
JID:PLA AID:23514 /SCO Doctopic: Nonlinear science [m5G; v1.166; Prn:11/11/2015; 13:17] P.1 (1-6)

Physics Letters A ••• (••••) •••–•••
Contents lists available at ScienceDirect

Physics Letters A

www.elsevier.com/locate/pla

Multifrequency and edge breathers in the discrete sine-Gordon system 

via subharmonic driving: Theory, computation and experiment

F. Palmero a,b, J. Han b, L.Q. English b,∗, T.J. Alexander c, P.G. Kevrekidis d,e

a Grupo de Física No Lineal, Departamento de Física Aplicada I, ETSI Informática, Universidad de Sevilla, Avda. Reina Mercedes, s/n, 41012 Sevilla, Spain
b Department of Physics and Astronomy, Dickinson College, Carlisle, PA 17013, USA
c School of Physical, Environmental and Mathematical Sciences, UNSW Canberra, 2610, Australia
d Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003-4515, USA
e Center for Nonlinear Studies and Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87544, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 26 August 2015
Received in revised form 30 October 2015
Accepted 31 October 2015
Available online xxxx
Communicated by C.R. Doering

Keywords:
Intrinsic localized modes
Discrete breathers
Edge breathers

We consider a chain of torsionally-coupled, planar pendula shaken horizontally by an external sinusoidal 
driver. It has been known that in such a system, theoretically modeled by the discrete sine-Gordon 
equation, intrinsic localized modes, also known as discrete breathers, can exist. Recently, the existence 
of multifrequency breathers via subharmonic driving has been theoretically proposed and numerically 
illustrated by Xu et al. (2014) [21]. In this paper, we verify this prediction experimentally. Comparison 
of the experimental results to numerical simulations with realistic system parameters (including a 
Floquet stability analysis), and wherever possible to analytical results (e.g. for the subharmonic response 
of the single driven–damped pendulum), yields good agreement. Finally, we report the period-1 and 
multifrequency edge breathers which are localized at the open boundaries of the chain, for which we 
have again found good agreement between experiments and numerical computations.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Discrete breathers, also known as intrinsic localized modes, ap-
pear widely in damped–driven oscillator systems [1,2], and gen-
eral conditions for their appearance have been recently estab-
lished theoretically [3]. Such time-periodic and exponentially lo-
calized in space coherent structures have been observed exper-
imentally in a diverse range of nonlinear oscillator systems, in-
cluding Josephson junction arrays [4,5], coupled antiferromagnetic 
layers [6], halide-bridged transition metal complexes [7], micro-
mechanical cantilever arrays [8,9], electrical transmission lines [10]
and torsionally-coupled pendula [11] among others [12–14]. They 
have also been argued to be of relevance to various biological 
problems including dynamical models of the DNA double strand 
[15], as well as more recently in protein loop propagation [16]. 
Many of the features of the discrete breather response are generic 
across these wide-ranging experimental systems; see e.g. [17]. 
However, the intrinsic properties of a single oscillator (as well 
as, often times, the specific nature of the coupling) may play a 
key role in the observed dynamics and the nature of the discrete 
breathers formed in the different physical systems.
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Inspired by this observation, recent work has revealed that sub-
harmonic resonances of a single oscillator (see e.g. [18]) may be 
used to excite discrete breather formation in an electrical lat-
tice [19]. More recently, this idea has been examined further in 
the context of a horizontally shaken pendulum (which has long 
been known to display a variety of subharmonic resonances [20]), 
and the possibility of mixed-frequency breathers was identified in 
a pendulum chain [21]. These breathers exhibit the remarkable 
response that while energy is localized on a few pendula respond-
ing at a sub-harmonic of the driving force, the pendula in the 
tails of the breather are oscillating with the driving frequency. To 
the best of our knowledge, these theoretically proposed and nu-
merically identified subharmonic breathers in the pendulum chain 
have not yet been experimentally observed. This is one of the key 
goals of the present work. More specifically, we further investigate 
these mixed frequency breathers theoretically, and compute them 
numerically, exploring their spectral and dynamical stability, iden-
tifying suitable frequency intervals where they may be expected to 
persist. We then go on to verify their existence by means of di-
rect experimental observations in a horizontally shaken chain of 
torsionally-coupled pendula [22,11,23].

We also examine the role of breather location in the dynam-
ics and reveal that discrete breathers may be localized at the 
end of the pendulum chain. To the best of our knowledge this is 
the first time the existence of such mechanical oscillator breather 
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Fig. 1. A schematic of the experimental pendulum chain.

edge states has been experimentally demonstrated. Nevertheless, 
it should be noted that research interest in edge states has a long 
history in other fields (see e.g. [25] and references therein), includ-
ing manifestations in the form of electronic surface waves at the 
edge of periodic crystals (Tamm states [25]), optical surface modes 
in waveguide arrays [26], and more recently surface breather soli-
tons in graphene nanoribbons [27].

Our presentation of the relevant results below is structured as 
follows. In Section 2, we present our theoretical model and discuss 
its physical parameters (of relevance to the experiment) for a hor-
izontally shaken pendulum chain. The relevant dynamical equation 
in the form of a damped–driven discrete sine-Gordon system is 
closely related to the driven–damped form of the famous Frenkel–
Kontorova model [24,28]. In Section 3, after theoretically, numeri-
cally and experimentally corroborating the subharmonic response 
of a single pendulum, we seek subharmonic solutions numerically 
and trace their parametric interval of stability. We are then able 
to show their existence experimentally, both in the case of “bulk” 
subharmonic breathers, as well as in the form of edge modes. Fi-
nally, in Section 4, we summarize our findings and present some 
possible directions for future study.

2. The model and experimental setup

The experimental setup is very similar to the one described in 
detail in Ref. [23] and schematically shown in Fig. 1. Each pen-
dulum experiences four distinct torques – gravitational, torsional, 
frictional and driving torque. The driving torque arises due to the 
horizontal shaking of the pendulum array by a high-torque electric 
motor. The amplitude, A, of the sinusoidal driving was fixed in the 
experiment, but the frequency, f = ωd/(2π), was finely tunable (in 
0.05 Hz increments) and measured by magnetic sensing. Angles 
were measured using a horizontal laser beam from a diode laser 
attached to the frame of the pendulum array; this beam is then 
periodically interrupted by the swinging pendulum when properly 
aligned. This method gives an estimated precision of about ±1 deg. 
An overhead web-cam was also used to monitor and record the 
pendulum motion. As a result of the above contributions, the mo-
tion of a single (uncoupled) pendulum is well described by the 
equation,

θ̈ +
(γ1

I

)
θ̇ + ω2

0 sin θ + Fω2
d cos(ωdt) cos θ = 0, (1)

where I is the pendulum’s moment of inertia, I = ML2 + 1
3 mL2, 

the driving strength is given by F = Aω2
0/g , and ω0 is the pendu-

lum’s natural frequency of oscillation with ω2
0 = 1

I (mgL/2 + MgL). 
Experimentally, the number of pendula is N = 19, L = 25.4 cm, 
m = 13 g, M = 14 g, γ1 = 500 g cm2/s, and A = 0.6 cm. Pendula at 
the two ends can oscillate freely (free boundary conditions).

If we add the torsional coupling to nearest-neighbor pendula, 
i.e., in the presence of all four of the above contributions, Eq. (1)
becomes a system of differential equations given by,

θ̈n + ω2
0 sin θn −

(
β

I

)
�2θn +

(γ1

I

)
θ̇n

− γ2
�2θ̇n + Fω2

d cos(ωdt) cos θn = 0, (2)

I

where β is the torsional spring constant, and �2 represents the 
discrete Laplacian. We include an intersite friction term (prefac-
tor γ2) originating from the energy dissipation due to the twisting 
of the springs [11]. Here, we assume that nonlinearity in the un-
driven array enters only through the sine-function in the gravita-
tional term, but not through the coupling springs. This assumption 
seems to be experimentally justified for angle differences of up to 
90 deg, but it may not work well beyond that. Experimental values 
of coefficients are β = 0.0083 Nm/rad and γ2 = 70 g cm2/s. These 
equations can be non-dimensionalized by introducing the follow-
ing parameters ω = ωd/ω0, C = β/Iω2

0, α1 = γ1/Iω0, α2 = γ2/Iω0
and rescaling time t → t/ω0, leading to the following dimension-
less equation for the nth pendulum:

θ̈n + sin θn − C�2θn + α1θ̇n − α2�2θ̇n + Fω2 cos(ωt) cos θn = 0.

(3)

For our experimental conditions the dimensionless parameters are 
C = 0.16, α1 = 64 × 10−4, α2 = 9 × 10−4 and F = 0.026. We use 
these parameters throughout the theoretical investigations of this 
work, and consider only variations in the dimensionless frequency 
parameter ω, which is tunable as indicated above. In our plots we 
transform back to physical units, plotting results versus driving fre-
quency in Hertz, f , where, for reference, the natural frequency of 
our pendulum is f0 = ω0/(2π) = 1.04 Hz.

As numerical simulations have shown that a one-peak breather 
is mainly localized on a single pendulum and its first neigh-
bors, experimentally, the method used to initiate multifrequency 
breathers is by manually displacing a group of three pendula 
through angles roughly predicted by the simulations. Upon release, 
a true breather mode can then sometimes establish itself, depend-
ing on whether the phase of release happened to be sufficiently 
close in relation to the driver. In practice, it may take a number of 
such trials before the driver can lock onto the initialized pendula 
in this manner.

3. Results

We first examine a single damped–driven pendulum. In gen-
eral, we have observed similar behavior to that found in [21], 
where the same system was studied in a slightly different range 
of parameters. Examining the response of the system to different 
frequencies and amplitudes of the driving force, we obtain the res-
onance curves shown in Fig. 2. Since a pendulum is an oscillator 
characterized by soft nonlinearity, we have found experimentally 
and numerically that the resonance curve exhibits the characteris-
tic bend toward lower frequencies, as is theoretically expected [18]. 
At higher frequencies we find the well known pendulum subhar-
monic response [29]. A subharmonic branch starting at around 
three times the natural frequency can be obtained both in the ex-
periment and in the numerics. Here, the pendulum responds to 
the driver by swinging at a frequency that is one-third of the driv-
ing frequency, f . In this way, for every three periods of the shaken 
table, the pendulum performs one complete swing. It is also in-
teresting to note that larger response amplitudes can be achieved 
via subharmonic driving than with direct driving. Numerically we 
have found higher-order resonances, but these resonances corre-
spond to frequencies not accessible in our experimental setup. In 
particular, we have found numerical solutions starting at around 
five and seven times the external driver frequency. Numerical sim-
ulations have shown that subharmonic breathers corresponding to 
these high frequencies are mostly unstable, with the exception of 
frequencies within very narrow intervals close to the starting fre-
quency value.

In order to get approximate analytical solutions to Eq. (1), we 
Taylor-expand the trigonometric functions and obtain (in dimen-
sionless form),
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Fig. 2. (Color online.) (a) The response curve of a single driven–damped pendu-
lum. The filled circles indicate experimental data, the black and green lines are 
numerical results and the red line represents the analytical prediction. Black lines 
correspond to stable solutions and green to unstable solutions. For the main reso-
nance at around 1 Hz, all three traces agree quite well. Notice, however, that due 
to the sine-expansion approximation, for the subharmonic resonance, the analytical 
prediction deviates from the numerical/experimental data for large amplitudes, as 
expected. (b) Zoom showing the peak corresponding to main resonance. (c) Zoom 
showing the origin of the subharmonic resonance.

θ̈ + θ +
[
α1θ̇ − θ3

6
+ Fω2 cos(ωt)

(
1 − θ2

2

)]
= 0. (4)

Assuming that in the main resonance case the solution takes 
the form,

θ = V cos(ωt + φ), (5)

and in the subharmonic case,

θ = V 1/3 cos(ωt + φ) + V 1/3 cos(ωt + φ1/3)

+ A1/3 cos(ωt/3) + B1/3 sin(ωt/3), (6)

and using the harmonic balance method [30], a set of algebraic 
equations can be deduced in order to get the values of parame-
ters V , φ, V 1/3, φ1/3, A1/3 and B1/3. Approximate resonance curves 
have been obtained, as shown in Fig. 2. We note that these approx-
imate solutions show good agreement in the main resonance case 
(as previously also indicated in Ref. [21]), but also in the subhar-
monic resonance case when the amplitude oscillations are not too 
large. It is relevant to point out here that the Taylor expansion uti-
lized in order to obtain the analytical results is only valid for small 
values of θ ; in that light, the range of agreement of the theoretical 
results with the experimental (and numerical) ones is well beyond 
the realm of applicability of the theoretical approximation.

Having mapped out the response regime for a single pendu-
lum, let us now turn to the full pendulum array. The existence of 
period-1 breather solutions has already been established experi-
mentally for this system [23]. As a check, we start with the known 
period-1 breather and verify that experiments and numerics are in 
good agreement. This is demonstrated in Fig. 3 which depicts the 
maximum amplitude of oscillation for each pendulum. Numerical 
simulations performed with longer chains (N = 41) show that this 
behavior is independent of the length of the chain. Note that the 
small range of frequencies for which the solutions exist is directly 
related to the region of bistability in the single-pendulum case, as 
shown in [21].

Let us now consider the pendulum array in the case of the sub-
harmonic response of the chain. One might expect when turning 
on the coupling and moving away from the anti-continuous limit 
Fig. 3. The pendulum array: (a) The period-1 breather profile depicted as the 
maximum amplitude of each pendulum (no phase information). Experimental (nu-
merical) angles are indicated by circles (stars). (b) The Floquet multipliers for the 
breather solution shown in the left panel are all within the unit circle, indicating 
its spectral stability. Both solutions correspond to a frequency of 0.91 Hz.

that a multifrequency breather would emerge, in which the cen-
ter pendulum performs periodic (subharmonic) motion, while the 
pendula in the wings respond weakly at the driving frequency. Pre-
vious numerical studies have shown that, for a different range of 
control parameter values, and close to the subharmonic bifurca-
tion ( f ≈ 3 Hz), this breather exists but is unstable, except for 
small frequency windows below the bifurcation point [21]. In our 
system, in contrast, we have been able to identify such a mode 
experimentally for a range of frequencies, and its existence and 
dynamical stability have been corroborated by numerical compu-
tations. It should also be noted that, in general, the precise sta-
bility details of such a subharmonic breather depend strongly on 
the number of pendula in the chain, with a smaller N favoring 
more robust configurations, as indicated in [21]. Nevertheless, in 
our case, numerical simulations in longer chains suggest that the 
breather remains stable.

The mode profile corresponding to a frequency close to 2 Hz 
is mapped out in Fig. 4(a). The x-axis denotes the node index, 
and the y-axis plots the angles (away from vertically down) at the 
instantaneous turning point of the center pendulum. Note the ex-
cellent agreement between experiment and simulations in the left 
panel at around 1.95 Hz. In both traces, the center pendulum oscil-
lates between roughly 180◦ and −180◦ . In further agreement with 
numerical results, the peak of the experimental breather is ob-
served to be out-of-phase with the tails at the turn-around points 
of the center pendulum (i.e., an out-of-phase breather), as shown 
in Fig. 5. It should be noted that the angles of only the breather 
center and neighboring pendulum on one side were experimentally 
measured to high precision, but that the breathers were visually 
found to be very close to symmetric about the ILM-center.

Fig. 4(b) shows the Floquet multipliers of this solution demon-
strating its stability. Numerical simulations performed with longer 
chains (N = 41) show that this behavior is independent of the 
length of the chain. Fig. 4(c) shows a snapshot recorded by the 
overhead camera for a driver frequency of 1.75 Hz. The mode is 
sharply localized with one pendulum acquiring an amplitude ex-
ceeding 180◦ .

It is illuminating to study, experimentally and numerically, the 
effect of the driver frequency on the profile of this multifrequency 
breather. Fig. 6 maps out the amplitude of this breather solution 
as a function of the frequency; it thus represents a response curve 
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Fig. 4. The pendulum array: (a) The subharmonic breather profile corresponding 
to 1.95 Hz depicted as the maximum amplitude of each pendulum (no phase in-
formation). Experimental (numerical) angles are indicated by circles (stars). (b) The 
Floquet multipliers for the breather solution shown in (a) are all within the unit cir-
cle, indicating breather stability. (c) The pendula as seen by the overhead web-cam. 
The multibreather mode at 1.75 Hz is sharply localized and the center pendulum is 
clearly seen to exceed 180 deg.

Fig. 5. Numerical mixed-frequency breather trajectory across one period (T = 2π/ω) 
for f = 1.95 Hz and N = 19 (amplitude in degrees). (a) Trajectory corresponding to 
central peak pendulum (continuous line) and its first neighbor (dashed line). (b) 
Trajectory corresponding to the edge pendulum at the end of the chain (continuous 
line) and normalized external driving force (dashed line), that is proportional to 
− cos(ωdt).

for the multifrequency breather. We see that over much of the 
frequency interval that exhibited a subharmonic response in the 
single pendulum, the breather solution is unstable against pertur-
bations. There is, however, one band around 2 Hz and another 
narrow band around 3 Hz in which the multifrequency breather 
is predicted to be stable. Around 2 Hz, the stable breather is out-
of-phase, by which we mean that the center and the tails are out 
of phase. At 3 Hz, the stable breathers are more spread along the 
chain and the subharmonic frequency component (originating from 
the center pendulum) is still somewhat present at the tails.

In our numerical study, where we have considered the fre-
quency as a control parameter, we have identified two different 
stable subharmonic breather solutions – one at high frequency 
around 3 Hz and the other at low frequency around 2 Hz. Also note 
that there are two numerical solutions at each driver frequency 
Fig. 6. (Color online.) Amplitude in degrees plotted against the driver frequency cor-
responding to subharmonic breather families. The continuous black and blue lines 
indicate the two different regimes of stable numerical breathers (around 2 and 3 Hz, 
respectively). The dotted red lines show the unstable breathers. The (blue) circles 
depict the experimental results. Notice the two frequency intervals of stability – one 
around 2 Hz, and the other, very small, around 3 Hz. The different bifurcations (B1: 
Bifurcation associated with a conjugate pair of complex Floquet multipliers crossing 
the unit circle bifurcation; B2: Bifurcation associated with a real Floquet multiplier 
crossing the unit circle) lead to the destabilization of the breathers. The relevant 
scenarios are discussed in detail in the text.

Fig. 7. Stable breather-like solutions corresponding to frequencies close to 3 Hz. (a) 
Breather profile (maximum amplitude in degrees) and (b) Floquet exponents corre-
sponding to 3.1 Hz (one site breather).

(shown in Fig. 6 as red and green dotted lines), but the smaller-
amplitude solution (green line) is always found to be unstable. 
For the low-frequency family (around 2 Hz), the transition from 
stability to instability proceeds via a bifurcation associated with 
a conjugate pair of complex Floquet multipliers crossing the unit 
circle (B1), a Neimark–Sacker bifurcation (NSB). However, for the 
high-frequency breather family (around 3 Hz), the relevant desta-
bilization arises through a real multiplier crossing the unit circle 
at (1, 0), as shown in detail in Fig. 7.

In agreement with our numerical results, in our experiments 
it has been possible to detect an interval of frequencies around 
2 Hz where the subharmonic breather exists. Furthermore, the 
NSB has been observed in experiments, occurring when a stable 
subharmonic breather, after a slight variation in the driver fre-
quency, experiences oscillations that grow in amplitude until the 
breather finally vanishes. This type of instability also occurs for the 
period-1 breather and was experimentally tracked and illustrated 
in Ref. [22].

The question then arises if breathers can also be observed 
within the high-frequency interval (around 3 Hz). We find numer-
ically that indeed stable solutions can be found, but that small 
variations in the frequency value can drive the system to switch 
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between two different solutions. These solutions correspond to 
one site and two site breathers, centered on different points of 
the lattice, but far from the boundaries. However, a detailed study 
of these states is beyond the scope of this paper. Simulations in 
longer chains show essentially the same phenomenon. In experi-
ments, in general, and for long time intervals, one-site and two-site 
breather-like transient states have been observed.

We now turn to another type of nonlinearly localized mode that 
can be observed in the pendulum chain system, namely a mode 
that is localized at the chain boundary. Such modes have been ex-
tensively studied in other contexts such as nonlinear optics [31], 
yet we are not aware of such robust, experimentally demonstrated 
examples in pendulum arrays. It should also be noted that such 
modes have also been recently created in other damped–driven 
mechanical systems such as e.g. granular crystals [32]. As before, 
the two boundaries are open, and the driving is spatially homoge-
neous. Nonetheless, we can demonstrate both experimentally and 
numerically the existence (and stability) of modes localized over a 
few pendula near the edges of the chain with the interior pendula 
almost at rest. We find an edge state may be excited indepen-
dently of the behavior at the other edge. An example with both 
edges excited is shown in Fig. 8. The driver frequency (as well as 
the response frequency) here is chosen below the linear dispersion 
curve at f = 0.92 Hz. Note that the linear standing-wave modes 
are confined to the interval between 1.04 Hz and 1.34 Hz. The ex-
perimental data (circles) and the numerical simulation (stars) show 
close agreement – in both cases, the edge pendula attain an am-
plitude of oscillation of roughly 100◦ , whereas the next pendula 
further in are found to be below 40◦ in amplitude. Floquet analysis 
demonstrates that the numerical profile is indeed stable, corrob-
orating the experimental observability of the relevant mode. We 
find that an edge breather typically has a lower maximum ampli-
tude than the corresponding bulk breather, and it exhibits a more 
extended domain of stability.

As is evident in the numerical simulations, the amplitude of 
this edge-breather is frequency dependent, with lower driver fre-
quencies giving rise to larger angles. It is clear that this mode 
should not be confused with a linear standing wave, where the 
edges also exhibit large oscillations. For instance, the second mode 
(just above the uniform mode) corresponding to a frequency of 
1.048 Hz has the two pendula at the opposite edges oscillating 
π out-of-phase. The nonlinear mode discussed here, however, os-
cillates in-phase and is sharply localized at the edges with inte-
rior pendula almost at rest. Furthermore, numerical simulations in 
longer chains show the same phenomenon.

It is relevant to point out that a subharmonic version of these 
edge-breathers also exists around a frequency, f , of 3 Hz. Fig. 9
presents the experimental data as black circles ( f = 3.04 Hz). We 
see that the edge pendulum swings with an amplitude of around 
75◦ , but crucially now at a third of the driver frequency, f /3. The 
response of the interior pendula, in contrast, is dominated by the 
driver frequency, f . This mode was found to persist throughout the 
time horizon of our experiments.

Fig. 9 superimposes two numerical traces for two closely-
spaced driver frequencies ( f = 2.97 Hz and 3.11 Hz). The first 
one (squares) matches the experimental observation very well, but 
Floquet analysis reveals it to be weakly unstable. In fact, the insta-
bility is of the NS type, in contrast to the previous subharmonic 
breather (in the chain interior). The second numerical trace (stars) 
features a slightly larger f , and is stable, but departs from the 
experimental profile. It is likely that either small lattice inhomo-
geneities or weak nonlinearities in the torsional springs were re-
sponsible for stabilizing the observed multifrequency edge mode 
in the experiment.

We remark that, in general, wherever an intrinsic localized 
mode appears there is also the possibility of a stable small am-
Fig. 8. A nonlinearly localized edge state for f = 0.92 Hz: (a) The edge breather 
profile – experimental (numerical) results are shown as circles (stars). Numerically 
stable breather located at the chain center and corresponding to the same frequency 
is shown as squares. (b) The Floquet multipliers for the edge breather are all within 
the unit circle indicating stability.

Fig. 9. A multifrequency edge breather driven subharmonically near f = 3.0 Hz. 
(a) The experimental profile found for f = 3.04 Hz is depicted as black circles. In 
addition, two numerical solutions are shown: the red squares represent a solution 
at f = 2.97 Hz that is found to be weakly unstable, see (c). The blue stars depict a 
nearby solution that is dynamically stable, see (b), corresponding to f = 3.11 Hz.

plitude delocalized oscillation. This is because such an oscillation 
forms the tails of the intrinsic localized mode. It is thus important 
to have an initial condition which is close to the intrinsic local-
ized mode, otherwise only the low amplitude oscillation will be 
observed.

4. Conclusions

In the present work, we revisited the chain of coupled tor-
sion pendula, an experimental setup for which there is a well-
established theoretical model accounting for torsional contribu-
tions from gravity, nearest neighbors, friction and external drive. 
This damped–driven system was previously found to feature pro-
totypical discrete breather waveforms. Recent explorations [21]
have suggested the possibility of subharmonic breather structures, 
which, in general, were unstable for larger chains but potentially 
stable for smaller lattices. In the present work, we have con-
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firmed the existence of these subharmonic breathers via a com-
bination of theoretical modeling (and where possible analysis), 
numerical computation, and experimental realization and found 
that for our parameter choices they are robust even in the long 
chain case. In addition to uncovering the existence of these sub-
harmonic breathers and their good agreement with experimental 
observations, we have also revealed period-1 breathers and sur-
face breather modes, which have also been experimentally identi-
fied.

Clearly, this system is a prototypical one for the exploration of 
nonlinear structures, and their properties and interactions. There 
are multiple directions for future work, including the study of 
modulational instability (MI) as a source for the generation of 
the breathers, the study of breather–breather or breather–impurity 
interactions and scattering, and the examination of multipeak 
breather structures, among many others. The multipeak struc-
tures in particular have emerged as being relevant here due 
to their apparent connection to the stable breathers existing in 
the small high-frequency window. A number of these topics are 
presently under investigation and will be reported in future publi-
cations.
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