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Modulational instability of nonlinear spin waves in easy-axis antiferromagnetic chains.
[I. Influence of sample shape on intrinsic localized modes and dynamic spin defects
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An indirect method of producing intrinsic localized mod#ésM’s) is to drive an unstable uniform mode to
large amplitude. In this investigation the intimate connection between the shape-dependent demagnetization
factor, the modulation instability, and ILM behavior is established. The stability of the antiferromagnetic
resonancéAFMR) against breakup into such ILM’s is shown to depend strongly on the frequency difference
between the linear AFMR and the long-wavelength limit of the spin-wave dispersion curve. This difference,
which stems from the long-range dipole-dipole interactions, depends on the demagnetization factor and hence
the sample shape. Here it is demonstrated initially with linear perturbation analysis and later with molecular-
dynamics simulations that the instability characteristics and ILM production properties depend strongly on the
sign and magnitude of the frequency difference. The simulations show that when the AFMR frequency is
coincident with the spin-wave band, a spatially coherent train of ILM’s appears, but this coherence is lost at
long times. When the AFMR frequency is inside the spin-wave band, the Suhl instability populates the
degenerate spin waves, whose subsequent modulational instability leads to traveling and decelerating ILM’s.
When the AFMR frequency is below the spin-wave band, a large-amplitude threshold for the instability
appears. Above this threshold ILM’s and localized dynamic spin flops occur, confined to specific lattice
regions.
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[. INTRODUCTION gives rise to an effective on-site spin anisotropy term but can
also shift the frequency of the uniform mode with respect to
A wide variety of periodic, nonlinear systems can supportthe rest of the spin-wave spectrdm?’ Since the dipole-

spatially localized excitations in addition to plane-wavedipole interaction between spins generates a shape-
ones!~® Such intrinsic localized mode#_M's) involve only ~ dependent demagnetization field that can only modify the
a few sites in perfectly periodic lattices, are nonintegrable AFMR frequency, an effective spectral gap in the linear dis-
and hence are outside the bounds of standard solitoRersion curve opens up at the zone center. This feature

theory®~8 For condensed-matter atomic lattices such ILM’s Should play an important role in the modulational instability

should occur on the nanoscale but how best to produce arfi'd hince in thehult!mgte production properties Ofr:LME'
detect these individual ILM's is still under investigation. !N this paper the intimate connection between the shape-

Present efforts focus on an indirect method, which involvesdependent demagnetization factor, the modulational instabil-

the modulational instability of the large-amplitude, nonIinear't.y’ and ILM behawor_ IS est_abhshed. T.O isolate th|s_ connec-
uniform mode against breakup into such excitatife4 tion, the same one-dimensiondlD) antiferromagnetic spin

In magnetism the modulation instability of a homoge- chain model described ifh) is considered, but now the shape

| litud : de h | his: dependence is included. The relative frequency position of
heous large-amplitude spin-wave mode has a long OY the uniform mode and the long-wavelength spin waves trav-

and it _'Slﬁlﬂfga"y referred to as the second-order Suhyjing glong the chain are varied by means of the sample
instability. In high power ferromagnetic resonance the gemagnetization field. The stability analysis for the resulting
uniform mode is made unstable against the exponentiglniaxial antiferromagnet is examined, and then these analyti-
grOWth of modulational Sidebands, when driven to Iargeca| results are Compared with mo'ecu|ar-dynam(m)
enough amplitudé?*’ however, because of the small ratio of simulation results. In this way it is possible to explore how
the magnetic-resonance frequency to the spin-wave banghe sample shape influences the modulational instability pro-
width the activation of this instability does produce long- cess, while at the same time exploring numerically how the
wavelength envelope solitons, but not ILM's. Recentdetails of the short-time instability predictions impact the
numericat??and experiment&f~?studies have shown that emergence of ILM’s at longer times.

antiferromagnets provide a natural habitat for ILM's, be- The next section presents the modulational stability analy-
cause of their relatively large antiferromagnetic-resonancsis of the uniform mode in the presence of a demagnetization
(AFMR) frequency, which essentially involves the geometricfield. The detailed equations are given in the Appendix. In
mean of the anisotropy and exchange fields. So far the an&ec. I, the analytical results are discussed and compared to
lytical and numerical studies of instabilities in antiferromag- numerical MD simulations. Since only the demagnetization
nets have focused on the particular case where the uniforpart of the dipole-dipole field is considered in this 1D model,
mode is coincident with the bottom of the spin-wave branchit is possible to shift the uniform mode above or below the
This study is described in Refs. 21 and 26, hereafter referredispersion curve and hence characterize all relative positions
to as (I). The inclusion of dipole-induced fields not only that can arise in a three-dimensional cryétalhe differ-
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ences in the modulational instability characteristics of the 1

three cases for the short-time scale are compared to the long- (9= N 2 S

time evolution of ILM’s. Three fundamentally different cases sm

are identified: quasiperiodic ILM’s occur for no gap, travel- where the indexm goes over both sublattices. Note that in
ing ILM’s that decelerate occur when the uniform mode isequilibrium atT=0K, (S)=0.

inside the linear spin-wave spectrum, and finally catastrophic |n this form, the respective roles of the on-site and de-
ILM production occurs when there is a spectral gap. Themagnetization terms become more apparent. Whereas the on-

conclusions are given in Sec. IV. site field at siten depends only on the spin at that site, the
demagnetization field at site depends on the average over

IIl. INSTABILITY OF THE UNIFORM MODE all spins. Thus, the Hamiltonian, given by E@), incorpo-
. rates both wavelength limits of the anisotropic interaction.

A. Analysis The dynamics is given by the torque equation
The modulational instability of the uniform mode for an
antiferromagnetic chain with easy-axis anisotropy has been d_Sn_ « Hef 4
investigated in Ref. 21. It is instructive to build on that study dt 7S Hy' @

and to examine how the addition of the demagnetizing field ] ) ) . o
alters the nonlinear dynamics. Rather than consider the fulfVith circularly polarized variabless, = (S +iSy)/S, the
expression for the dipole-dipole interaction, only the part thagduation of motion for theith site becomes
makes a finite sample different from an infinite one is intro- N
duced below. To simplify the analysis further only ellipsoidal i di: _23_3[(52 b s, )st (st st )s]
sample shapes with the symmetry axis parallel to the easy = dt fo-onol Tnal/en n-1"=n+1/"n
axis will be considered so that the two spin-wave branches DS
remain degenerate. YO o+ _ 7/t
The simplest model Hamiltonian for such an antiferro- 2 7 onon TyMo(NL = 4m/3)s(s™)
magnetic spin chain, which includes information about .
sample shape, is — YMo(N,—47/3)8; (7). )

The first of the last two terms in E@5) describes the dy-
_ ) _ )2 namic demagnetization effect that gives rise to the frequency
: ZJEn: S Sha DEn: (Sh) gap between the uniform mode and long-wavelength spin
) waves. Only for the uniform mode is this term different from
_ l (gus) D S, Ng s, 1) zero. In contrast, the last term in E¢) has an equal effect
2 V ! " on all modes, because the average is overzztb@mponents.
Its contribution appears at large amplitudes.
wheres, is the dimensionless classical spin vector onsjte  Here the focus in on the stability of the nonlinear uniform
J is the antiferromagnetic exchange constdhtihe single-  mode, and the details of the analytical perturbation analysis
ion uniaxial anisotropy constang,the spectroscopic slitting are presented in the Appendix. The uniform mode frequency
factor, ug the Bohr magnetorly the sample volume, and  is given by Eq(A4). The perturbation variables, which mea-
denotes the demagnetization tensor. Here libtand J are  sure the deviation of the spin system from the uniform mode,

’
N

positive and are introduced in EqA7), then a linearized system of evo-
lution equations for these perturbation variables is obtained,
N, 0 see EQ.(A10). The precise form off, the Jacobian matrix
N= N, _4_7TT ) whose eigenvalues determine the stability of the uniform
0 N 37 mode, is given in Eq9A11) and(A12). Due to the presence
z

of the demagnetization field, depends on a dimensionless

where the demagnetization factdys , N, satisfy the added Sample-shape parameter defined as
constraint N, +N,=4, and depend on the shape of the
oyeal P P B=(gusMo4IS(N, ~47f3), ®

For this classical system, each spin moves in the effectivghich measures the ratio of the demagnetization energy to
magnetic field produced by its two neighbors, the on-sitne exchange energy.
anisotropy and the sample shape. The effective magnetic

field at lattice siten is The eigenvalues,) of T determine the stability of the

uniform mode. We define the stability coefficients,) as

J D . Myyo ; —i
YHE=—22(S, 14§ 0)+2 7 S~ N(9), 2L wI= it @
(3) The stability of the uniform mode requires the imaginary
parts of all\ ) to vanish. With the stability parameter asso-
whereM, is the sublattice magnetization ands the gyro- ciated with the most unstable eigenvalue identified\as
magnetic ratio. Here solving Eq.(Al14) gives the solution foi, Eg. (A15).

024403-2



MODULATIONAL INSTABILITYO F... 1l... PHYSICAL REVIEW B 67, 024403 (2003

B. MD simulations

To make contact with the analytical predictions at short
times as well as to examine the longer-time dynamics of the
nonlinear system after ILM formation, MD simulations are
used. For this purpose, the classical dynamics of a chain of
1024 spins is simulated, using the Runge-Kutta algorithm
(fourth ordey to numerically solve the equations of motion.
The initial configuration of the spins is that of a uniform
mode of amplitudé. This means that the two sublattices are
given transverse amplitudes bfand — af, respectively. A
small-amplitude noise field.004% of the exchange figld
added at each iteratiqi256 times per uniform mode peripd
to simulate the effects of random spin fluctuations. This
noise is important in that it seeds the instability process; the
noise level fixes the initial amplitudes of tigez 0 spin-wave
modes. A small Landau-Lifshitz damping tefhis incorpo- ]
rated in the simulations to stabilize the MD simulation re- LU e
sults. The accuracy of the constraint of constant spin length 02 01 00 01 02
is checked after each iteration and found to be on the order of Q (n/2a)

10" 7. Periodic boundary conditions are used throughout.
Much of the analysis requires reciprocal space information, FIG. 1. (a) The real and imaginary parts of the stability coeffi-

which is extracted by using the fast Fourier-transform algo-ient\ versus modulation wave vect@ for 3=0. The real part
rithm on the discrete spin-site data. represents the frequency of spin waves minus the AFMR frequency,

and the imaginary part gives the growth rate. The figure shows three
values for the uniform mode amplitude The dashed trace is the
linear dispersion curve. The other traces corresponid=t6.2 and

0.4. The imaginary part of is represented by dotted lines, and the
real part by solid lines(b) Modulation amplitude versus wave vec-
tor. MD simulation results for a chain of 1024 spins. A uniform
1. No spectral gag =0) mode with f=0.2 is excited at=0. The plots show the spatial
gourier components at timés- 150 and 200 AFMR periodé&solid

and dotted lines, respectivelySidebands at a characteristic wave
gumber emergénote the logarithmig axis).

amplitude

Ill. ANALYTICAL RESULTS AND COMPARISON
WITH MD SIMULATIONS

A. Initial modulational instability and the frequency gap

This case represents a uniform mode, which lies on th
spin-wave dispersion curve and has been discussdt).in
Here the intent is to present real and imaginary parts of th
stability coefficient\, defined in Eq(7) to establish the con- _ .
nection with the frequency gap cases to be considered sub_-o'l(nOt shoyvr), QmaX_O'O_A'JqBZ' B_Ot_h value_s are in good
sequently. MD simulations are used both to confirm the lin-2dréément with the analytical predictigsee Fig. 1a)]. An

ear stability analysis at short times and also to show th&dditional feature in Fig. (b), beyond linear stability analy-
departure of the system from the predictions of the perturbaSiS: i the emergence ?f peaks®a? Qmay at times close to
tion analysis at times close to ILM formation. the appearance of ILM'&dotted ling. At this point the sys-
The main features of the instability fg8=0 are high- €M has diverged from the analytical predictions. _
lighted in Fig. 1a), where\ is plotted as a function of wave Plotting the logarithmic amplitude of the fastest growing
vector for various amplitudeg The linear caseff<1) is  SPIN wave as a function of time fdr=0.1 and 0.2 reveals
the dashed curve, and reproduces the linear spin-wave difiat the growth is indeed exponential at early times and the

persion curve. Note that the linear AFMR frequency is sub-9rowth rate increases with increasifgin accord with the
tracted off in this representation sinée measures a fre- analytical result. Again, at times close to the emergence of

quency relative to that of the uniform mode. Aicreases, ILM’s, the exponential growth of the modulation saturates.
all plane-wave modes shift to lower frequencies relative to
the uniform mode, and at long wavelengths,becomes 2. Spectral gap( f<<0)
imaginary. The imaginary part of, represented by the dot- The uniform mode is now shifted to lower frequencies
ted curves, identifies the important modulational wave vectelative to the spin waves, see Ed&5) and (A6). Thus,
tors associated with the instability. vanishes afQ—0 in effectively there is a discontinuity in the dispersion curve at
accord with Eq(A18), and it attains its maximum value at a q=0. This regime characterizes a flat platelike sample.
wave number that increases monotonically with the uniform Figure Za) presents the real and imaginary parts\pthe
mode amplitudd. stability parameter, plotted versus the wave numbersfer
Figure 1b) depicts the spatial Fourier spectrum of the —0.2. Shown is the small-amplitude dispersion curve
transverse spin component from an MD simulation at two(dashed lingassociated with the linear spin waves and also
different times before the emergence of ILM’s. The initial the modulation curves for three different amplitudex the
uniform mode amplitudef=0.2 and the wave number of uniform mode. Subsequently these modulations on the ex-
maximum growth is found to b&),,,,=0.085z,. For f cited uniform mode will be called nonlinear spin waves.
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FIG. 3. Regions of modulational instability for the uniform
FIG. 2. (a) The real and imaginary parts afversus modulation ~M°de in the(f,Q) plane whens<0. The labels S and U identify
wave vectorQ for B=—0.2. The spin-wave dispersion curves in stable and unstable_ regions in parameter sp(a?aélfhe anisotropy
the presence of a demagnetization field are displayed for four valugdrametera=1. Solid line, 3=0; dot-dashed lineg=—0.1, and
of the AFMR amplitudd. The linear dispersion curfelashed ling ~ dotted line,5=—0.2. Asg becomes negative the uniform mode for
has a gap aQ=0, which decreases dsincreases {=0.2). The sufﬂaeptly small amplitude becomes stable .to @I The IargeQ
stability coefficient becomes imaginary for so@edotted linegat ~ '€9ion is always stable regardless of the spin-wave amplitile.
f=0.35 and 0.40. In contrast to Fig(al, now the imaginary parts The r_:mlsotropy parametér=2. Now the uqlform mode with large
extend all the way t@=0. (b) Modulation amplitude versus wave amplitude becomes unstable to perturbations of any wave vector.
vector at timeg=100 (solid line) andt= 150 periodgdotted ling
for f=0.34. The cutoff wave number @=0.051, in good agree- netization field and this depends on the amplitude. Figure 3
ment with the analytical prediction frort@) (vertical lineg. quantifies this statement, by demonstrating exactly where a
gap in the stability region of théf,Q) plane appears ag
There are several clear differences in the figure when combecomes negative. In this figure the lines separating regions
pared to theB=0 cases shown in Fig. 1. Now there is a of stability and instability are displayed. These lines are de-
discontinuity in the linear dispersion curve@t= 0, signified  fined by the equation (f,Q)=0. Shown in the figure are the
by A(Q—0)>0. Asf increases, the frequency difference be-instability regions for3=0 (solid line), —0.1 (dot-dashed
tween the nonlinear spin waves and the uniform mode deline), and —0.2 (dotted ling. For both valuesA=1 [Fig.
creasegsolid curve$, until at the critical amplitudé;;,, the  3(a)] and 2[Fig. 3(b)] of the dimensionless anisotropy pa-
lowest nonlinear spin-wave frequency becomes coincidentameter, the region of instability shrinks #@hsis decreased
with the uniform mode. Here the real partofvanishes, the from zero. For sufficiently smalf and anyA the uniform
imaginary part appear@lotted curvg and an instability de- mode is stable for all modulation wave vectors. Ret 1, we
velops. In the range €f<f;, the frequencies of all spin see an instability “bubble” centered a®=0 for all 3,

waves remain real and the uniform mode is stable. whereas forA=2, a uniform mode of sufficient amplitude
The Q dependence of the growth rdten(\)], shown by  becomes unstable to all wave numb@:s
the dotted curves in Fig.(8) for f>f.;, is quite different Figure 4 shows the amplitude threshold for the instability

from the B=0 cases. Contrary t@=0 where the growth f.;, as a function of the demagnetization factor, obtained
rate is sharply peaked at a particular nonzero wave number,l@oth from analytical results and MD simulations. In the
fairly flat Q dependence appears extending all the way tasimulations, the prefactorgugM/4JS) is set to 1 in Eq.
Q=0. Forf sufficiently large, only a shallow peak emerges (6). The amplitudef.;; is the smallest value for which insta-
at nonzeraQ on this broad background. bility occurs. Analytically it is defined by the equation

The spatial Fourier components of the MD simulation for\ (f;,Q—0)=0, which is solved numerically to yield
this case are shown in Fig(l8 for two times prior to the f_;(8). The demagnetization fact®; ranges from 4/3 to
development of spatial localizatiot€100 and 150 Here 0, corresponding to a sphere and a disk, respectively. The
time is measured in units dfapyr for the case8=0. The  corresponding3 goes from 0 to—%. The numerical data
distribution of spin waves is seen to extend fr@%0 to a  represented by the open circles agrees nicely with the pre-
cutoff Q¢(f) consistent with the analytical resiiharked in  dicted curve. The small offset is due to the inclusion of weak
the figure with vertical lines damping in the simulations. We see thatmsdecreases, the

In order to produce a modulational instability it is neces-critical amplitudef;; increases. This means that as the uni-
sary to overcome the frequency gap created by the demagerm mode moves further away from the spin-wave bé&nod
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FIG. 4. The critical amplitudé; as a function of3. The pref-
actor in Eq.(6) is set to 1 in the MD simulations s8 ranges from
— 210 0. The solid line identifies the analytical curve and the open
circles are MD simulation results. The simulations yield slightly
higher values due to the presence of weak damping.

amplitude

lower frequencieksit becomes increasingly difficult to make
the uniform mode unstable. k
Consider the case where the uniform mode is excited to 04 0.0 0.4
increasingly large amplitude by an external driver. The uni- Q (w2a)
form mode breaks up when it reaches the threshold ampli-
tude f,;; and hence saturates. The energy in the uniform FIG. 5. (a) The real and imaginary parts of the stability coeffi-
mode just prior to breakup depends on the demagnetizatiocient A versus modulation wave vect® for 3=0.2. The linear
factor (8<0), as shown in Fig. 4, hence, the smalgrthe  uniform mode is now inside the spin-wave band, as evidenced by
larger the energy in the uniform mode, and the more energthe negative frequencies at sm&ll in the linear curve(dashed
that can be transferred into emerging ILM’s when the instatrace. For f=0.4 the imaginary part ok is represented by dotted
bility occurs. lines, and the real part by solid linefb) Modulation amplitude
versus wave vector. MD simulations show the growth of spin waves
that are near frequency coincidence with the AFMR. The solid and
dotted traces show the spatial Fourier transform taker-460 and
For a rod-shaped samplggt0), the uniform mode is 300 periods, respectively.
shifted up into the spin-wave spectrum and becomes degen-
erate with a subset of spin-wave modes. For the 1D cas8inceqqeqdepends on the position of the uniform mode with
there are two isolated points Q= * q4egWhere this occurs. respect to the spin-wave band, it will also depend botfBon
The analytical results are shown in Figabwhere the real andA, as seen in the figure. Note that for a8y 0 and for
and imaginary parts of the stability paramekeare plotted both values ofA, there exists a region of stability in the
for B=0.2. The dashed trace represents the linear dispersiareighborhood ofQ=0, separating the two instability re-
curve, and the solid and dotted traces are the real and imagiions. The region of instability becomes ever more asymmet-
nary parts ofs for f=0.4. Note that the instability region is ric with respect to+ qq.4asf increases.
very asymmetric abouqeq, and highly oriented towards
larger g values. If damping is included in the equations of B. Short-time pattern formation and long-time-scale ILM
motion then an amplitude threshold appears. These results production signatures
illustrate the second-order Suhl instability for an antiferro- o
magnet and extend the analysis of Ref. 18. The correspond- 1. Quasiperiodic ILM's for =0
ing MD simulations shown in Fig.(®) demonstrate that the Figure 7 shows the time evolution of the energy at each
modulational instability does indeed populate spin wavessite in the form of a density plot of spin ener¢yray scalg
near gqeg- The figure shows the Fourier transform at two as a function of spin site and time. Dark shades represent
times, as measured in units Ofgyr for the casgB=0, and  areas of high energy. At=0 the uniform mode is excited
t=150 and 300 for an initial uniform mode amplitude fof  with a specific amplitude of=0.2 (uniform shading over all
=0.2. By t=300 the amplitudes of the degenerate spinsiteg. After about 200 ,ryr @ regularly spaced train of in-
waves have grown appreciably, as evidenced by the emetipient ILM’s emerges. After some additional time, on the
gence of nonlinear spatial harmonics. With continued growtrorder of 100 periods, the spatial phase coherence of the pe-
these highly excited spin waves quickly become modulationriodic train of ILM’s is lost.
ally unstable themselves. The details of the modulational instability process govern
The regions of stability and instability are mapped out inthe initial spacing of incipient ILM’s in the lattice since the
Fig. 6, where the amplitude of the uniform mode is plottedcharacteristic length scale of a pattern is often set by the
versus the modulation wave number. Two valueg3ef0.1  most unstable wavelength found in the instabiiftyFigure
(solid line) and 0.2(dotted ling display the systematics. In 8(a) shows the amplitude distribution &t 285T oryg in the
Fig. 6@, A=1, and in Fig. 6b), A=2. For smallf, the early stages of ILM formation. Here the amplitude, which
instability shrinks to two points in reciprocal spacefgeq. shows roughly a Gaussian envelope, is plotted on a linear

3. Second-order Suhl instability 8>0)
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FIG. 6. Regions of modulational instability for the uniform

mode in the(f,Q) plane wheng>0. The labels S and U identify
stable and unstable regions in parameter sp@éhe anisotropy tude versus modulation wave number tor 285. The reciprocal
parameteA=1. Solid line,3=0.1, and dotted line3=0.2. As 3 lattice of ILM’s with a Gaussian-like envelope is clearly visib(b)
becomes positive the uniform mode becomes stable at all ampliSpin energy versus spin site revealing the periodic array of ILM’s at
tudes for smalQ. However, the uniform mode even for very small early times.

amplitudes becomes unstable to a speddic(b) The anisotropy
parameteA=2. The results are similar t@).

FIG. 8. (@) The Fourier spectrum of the transverse spin ampli-

Figure 8b) shows the real-space picture for the same MD

scale. Two higher harmonic peaks can clearly be discerned. fimulation taken at=285. This lattice spacing depends on
was already shown in Fig.(t) that when the first spatial the initial amplitude Qf th'e uniform que. In particular, for
Fourier component had sufficient amplitude, secondary =0-1 the ILM spacing is roughly twice as large as for
peaks at twice the predicted wave number appeared. In gerr0-2, SiNCEQmay is about half as large. At these short times
eral spatial harmonics are generated at integer multiples dpe analytical predictions agree with the simulation results.
the initial wave number. These spatial harmonics continue to

grow until the incipient ILM’s emerge. The resultingspace
distribution represents a reciprocal lattice with spacing
Qmax=0.085)5, in agreement with our analytical predic-
tions.

2. Threshold for the creation of ILM’s
and localized spin flops foB<0

For the case of a frequency gap the MD simulations give
rise to a catastrophic production process. Typical results are
shown in Fig. 9. Again, the gray scale represents the energy
plotted as a function of spin site versus time. From the ran-
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dom noise a single initial region of localization forms at
aroundt=175 periods. The amplitude of this ILM grows
very quickly, taking energy from the rest of the lattice, and
then very quickly it divides into a number of strongly local-
ized branches. For sufficiently large negative valueg,ads
shown here, so much energy rushes into the region occupied
by the ILM that many of these branches represent localized
spin flops. In this arrangement a few of the spins on one
sublattice flip over into a locally canted ferromagnetic ar-
rangement with respect to their neighbors, thus creating a

dynamic point defect which is nearly stationary. Spin-wave
packets are emitted to either side of these high-energy time
trajectories.

FIG. 7. Time evolution of the uniform mode energy density 10 demonstrate that during the ignition process both
distribution in real space fg8=0. f=0.2 att=0. In this gray scale ILM’s and dynamic spin defects are produced, #empo-
dark shades represent areas of high energy. The large-amplitud€nt of the spins on the large-amplitude sublattice are exam-
uniform mode is stabléuniform shadiny until about att=200. It  ined at different times. Thecomponent of spins on the other

then breaks up into spatially periodic ILM’s but this spatial coher-sublattice does not change sign. Figuréal@lustrates that
ence is lost at long times. the spins in the regions of high ener@ack lines in Fig. 9
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FIG. 9. Time evolution of the uniform mode energy density
distribution in real space fg8= —0.2. The initial AFMR amplitude 1.0 — T 1
is f=0.34, just above threshold for the=1 case. In this gray scale 100 200 300 400

dark shades represent areas of high energy. Initially only one broad spin site

ILM forms in the entire lattice of_ 1024 ;pins._Energy is rapidly FIG. 10. Time evolution of thez component of the larger-
transferred from the rest of the lattice to this region and the resultan{,grm)”mde sublattice near the time of localization for the case of an

excitation breaks up into a number of strongly localized and nearlyenergy gap(a) The z component of the larger-amplitude sublattice

stationary dynamic defects represented by the nearly parallel blac‘ijt three timest =180 (solid), 185 (dasheg, and 190(dotted. Far
trajectories. The fact that these trajectories converge indicates th m the excitation thez component grows with increasing time

these dynamic defects attract each other. The numerous faint lines i%iicating smaller excitation energy here. In the excitation region,

+45° indicate that spin waves are also emitted from this highlyy,e ; component decreases and the energy grows with increasing

excited region. time. Finally fort=190 the dotted trace drops belay=0, indi-
cating that the spin has flipped through the plane of symméiyy.

flip through the plane of symmetry. This occurs after Plot of thez componen.ts for the different lattice sites aganbut at .

—190 periods. Initially(at aroundt= 180 periods) localiza- {=300. after the creation process is completed. Now there are eight

tion begins in one region of the spin chain as shown in I:igreglons that have undergone spin flips. Each of the localized regions

10(a). The center of the initially broad ILM grows in strength \(/)vfhri]ci%lhr:nl?irr%); Smhg‘r'én;;]eprig' ?h;(r)]r:jeosg:r;?]s“t_(')wa localized spin flop,
[the dashed line in Fig. 18)] while the wings over a large q 9y '

lattice region decrease. At=190 periods the center contin- .
ues to accumulate energy from the lattice wings, causing geared. These dynamic defects appear to act as black holes.

few sublattice spins at the center to flip over and align par- bEvefn fortﬁn initial unlf?rlm n|1-od$ arr:(phttL;]c-Je only ilightly
allel with their neighbors(dotted ling. These neighboring 2PCOVETeit, € Process ot localization for this case happens

spins on the other sublattice also precess at increased ampﬂ\—/er a very short-time scale in a burstlike phenomenon. In

tude but never so much as to flip. A small amount of mixingrec'p.r(.)Cal space, this bl.”s? mamfest_s itself as a very sudden
transition from the excitation of spin waves to the broad

ig-space distribution characteristic of ILM formation. F6r

remains very nearly out of phase with that of its neighbors on<0’ even at these short times the analytical results cannot

the other sublattice, even though the phase now variegred'Ct the dramatic MD simulation findings.
throughout a sublattice. Thus the situation can be considered
the dynamic localized analog of the spin-flop transition ob-
served in antiferromagnets when one of the uniform modes is Exploring the intermediate- and long-time behavior of the
driven to zero frequency with an applied dc magneticspin system when the uniform mode is inside the spin-wave
field 2831 band also has produced some interesting insights. Traveling
Even more interesting is the slightly longer-time evolution ILM-like trains can emerge from the second-order instability
of thez component of the sublattice spins. In Fig(i0thez  of coincident spin waves. A typical MD simulation for the
components are plotted for time= 300 periods. By now all case of a resonant interaction between the uniform mode and
of the strongly localized features shown in Fig. 9 are associthe spin-wave branch is shown in Fig. 11. Hge 0.2. The
ated with a spin flop and represent a stationary point defectime evolution of the energy at each site in the form of an
With time, some of these point defects evolve back into aenergy density plofgray scal¢is presented as a function of
sharply localized ILM and the-component spikes shrink spin site versus time. A standing-wave pattern forms from
back to positive values. However at the time shown here théhe uniform mode at about 250 periods. This pattern is due to
central region of Fig. 1(®) represents a very large defect, the excitation of+ qgeq. Almost immediately this is replaced
encompassing many spin sites. Its energy came from they a diagonally striped pattern in Fig. 11. ILM’s traveling at
plane-wave excitations, which have now essentially disapthe group velocity emerge out of this distribution. Within a

3. Beyond the Suhl instability: ILM’s for 8$>0
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FIG. 11. Time evolution of the uniform mode energy density
distribution in real space fqg=0.2. The initial AFMR amplitude is
f=0.2 for theA=1 case. In this gray scale dark shades represent
areas of high energy. The uniform mode is stable until alkiout
=200 after which it breaks up into a standing-wave pattern associ-
ated with the degenerate spin waves. This standing-wave pattern is
then replaced by the diagonal stripes, due to the modulational in-
stability of these spin waves. Traveling ILM’s form, decelerate, and
become large-amplitude stationary ILM’s.
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few 100 periods as they become strongly localized, the ILM - —
quickly decelerate, and at long times become nearly station- | | |
ary large-amplitude ILM’'s. This observation is consistent 1.0 -0.5 0.0 0.5
with the early findings from numerical studies on moving /D

ILM’s. 32 Also see Ref. 26, where the trapping of ILM's is q (n/2a)

Conn.ec.ted to t.he lattice dlscreteness. . FIG. 12. Fourier-space representatian,§) of the time evolu-
It is instructive to_examlne the double FO!{“eF trar!Sformtion of the transverse spin deviation. The parameters are the same as
of the transverse spin variables over a specific time intervaf, rig 11, (s t=300, At=200: the excitation is transferred from
of Fig. 11 to follow the excitation inq space. Figure 12  the uniform mode to the spin waves with the same frequency. These
shows the population of normal modes, i.e., pointsdnd)  |arge-amplitude spin waves are unstable and excite resonant travel-
space, as well as local modes, i.e., straight linesangy ing ILM's near + qqe4, Whose signature is the density in the shifted
space, for two different time windows of 200-periods width. tangent to the spin-wave banth) t=800, At=200: the resonant
In Fig. 12a), the time window starts dt=300. Some energy traveling ILM’s at large wave vector lose energy due to the lattice
remains in the uniform modes but most has been transferrediscreteness and evolve into the nearly stationary ILM’s with fre-
to the spin excitation afj=qqeqand along the incipient tan- quencies below the dispersion curve shown here.
gent line to the spin-wave dispersion curve at this point. This
signature in f,q) space is identified with the initial travel- enough speed it finally appears completely below the disper-
ing spin-wave packets, which are evolving into movingsion curve.
ILM’'s. Our studies of such reciprocal space plots indicate Now lets examine Fig. 12) in more detail and make the
that the initial traveling ILM’s always avoid overlap with the connection to the next step beyond the Suhl instability. Dur-
spin-wave band, i.e., the tangent line is shifted with respedng the first stage, the uniform mode transfers energy to the
to the dispersion curve. coincident spin waves at (geq- Spatial harmonics appear at
To illustrate the evolution iy space, Fig. 1®) shows the  *2 and*3qqe,. Thus at short times, a nonlinear standing-
results starting at=800 periods. Here the entire normal- wave pattern is created. In the second stage, ILM’s emerge
mode spectrum is populated and in addition, at the bottom oflue to a secondary instability. In this stage, the spin waves at
the spin-wave spectrum three ILM’s appear. Two of these* (geq beCOme modulationally unstatik.
local modes are moving since the linear excitation pattern To isolate this second instability we examine the linear
has finite slope, while the lowest-frequency ILM is station- perturbation analysis of the specific case where the initial
ary. All three of these line features have large localized translarge-amplitude excitation is not =0 but instead atj=
verse spin amplitude. The evolution of the ILM dynamics in = 7/8a. (The transfer of energy frong=0 to finite q is
g space is as follows: after the shifted ILM tangent line isalready considered to have taken place with one-half of the
formed at+ qqeq then, because of the lattice discreteness, itsnitial energy at each locationFigure 13 illustrates this sec-
center position moves down in frequency with the tangenbndary instability, showing analytical results for the real and
line following the dispersion curve at that point. At slow imaginary parts o\, for a spin wave atj= 7r/8a, one of the

1.0
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amplitude of each of the two spin wavesfis0.15 to cor-

8x10° respond to the previous case in which the uniform mode was
6 initially excited tof =0.20. It takes about 350 periods before
E] the initial standing-wave configuration breaks up into mov-
43 ing ILM’s, and these ILM’s decelerate much more slowly
2 than for theq=0 example shown in Fig. 11, indicating that
the additional Fourier components produced in the uniform
0 instability enhance ILM production. However, the final long-
-06-04-0200 02 time ILM’s shown in Fig. 14 have roughly the same profile
Q (n/2a) as those shown in Fig. 11.
FIG. 13. The real and imaginary parts of the stability coefficient
N\ versus modulation wave vector for a nonlinearly excited spin IV. CONCLUSION
wave atq= m/8a. The dashed line represents the linear dispersion . o
curve. For theg= 7/8a spin wave of amplitudd =0.15 the solid The three cases@=0, <0, >0) examined here ini-

and dotted traces are the real and imaginary pars méspectively, ~ tiate three distinct types of instabilities, according to the clas-
Note that the solid trace is tangential to the linear dispersion curvéification scheme used in the area of pattern formafidine

atq= m/8a. Suhl case8>0, leads to a Type-l instability, where the in-
stability appears at a nonzero wavelength, and ther,iss
q= *+ m/8a pair, each with amplitudé=0.15. The dashed increased, a surrounding band of unstable wavelengths de-
line represents the linear dispersion curve. The solid and dowelops. The no gap casg=0, exhibits a Type-Il instability,
ted traces identify the real and imaginary parts of the stabilcharacterized by the growth rate of waves peaked at a non-
ity coefficient\. The instability region is characterized by zero wave number, but extending down de-0, where it
two peaks in the imaginary part appearing on either side ofjoes to zero. Finally, the gap cags 0, exhibits a Type-ll|
g=m/8a. This means that spin-wave modes of those twoinstability, where the maximum growth rate occursyatO.
wave-number bands will rapidly grow in amplitude. Their These three types of instabilities are schematically repre-
(rea) frequencies are determined by the solid line, which issented in Fig. 7 of Ref. 30. In our model, all three of these
tangential to the dispersion curve qt=m/8a. Thus, the pattern-forming instabilities can be encountered by varying
original large-amplitude spin wave will become modulation-the shape parametg through zero. It should also be noted
ally unstable against certain modes that lie on the solid linéhat numerical analysis on a system with biaxial on-site an-
in Fig. 13. isotropy, for which a perturbation analysis has not been car-
To examine the long-time behavior of this caset,=a0 ried out, shows qualitatively similar instability behavior.
spin configuration with a pair of excitedq=+ w/8a spin  Thus the modulational instability features discussed here are
waves forg=0 has been used as the initial condition for thenot unique to the uniaxial spin system.
MD simulations. The results are shown in Fig. 14. Again the We have extended the modulational instability analysis of
the uniform mode for antiferromagnetic chains with on-site

500 - PR R T - easy-axis anisotropy described(Into include the effect of a
=0 ERAR AR . shape-dependent demagnetization factor. The purpose has
400 49== n/sa:f MRS ! | . been to explore the influence of the effective spectral gap in
YA SRR AT the linear dispersion curve at=0 on the modulational in-
b 300 - e VY il stability properties of the nonlinear system and hence on the
2 ARAR RS RS ’ production properties of ILM’s. Linear stability analysis has
g_ 500 been used to identify the instability regimes for different val-
o

; erM ues of the demagnetizing fact@, and three qualitatively
;x_"" " //\ different signatures have been established. These analytical

100 - / ";}‘ A results, which can only be valid at short times, are shown to
; connect in a general way with the corresponding long-time
0 — T ‘ ' evolution of the system as determined by MD simulations.

The findings are as followsi) For 8= 0, the most unstable
0 400 ,800 1200 wave numbeR in the modulational instability regime deter-
time mines the spacing of the incipient and nearly stationary ILM
FIG. 14. Time evolution of the = *+ 7r/8a mode energy density lattice. (ii) For B<0, the resu_ltlr_lg gap in th_e Spin-wave spec-
distribution in real space fog=0. The initial amplitude of the UM produces a spin-deviation instability threshold. The
excited pair of spin waves a=* /8a is f=0.15 for theA=1 larger this gap, the larger the energy that can be stored in the
case. In this gray scale the dark shades represent areas of higiform mode before the instability takes hold. MD simula-
energy. The standing-wave pattern is stable until abewt00. It  tions show that for an energy gap, ILM production is ex-
then breaks up into the diagonal stripes indicating traveling ILM'stremely fast at the particular nucleation site and so much
due to the modulational instability of these spin waves. Theseenergy is drawn from the rest of the lattice that both ener-
ILM’s decelerate. The dynamics is qualitatively similar to that getic ILM’s and even more energetic point defects consisting
shown in Fig. 11. of dynamic localized spin flops are formed. These strongly
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localized excitations are pinned by the lattice discretenesblote that the first two terms of E§A4) correspond to Eq.
and remain nearly stationaryiii) For >0, the uniform  (8) of (), while the last two terms represent the effect of the
mode is unstable only to the degenergte0 spin waves. demagnetization field. EquatigA4) in the limit f><1 goes
These in turn are also unstable and drive higher-order instasver to the more familiar expression for the AFMR
bilities, which ultimately lead to moving ILM’s. As these frequency’>33namely,

grow in amplitude, become narrower, and decelerate they
oscillate at lower frequencies. Interestingly, although ILM’s
form in all three regimes, the long-time behavior in each case 235 VA(A+4+2p).
looks qualitatively different. This study shows that many of

these differences are a straightforward consequence of varigor q+ 0, the last two terms of E@5) vanish, these frequen-
tions in the modulational instability process already presengies do not depend on sample shape, and the result is the

w(0) (A5)

at short times.
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APPENDIX: MODULATIONAL STABILITY ANALYSIS

1. Nonlinear uniform mode

The stability analysis for the uniform mode described in

same as inl):

w(q#0)

o7 _ /
535 [(A+2)?—4 cod(qa)]Y2

(A6)

2. Perturbation analysis of the uniform mode

To investigate the modulational instability of the uniform
mode the perturbed spin amplitudes are written in the follow-
ing general form:

Refs. 21 and 26 is modified by the presence of sample shape

as represented by the Hamiltonian in Ed). The analysis
below assumes both=1 and#=1. Since the interest is in
the stability of the uniform moddthe antiferromagnetic
resonanckg the sublattice amplitudes can be written as

sy (t)y=fe et
Sanra()=ge 't

Substituting these into Eq5) yields the two-coupled non-
linear equations

S5, =v1—f2, D
Al
Sén-%—l:_ 1_92-

fQ=2(1-2B)f(1—g?*?
+[(A+3pB)f+(2+B)g](1— 32
—2(1-2p)g(1- 1212
—[(A+3B)g+(2+B)f](1-g?)*?

where the dimensionless frequenfy= w/2JS, the anisot-
ropy parameteA=D/J, and the shape paramet@rare de-
fined in Eq.(6). Eliminating ) from Eq. (A2) gives a=

—g/f sincef and g cannot be chosen independently.is
determined by solving

(A2)

gQ)

[2+A—2a '+ B(1—a 1)](1— a?f?)Y2

+[2+A—2a+ B(1—a)](1—f?)Y2=0. (A3)

Equation(A3) reveals thatr will depend not only orf andA

as in(l), but now also on the shape paramegeiFrom Egs.
(A2) and(A3), the AFMR frequency is

Q(f)=2(1- ?t)V2+ (A-2a)(1- 122+ B(1— )
X (1_ f2)1/2_ Zﬂ[(l— a2f2)1/2_ (l— f2)1/2]
(Ad)

[ S5 (1)=(f+by,+iW,)e et

Sénz(l_fz)uz_ b2na

f
T .
S;n+1(t) =(g+by, 1t i\If2n+l)e*iwt;

g
Shnr1=—(1—gH)Y2+ m&} Bons1s

\
wheref, g, andw=2JS() are related by Eq$A3) and(A4),
the perturbationgb,} and{¥ .} are real functions of time,
and only the linear terms in the perturbation variables are
retained.

Requiring that this perturbed uniform mode again be a
solution to the equations of motion, we insert E47) into
Eqg. (5) and obtain the evolution equations for the perturba-
tion variablesb,,, b,,.1, ¥,,, and ¥,,. ;. Expanding
these variables in terms of their Fourier components gives

b2n bO(Q) i(2nQa— wpy,

(‘I’zn)zg (‘I’O(Q))E(Z st (A8)
b2n+1 ) _ ( bl(Q) i[(2n+1)Qa— wpt]
vt AR ZG)N 89

whereQ is the modulation wave vector. The resulting equa-
tions of motion are

bo(Q) o[ @
d | by(Q) | _ 12} [ bi(Q)
dt| wo(Q) ‘ZJS(TM o) vy(Q | A0
¥,(Q) v,(Q)

with

024403-10



MODULATIONAL INSTABILITYO F... 1l... PHYSICAL REVIEW B 67, 024403 (2003

[(2+B)a—Bl(1-15)Y2 2 cogQa)(1—f?)?

T= 2 cogQa)(1—g?) 2 _(ZTT'B_ ,3)(1—92)1/2 (A11)
and
A+B—a(2+ e 2
- [A+B8—a( ,3)](1_]:2)1/2 (1_92)1/2005(Qa) . (A12)
. PN cogQa) —A+,3—2+_ﬂ . )
m o m

Note that upon settingg=0 in Egs.(Al1l) and(A12), Egs. 1
(6.9—(6.13 of Ref. 26 are recovered. Incidentally, the ma- C=— §(Z+,3—a,3)A+2
trices (A11) and (A12) have to be augmented by another

220" [(1-17)(1-g?)]*

a*lBZ

term for Q=0. This reflects the fact that spatially uniform a )

perturbations do not modulate the uniform mode, but simply 5 (2+8)"=B(B+2)+ ——, (A16b)
tune its amplitude and phase. Thus the form of the equations

for Q=0 does not coincide with that for all oth€r values. E=gf—[(1- f2)(1_92)]l/2, (A160)

We are now in a position to determine the stability of the
uniform mode of amplitudé relative to spin-wave modula- -~ 1,
tion of wave numbeg as a function of the shape parameter F=p2+p) (e Fa=2)

B. Equation(A10) becomes an eigenvector equation with X[B(2+B)(a t+a—2)—A(2+ B)(a %+ a?)fg

nontrivial solutions only when
—AB(f?+g%) —A%(fg)*+4(E*-1)], (A16d)
def\ | —iT|=0, (A13)
where a normalized modulation frequency w,,/2JS s in-
troduced. This is the stability parameter defined in &Q.

Due to the vanishing diagonal entries Bf Eq. (A13) sim-
plifies to

and

G= %(1—a_1)2[3(,3+2)><(—(a—1)2,3(,8+2+Af9)

+4(A+1)(a *+a)g®+ a(A?—8)(fg)?

deq)\zr_l— T21T12|:0- (A14) +492{A_2[(1_.I:Z)(l_gZ)]l/Z})_ (AlGe)

The real part ol represents a frequency shift relative to the .

uniform modeQ, and the imaginary part of determines the Note that bothF and G vanish for3=0, so that Eq(A14)
amplitude growth rate of the modulation of wave num@er ~ contains Eq.(19) of (I) as a special case. In the small-
If X is real for allQ, no instability occurs. amplitude limit,

Solving Eq.(A13) for \ yields F+4G sif(0a) = [(a—1)%a 1 8(g+2) P 1-si?(Qa)]
A=(aC+Ba 1)—4Esirf(Qa)—[(aC+Ba 1)?—F

=0, (A17)
—4(BC+G)sir?(Qa)]*?, (A15) _ , ,
which ensures that the linear solutions for any valug@ afe
where real. Furthermore, in the limit d@— 0, Eq.(A15) reduces to
1 2_ -1 -1)2 1/2
B=— §(2+ﬂ—,8a71)A+2 92_2a[(1_f2)(1_92)]1/2 A —(aC+Ba )—[(aC+Ba ) —F] s (A18)
. L which is strictly positive forB#0. Thus, the factofF is
a 2 Y responsible for the discontinuity of the dispersion curve at
+ (2P BB+ S ap” (A163 520 for nonzerog.
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