a mode energy density
distribution in real space forb50. The initial amplitude of the
excited pair of spin waves atq56p/8a is f 50.15 for theA51
case. In this gray scale the dark shades represent areas of
energy. The standing-wave pattern is stable until aboutt5400. It
then breaks up into the diagonal stripes indicating traveling ILM
due to the modulational instability of these spin waves. Th
ILM’s decelerate. The dynamics is qualitatively similar to th
shown in Fig. 11.
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amplitude of each of the two spin waves isf 50.15 to cor-
respond to the previous case in which the uniform mode w
initially excited to f 50.20. It takes about 350 periods befo
the initial standing-wave configuration breaks up into mo
ing ILM’s, and these ILM’s decelerate much more slow
than for theq50 example shown in Fig. 11, indicating tha
the additional Fourier components produced in the unifo
instability enhance ILM production. However, the final lon
time ILM’s shown in Fig. 14 have roughly the same profi
as those shown in Fig. 11.

IV. CONCLUSION

The three cases (b50, b,0, b.0) examined here ini-
tiate three distinct types of instabilities, according to the cl
sification scheme used in the area of pattern formation.30 The
Suhl case,b.0, leads to a Type-I instability, where the in
stability appears at a nonzero wavelength, and then, asf is
increased, a surrounding band of unstable wavelengths
velops. The no gap case,b50, exhibits a Type-II instability,
characterized by the growth rate of waves peaked at a n
zero wave number, but extending down toq50, where it
goes to zero. Finally, the gap case,b,0, exhibits a Type-III
instability, where the maximum growth rate occurs atq50.
These three types of instabilities are schematically rep
sented in Fig. 7 of Ref. 30. In our model, all three of the
pattern-forming instabilities can be encountered by vary
the shape parameterb through zero. It should also be note
that numerical analysis on a system with biaxial on-site
isotropy, for which a perturbation analysis has not been c
ried out, shows qualitatively similar instability behavio
Thus the modulational instability features discussed here
not unique to the uniaxial spin system.

We have extended the modulational instability analysis
the uniform mode for antiferromagnetic chains with on-s
easy-axis anisotropy described in~I! to include the effect of a
shape-dependent demagnetization factor. The purpose
been to explore the influence of the effective spectral gap
the linear dispersion curve atq50 on the modulational in-
stability properties of the nonlinear system and hence on
production properties of ILM’s. Linear stability analysis ha
been used to identify the instability regimes for different v
ues of the demagnetizing factorb, and three qualitatively
different signatures have been established. These analy
results, which can only be valid at short times, are shown
connect in a general way with the corresponding long-ti
evolution of the system as determined by MD simulatio
The findings are as follows:~i! For b50, the most unstable
wave numberQ in the modulational instability regime dete
mines the spacing of the incipient and nearly stationary IL
lattice.~ii ! For b,0, the resulting gap in the spin-wave spe
trum produces a spin-deviation instability threshold. T
larger this gap, the larger the energy that can be stored in
uniform mode before the instability takes hold. MD simul
tions show that for an energy gap, ILM production is e
tremely fast at the particular nucleation site and so mu
energy is drawn from the rest of the lattice that both en
getic ILM’s and even more energetic point defects consist
of dynamic localized spin flops are formed. These stron
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ENGLISH, SATO, AND SIEVERS PHYSICAL REVIEW B67, 024403 ~2003!
localized excitations are pinned by the lattice discreten
and remain nearly stationary.~iii ! For b.0, the uniform
mode is unstable only to the degenerateqÞ0 spin waves.
These in turn are also unstable and drive higher-order in
bilities, which ultimately lead to moving ILM’s. As thes
grow in amplitude, become narrower, and decelerate t
oscillate at lower frequencies. Interestingly, although ILM
form in all three regimes, the long-time behavior in each c
looks qualitatively different. This study shows that many
these differences are a straightforward consequence of v
tions in the modulational instability process already pres
at short times.
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APPENDIX: MODULATIONAL STABILITY ANALYSIS

1. Nonlinear uniform mode

The stability analysis for the uniform mode described
Refs. 21 and 26 is modified by the presence of sample sh
as represented by the Hamiltonian in Eq.~1!. The analysis
below assumes bothg51 and\51. Since the interest is in
the stability of the uniform mode~the antiferromagnetic
resonance!, the sublattice amplitudes can be written as

H s2n
1 ~ t !5 f e2 ivt; s2n

z 5A12 f 2,

s2n11
1 ~ t !5ge2 ivt; s2n11

z 52A12g2.
~A1!

Substituting these into Eq.~5! yields the two-coupled non
linear equations

5
f V52~122b! f ~12g2!1/2

1@~A13b! f 1~21b!g#~12 f 2!1/2,

gV522~122b!g~12 f 2!1/2

2@~A13b!g1~21b! f #~12g2!1/2,

~A2!

where the dimensionless frequencyV5v/2JS, the anisot-
ropy parameterA5D/J, and the shape parameterb are de-
fined in Eq. ~6!. Eliminating V from Eq. ~A2! gives a5
2g/ f since f and g cannot be chosen independently.a is
determined by solving

@21A22a211b~12a21!#~12a2f 2!1/2

1@21A22a1b~12a!#~12 f 2!1/250. ~A3!

Equation~A3! reveals thata will depend not only onf andA
as in~I!, but now also on the shape parameterb. From Eqs.
~A2! and ~A3!, the AFMR frequency is

V~ f !52~12a2f 2!1/21~A22a!~12 f 2!1/21b~12a!

3~12 f 2!1/222b@~12a2f 2!1/22~12 f 2!1/2#

~A4!
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Note that the first two terms of Eq.~A4! correspond to Eq.
~8! of ~I!, while the last two terms represent the effect of t
demagnetization field. Equation~A4! in the limit f 2!1 goes
over to the more familiar expression for the AFM
frequency,29,33 namely,

v~0!

2JS
5AA~A1412b!. ~A5!

For qÞ0, the last two terms of Eq.~5! vanish, these frequen
cies do not depend on sample shape, and the result is
same as in~I!:

v~qÞ0!

2JS
5@~A12!224 cos2~qa!#1/2. ~A6!

2. Perturbation analysis of the uniform mode

To investigate the modulational instability of the unifor
mode the perturbed spin amplitudes are written in the follo
ing general form:

5
s2n

1 ~ t !5~ f 1b2n1 iC2n!e2 ivt;

s2n
z 5~12 f 2!1/22F f

~12 f 2!1/2Gb2n,

s2n11
1 ~ t !5~g1b2n111 iC2n11!e2 ivt;

s2n11
z 52~12g2!1/21F g

~12g2!1/2Gb2n11 ,

~A7!

wheref, g, andv52JSV are related by Eqs.~A3! and~A4!,
the perturbations$bn% and $Cn% are real functions of time,
and only the linear terms in the perturbation variables
retained.

Requiring that this perturbed uniform mode again be
solution to the equations of motion, we insert Eq.~A7! into
Eq. ~5! and obtain the evolution equations for the perturb
tion variablesb2n , b2n11 , C2n , and C2n11 . Expanding
these variables in terms of their Fourier components give

S b2n

C2n
D5(

Q
S b0~Q!

C0~Q! Dei ~2nQa2vmt !, ~A8!

S b2n11

C2n11
D5(

Q
S b1~Q!

C1~Q! Dei @~2n11!Qa2vmt#, ~A9!

whereQ is the modulation wave vector. The resulting equ
tions of motion are

d

dt S b0~Q!

b1~Q!

C0~Q!

C1~Q!

D 52JSS 0 T12

T21 0 D S b0~Q!

b1~Q!

C0~Q!

C1~Q!

D ~A10!

with
3-10



@~21b!a2b#~12 f 2!1/2 2 cos~Qa!~12 f 2!1/2

MODULATIONAL INSTABILITY O F . . . II . . . PHYSICAL REVIEW B 67, 024403 ~2003!
T125H 22 cos~Qa!~12g2!1/2
2S 21b

a
2b D ~12g2!1/2J ~A11!

and

T215H @A1b2a~21b!#
f 2

~12 f 2!1/2 2
f g

~12g2!1/2cos~Qa!

22
f g

~12 f 2!1/2cos~Qa! 2FA1b2
21b

a G g2

~12g2!1/2

J 2T12. ~A12!
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Note that upon settingb50 in Eqs.~A11! and ~A12!, Eqs.
~6.9!–~6.13! of Ref. 26 are recovered. Incidentally, the m
trices ~A11! and ~A12! have to be augmented by anoth
term for Q50. This reflects the fact that spatially uniform
perturbations do not modulate the uniform mode, but sim
tune its amplitude and phase. Thus the form of the equat
for Q50 does not coincide with that for all otherQ values.

We are now in a position to determine the stability of t
uniform mode of amplitudef relative to spin-wave modula
tion of wave numberQ as a function of the shape parame
b. Equation ~A10! becomes an eigenvector equation w
nontrivial solutions only when

detul IJ2 iTJu50, ~A13!

where a normalized modulation frequencyl5vm/2JS is in-
troduced. This is the stability parameter defined in Eq.~7!.
Due to the vanishing diagonal entries ofTJ, Eq. ~A13! sim-
plifies to

detul2 IJ1T21T12u50. ~A14!

The real part ofl represents a frequency shift relative to t
uniform modeV, and the imaginary part ofl determines the
amplitude growth rate of the modulation of wave numberQ.
If l is real for allQ, no instability occurs.

Solving Eq.~A13! for l yields

l25~aC1Ba21!24E sin2~Qa!2@~aC1Ba21!22F

24~BC1G!sin2~Qa!#1/2, ~A15!

where

B52F1

2
~21b2ba21!A12Gg222a@~12 f 2!~12g2!#1/2

1
a21

2
~21b!22b~b12!1

1

2
ab2, ~A16a!
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C52F1

2
~21b2ab!A12G f 222a21@~12 f 2!~12g2!#1/2

1
a

2
~21b!22b~b12!1

a21b2

2
, ~A16b!

E5g f2@~12 f 2!~12g2!#1/2, ~A16c!

F5b~21b!~a211a22!

3@b~21b!~a211a22!2A~21b!~a221a2! f g

2Ab~ f 21g2!2A2~ f g!214~E221!#, ~A16d!

and

G5
1

4
~12a21!2b~b12!3„2~a21!2b~b121A f g!

14~A11!~a211a!g21a~A228!~ f g!2

14g2$A22@~12 f 2!~12g2!#1/2%…. ~A16e!

Note that bothF andG vanish forb50, so that Eq.~A14!
contains Eq.~19! of ~I! as a special case. In the sma
amplitude limit,

F14G sin2~Qa!5@~a21!2a21b~b12!#2@12sin2~Qa!#

>0, ~A17!

which ensures that the linear solutions for any value ofb are
real. Furthermore, in the limit ofQ→0, Eq.~A15! reduces to

l25~aC1Ba21!2@~aC1Ba21!22F#1/2, ~A18!

which is strictly positive forbÞ0. Thus, the factorF is
responsible for the discontinuity of the dispersion curve
Q50 for nonzerob.
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