Intermediate Logic

East College 300, TR 9-10:15 Professor Chauncey Maher maherc@dickinson.edu East College 202 Office Hours: TR 10:30-11:30, or by appointment

Course Description

The big goal of this intermediate course in logic is to develop a technically and philosophically deep understanding of logical *systems*, especially "classical" logic. In the first part of the course, we will study the meta-theory of propositional logic and first-order (or quantificational) logic. You will learn how to prove that a logical system is correct and complete. In the second part of the course, we will consider philosophical questions about logic, especially concerning logical consequence and logical constants. You will learn compelling arguments for thinking that the "classical" conception of logical consequence is mistaken, as well as plausible responses to those arguments.

Goals

-prove Cantor's theorem -learn to do proofs by mathematical induction -learn to do proofs with tableaux -prove the correctness and completeness of PL and FOL -explain criticisms of "classical" logic, and some important responses thereto

Texts

Raymond Smullyan, *A Beginner's Guide to Mathematical Logic*, 0486492370 Essays and excerpts on Moodle

Evaluation

Homework 45%

In each chapter of Smullyan's *Guide*, there are Problems and Exercises. To do well in this course, you must work through these very carefully. Each meeting I will collect your solutions to a specific subset of Problems and Exercises from the relevant chapter, specified in the Schedule below. You may type these or write them by hand. If you write them by hand, please make them perfectly legible, and please do not give me your only copy; give me a photocopy or scan instead.

Given that Smullyan provides solutions to all Problems (but not *Exercises*), your challenge is *not* to write down *a* solution to any given problem. Rather, your challenge is to produce a solution *on your own*. Thus, while you are permitted to consult Smullyan's solutions, you should do so only after you have a made a diligent attempt to arrive at a solution on your own. That is the solution I want to see. Upon checking your solution against Smullyan's, if yours appears mistaken to you, then you may write a new one in light of Smullyan's solution. However, I repeat: I want to see the solution that you initially arrived at on your own. You will receive no credit for merely duplicating Smullyan's own solution.

Tests 45%

Test #1 (10%): on sets, Cantor's Theorem, mathematical induction, Konig's Lemma

Test #2 (10%): on Propositional Logic, proofs by the tableaux method, proofs of correctness and completeness

Test #3 (10%): on First-Order Logic, proofs by the tableaux method, proofs of correctness and completeness

Test #4 (15%): on philosophy of logic, short essay questions concerning logical consequence, logical constants, and relevance logic

Participation 10%

Talking with others about the subject matter of this course will help you understand it. Thus, I expect you to intermittently ask and respond to questions, attempt to solve problems, or even pose challenges to claims made by our authors. For each act of participation, you will receive 1 "point." You can receive a maximum of one point per meeting. You need 10 points to earn an 'A' for participation.

Schedule

Meeting #	Date	Topic	Reading (for class on this day)	Required Problems & Exercises
		Sets, Inductio	n, Trees	
1	1/26 T	Introduction to the course	None	
2	1/28 R	Basic set theory	Smullyan, Ch.1	P2-P6; E2.1-4
3	2/2 T	Infinite sets Cantor's Theorem	Smullyan, Ch.2	P2, P5, P7
4	2/4 R	Mathematical induction	Smullyan, Ch.4 (Skim Smullyan, Ch.3)	P1 (explain your reasoning), P2; E1- E2
5	2/9 T	Konig's Lemma	Smullyan, Ch.4	P11a-b
6	2/11 R	Test #1	Smullyan, Chs.1-2,4.	
		Propositiona	l Logic	
7	2/16 T	Symbols and formulas of Propositional Logic Truth tables	Smullyan, Ch.5	P1,P3,P4,P11*, P16
8	2/18 R	Propositional tableaux, a proof method	Smullyan, Ch.6 (pp.81-90)	E1a-c,h,i E2d-e
9	2/23 T	Correctness of Propositional Logic	Smullyan, Ch.6 (pp.90-1, esp. Prob. 2)	P2**
10	2/25 R	Completeness of Propositional Logic	Smullyan, Ch.6	P3**
11	3/1 T	Axiomatic propositional logic	Smullyan, Chs.6-7	P0, P1 (only T1-T6), P4
12	3/3 R	Correctness of the axiom system S_0	Smullyan, Ch.7	P5*
13	3/8 T	Review	Smullyan, Chs.5-7	
14	3/10 R	Test #2	Smullyan, Chs. 5-7	
		First-Order	Logic	
	3/15 T	Spring Break	Spring Break	

	3/17	Spring Break	Spring Break	
	R			
15	3/22	Symbols and formulas of First-	Smullyan, Ch.8	P1-2,P9a-c,P10a-
	Т	Order Logic		b,P14
		Interpretations		
16	3/24	Correctness of the axiom	Smullyan, Ch.8	P17**
	R	system S_1		
17	3/29	Tableaux for First-Order Logic	Smullyan, Ch.9	E1a-c,e; E2a-c,i*
	Т			
18	3/31	Correctness of First-Order	Smullyan, Ch.9	P2**
	R	Logic		
19	4/5	Completeness of First-Order	Smullyan, Ch.9	P3**
	Т	Logic		
20	4/7	Review	Smullyan, Chs.8-9	
	R			
21	4/12	Test #3	On Smullyan, Chs.	
	Т		8-9	
		Philosophy o	of Logic	
22	4/14	What is logical consequence?	Lewis Carroll,	
	R		"What the Tortoise	
			Said to Achilles"	
23	4/19	Tarski's definition of logical	Alfred Tarski, "On	
	Т	consequence	the Concept of	
			Logical	
			Consequence"	
24	4/21	Can logical constants (e.g.,	A. N. Prior, "The	
	R	connectives) be properly	Runabout Inference-	
		defined solely in terms of	Ticket"	
		introduction and elimination	N. D. Belnap, "Tonk,	
		rules? What constraints are	Plonk and Plink"	
		there on defining a proper		
		logical constant?		
25	4/26	Can logical constants (e.g.,	Dag Prawitz,	
	Т	connectives) be properly	"Logical	
		defined solely in terms of	Consequence From	
		introduction and elimination	a Constructivist	
		rules? What constraints are	Point of View"	
		there on defining a proper	(through p.678)	
		logical constant?		
26	4/28	A proof-theoretic definition of	Dag Prawitz,	
	R	logical constants and logical	"Logical	
		consequence	Consequence From	

			a Constructivist	
			Point of View"	
27	5/3	Is the "classical" conception of	Anderson and	
	Т	logical consequence mistaken?	Belnap, Entailment,	
		How should we take account	vol. 1, §§1-4	
		of relevance in defining logical	Robert K. Meyer,	
		consequence?	"Entailment"	
28	5/5	The system Efde	Anderson and	
	R	Forced to deny disjunction	Belnap, Entailment,	
		introduction, or disjunctive	vol. 1, §§15, 16.1.	
		syllogism, is relevance logic	John P. Burgess,	
		hopeless?	"No Requirement of	
			Relevance"	
Ν	5/9	Test #4	On philosophy of	
	М	Monday, May 9, 2pm (our	logic	
		final exam slot)		

Academic Honesty

Any case of suspected academic dishonesty must be reported. Note: "To plagiarize is to use without proper citation or acknowledgment the words, ideas, or work of another. Plagiarism is a form of cheating that refers to several types of unacknowledged borrowing." When in doubt, cite it. For more information, please see the handbook on Community Standards here:

http://www.dickinson.edu/student/files/commstand0809.pdf

Disabilities

I will make reasonable academic accommodations for students with documented disabilities. If you think you are eligible for such accommodation, please first register with Disability Services in Biddle House, specifically Stephanie Anderberg (717-245-1734; disabilityservices@dickinson.edu). If you are eligible, Marni Jones, Director of Learning Skills and Disability Services, will provide you with a letter attesting to that. Once you have that letter, we can meet to discuss what we need to do. All of that must happen in the first three weeks of the semester.