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Abstract
Intrinsic localized modes (ILMs), also called discrete breathers, are directly generated via
modulational instability in an array of coupled pendulums. These ILMs can be stabilized over
a range of driver frequencies and amplitudes. They are characterized by a π -phase difference
between their centre and wings. At higher driver frequencies, these ILMs are observed to
disintegrate via a pulsating instability, and the mechanism of this breather instability is
investigated.

1. Introduction

Intrinsic localized modes (ILMs) are spatially localized, time-
periodic excitations in nonlinear lattices analogous to solitons
but sensitive to the lattice discreteness due to their extremely
sharp localization. The ILM, or discrete breather, has become
a very well-studied excitation in a wide variety of physical
systems and has been firmly established as a conceptual entity
on par with the soliton.

Initial studies of ILMs excluded damping or driving-key
features from an experimental perspective. Later, analytical
and numerical treatments found that the addition of a driver
could modify the undriven ILM solutions in non-trivial ways
[1–3]. Analytically, perhaps two of the most prominent
models for which localized solutions have been demonstrated
are the nonlinear Schroedinger equation and the sine-Gordon
equation, both of which have proved relevant in the study of
mechanical solitons [4]. Both equations have been analysed
with the addition of a driving term [5–7], but both are rooted
in the continuum approximation.

In previous experiments on coupled pendulum arrays,
a vertical driver excited the pendulums parametrically at
around twice the natural resonance frequency [8–10]. In these
studies, the particular coupling between pendulums introduced
large inter-site anharmonicity. In this paper, we examine
a pendulum array with harmonic coupling and horizontal,
sinusoidal driving. We observe modulational instability (MI)
of the uniform mode which at longer times makes possible
the formation of stable ILMs locked to the driver. We
characterize these driven ILMs in terms of their spatial profiles
for different driving frequencies and amplitudes. Finally, we

examine an interesting pulsating instability of the ILM at
higher driver frequencies and offer a possible mechanism for
this instability [11].

2. Experimental details

The pendulum array is schematically shown in figure 1. The
array consists of 15 pendulums connected by springs which
couple them torsionally. Each pendulum comprises a brass
base piece near the suspension point, a threaded rod screwed
vertically into the base and a brass disc attached to the bottom
end of the threaded rod which serves as the weight. The
pendulums are suspended on taut piano wire of 0.041 in.
diameter which runs through the base of each pendulum and
is held up by the outer frame. Springs of diameter 0.4 in.
slip tightly over sleeves at each end of the base pieces and
are then glued onto that sleeve for additional support. No
slippage of the spring with respect to the pendulum base was
ever observed. The first and last pendulums are coupled only
to their one neighbour, the other end resting against a spacer
piece to keep it at a fixed distance from the frame; this results
in open boundary conditions. Due to the use of a threaded
rod, the effective length of the pendulums is adjustable. The
weights are calibrated 5 g discs.

Figure 2 illustrates the larger experimental setup. The
pendulum array (i) rests securely on a frame (ii) with low-
friction wheels (iii). A high-torque electric motor (90 V,
190 W) is attached to the cart via a crankshaft (iv) and
moves it horizontally at a constant but voltage-adjustable
frequency. This sinusoidal horizontal motion of the pendulum
platform translates into a driving torque on the pendulums.
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Figure 1. The experimental system: pendulums connected by
torsional springs.

Figure 2. The experimental setup.

The frequency and amplitude of the driver is independently
determined using a Vernier linear motion sensor tracking the
pendulum platform. The pendulum motion was captured by
an overhead wide-angle web-cam (v) which was fixed to the
frame of the pendulum array (vi). Pendulum coordinates can
then be extracted frame by frame via video analysis software
(Logger Pro, Vernier).

Four main torques act on each pendulum: gravitational,
spring, damping torques, as well as a centrifugal driving
torque by virtue of the non-inertial reference frame. Thus,
the equation of motion of the nth pendulum takes the form,

d2θn

dt2
+ ω2

0 sin(θn) −
( c

a

)2
[θn+1 + θn−1 − 2θn]

+ η cos(ωdt) cos(θn) + γ
dθn

dt
= 0. (1)

The second term in equation (1) is due to the gravitational
restoring torque, the third term due to the nearest neighbour
spring coupling, the fourth incorporates the driver and the

last term accounts for velocity-dependent friction. The spring
restoring force was confirmed experimentally to be quite linear
up to an angle difference of 90◦, so that the only source of
nonlinearity is in the gravitational term. Thus, in contrast to the
micromechanical cantilever arrays [12,13], the nonlinearity is
strictly on-site. The constants in equation (1) can be expressed
in terms of measurable properties of our experimental system
(see appendix):
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where m is the mass of the rod, M that of the disc and A the
driving amplitude. The coupling- and friction constants, c and
γ , can be measured directly. The Q-factor of the system is
around 120.

Equation (1) is similar to the discrete sine-Gordon
equation. The driver’s torque, however, introduces a cosine
term (instead of the sine for parametric driving [8]), and there
is a velocity-dependent damping term.

Equation (1), without the last two terms and in the
harmonic limit, results in a linear plane-wave dispersion curve
of the form,

ω(k) =
√

ω2
0 + 2

( c

a

)2
(1 − cos(ka)), (3)

with ω0 as given in equation (2). Inserting realistic
experimental values, we compute the following important
frequencies: ω0 = 6.95 rad s−1, ωZB = 7.6 rad s−1. The driver
frequency, ωd, is in the range of 5.3–6.3 rad s−1, ensuring that
no ILM overtones lie within the linear spectrum.

3. Results and discussion

Figure 3 illustrates one pathway to stable driven ILMs, namely
the MI of the uniform pendulum mode. The traces depict
the positions of the 15 pendulums at the instant the central
pendulum reaches its turning point. The first trace in figure 3(a)
shows the pendulums soon after the driver has been turned on.
The driver frequency is set to 99% of the linear resonance
frequency (ωd = 6.85 rad s−1). The subsequent traces in
figure 3(a) show the turning points of the pendulums at later
times as they acquire more energy from the driver. In traces 3
and 4, an emerging spatial variation can already be observed.
This spatial variation quickly escalates with time, as seen in
figure 3(b). Traces 5–7 show the position of the pendulum
chain at three successive periods of the centre pendulum. In
trace 7 we see that three pendulums (including the centre one)
are now out of phase relative to the rest of the chain. The times
associated with each trace in order are 0.33, 2.3, 4.2, 6.2, 8.3,
9.4 and 10.6 s.

The MI essentially amplifies the noise sufficiently for the
system to eventually settle into one or more ILMs [3]. It
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Figure 3. The MI develops as the pendulums are driven first at
resonance (a) and then below resonance (b).

should be emphasized that in order to produce an ILM using
the MI, it is essential that the frequency be decreased during
the run. We have found experimentally that it is best to start
lowering the frequency at the time the spatial variation first
becomes noticeable, i.e. somewhere between traces 3 and 4 of
figure 3(a). In this run, the frequency was first set to resonance
and then lowered within 3 s by about 10% to ωd = 6.1 rad s−1.
In this way, a stable driven ILM was generated in this particular
run centred at pendulum 7. The location of the ILM within
the chain and even the number of ILMs produced cannot be
predicted a priori, and is different from run to run, as expected
for a uniform system of discrete nonlinear elements.

Figure 4(a) shows a typical profile of a driven ILM
produced via the MI at long times. Evidently, the ILM is
localized to about three pendulums. Interestingly, the wings
are 180◦ out of phase with respect to the centre of the ILM.
Subsequent comparison with the driver phase reveals that the
centre is out of phase with the driver. In figure 4(b), another
possible stable ILM solution is depicted. Here two ILMs
oscillating in phase with one another (but out of phase with
the driver) are produced via MI; the ILM peaks are separated
only by two pendulums.

Theoretical studies [1–3] have predicted the existence of
ILMs with a 180◦ phase difference between the centre and
the wings. This creates what [1] calls a ‘phase-domain wall’
of just one or two pendulums in width. In systems with soft
nonlinearity, the low-amplitude wings are in phase with the
driver (as the driver frequency is below the low-amplitude
resonance frequency), and the ILM centre is out of phase. A
second type of ILM is also predicted where both the centre and
the wings are in phase with the driver. We have not been able
to stabilize this solution experimentally over long times.

Once a stable solution of a driven ILM is obtained
experimentally, one can slowly vary the frequency of the driver

Figure 4. The long-time profile of driven ILMs. Note that in both
cases, the wings perform small out-of-phase oscillations. (a) One
ILM at the centre of the chain (pendulum 7). (b) Two in-phase ILMs
next to one another.

to see what effect this has on the ILM profile. The results
for two driver amplitudes, 7.5 (filled circles) and 2.5 mm
(open squares), are illustrated in figure 5. Note that the
x-axis measures the frequency ratio squared. It is evident
that stable ILM solutions can be obtained over a limited range
of frequencies. When lowering the frequency gradually, the
locked ILM adjusts by increasing its amplitude and becoming
narrower as it moves away from the plane-wave spectrum.
Eventually, the ILM simply decouples from the driver and
proceeds to damp out as if no driver were present. This happens
sooner for lower driver amplitudes, as depicted in the figure.

At the higher limit, the driven ILMs are observed to
undergo low-frequency oscillations in amplitude (and width)
or pulsations. Above a certain frequency threshold, these
pulsations grow in time and eventually destroy the ILM. For
low driver amplitudes, this threshold is higher, allowing one to
observe broader ILMs. Remarkably, when the results obtained
from the two driver amplitudes are superimposed as in figure 5,
they appear to fall on the same general curve. Perhaps not
surprisingly, the data points for the driven ILMs deviate from
the solutions to the continuous sine-Gordon equation (dashed
line) [4], especially for lower frequencies, i.e. sharper ILMs.

When the driver frequency crosses a threshold, unstable
ILM pulsations set in. For instance, at ωd = 6.52 rad s−1,
corresponding to a frequency ratio squared of 0.91 and
amplitude 2.5 mm (see squares figure 5), very long-lasting ILM
pulsations can be observed. The pulsation period is about 20
times longer than the ILM period, and here the ILM pulsation
persists for about 18 min gradually growing in modulation
amplitude. Just before disintegration, the ILM often hops to
a neighbouring site temporarily, and soon full-blown chaotic
dynamics ensues.
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To highlight the nature of this instability, we now change
the boundary conditions to fixed. The driver amplitude is
raised to 5.5 mm and the frequency is set above the instability
threshold (corresponding to this amplitude) to 6.46 rad s−1.
Figure 6(a) tracks the angle at the turning point, or the
maximum angle, for three different pendulums. In the bottom,
the diamonds represent the centre pendulum (pendulum 8),
and in the top the filled and open circles represent pendulums
4 and 5, respectively. Thus, the upper half of the figure depicts
pendulums in the wings of the ILM and the lower half depicts
the central pendulum. Note that since none of the markers
are at the same time, only amplitude but no phase relationship
between the pendulums can be inferred from this figure alone.
However, the wings and the centre tend to be out of phase
except around the times of the minimum wing amplitude (line
labelled (3) in figure 6(a)).

From the diamonds, it is apparent that the amplitude
of the ILM is modulated and that this modulation grows

Figure 5. The amplitude in degrees of the central pendulum of the
driven ILM as a function of the driver (and ILM) frequency. The
frequency interval over which ILMs can be produced depends on the
driver amplitude. Filled circles represent an amplitude of 7.5, open
squares 2.5 mm.

Figure 6. (a) ILM instability at higher driver frequencies. The lower trace shows the maximum angle attained by the centre pendulum in
each period; the two upper traces are for two pendulums in the wings. (b)–(d) The ILM profiles at the select times (1), (2) and (3) also
shown in (a).

with time. The wings undergo the same modulation, but
figure 6(a) demonstrates that the two modulations are not π

out of phase, as might be expected for a simple pulsating
ILM alternately sharpening and broadening. The situation
here is more complex, as illustrated by the profiles shown in
figures 6(b)–(d).

Figure 6(b) depicts the position of all pendulums at the
time of the maximum amplitude of the central pendulum; in
figure 6(a) this time is represented by the line labelled (1). We
see a typical ILM profile with the wings out of phase against
the centre. Note, however, that in figure 6(a) the wings are
already gaining amplitude at that time. A while later their
amplitude has attained the local maximum while the ILM
centre is approaching its minimum amplitude, see the second
vertical line (2) in (a). For this time, the profile is depicted
in figure 6(c). The solid line depicts the actual pendulum
positions, whereas for later comparison the dotted line depicts
a pure sine wave, the third allowed standing wave in the
system (see discussion below). Finally, figure 6(d) shows the
pendulum profile at the time of the minimum wing amplitude;
see vertical line (3). Most of the pendulums momentarily move
in phase at this time.

From figure 6(c) it is evident that a particular standing-
wave mode is momentarily excited (see the dotted line). The
following possible interpretation of the breather instability
mechanism emerges. Since undriven ILMs in the sine-Gorden
system are predicted to be stable [14], it is the addition of
the driver that creates this instability. Since driven ILMs
always have motion in their wings, we can think of the driven
ILM as composed of a central localized peak superimposed
on a uniform-mode background [11]. As the driver frequency
is raised, this background component increases in amplitude
because the driver gets closer to the resonance frequency. The
presence of a non-negligible uniform mode of wavenumber k1,
where kn = (π/L)n, renormalizes the frequencies of all the
other plane-wave modes. In particular, it pulls down the other
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long-wavelength modes, k2 and k3. For instance, if we expand
the sine in equation (1) to second order, it is straightforward to
show that in the presence of a uniform mode of amplitude θ0,
perturbations εn obey the following equation:

ε̈n + ω2
0

(
1 − 1

2
θ2
k=0(t)

)
εn −

( c

a

)2
(εn+1 + εn−1 − 2εn) = 0.

Thus, the original low-amplitude plane-wave frequencies of
equation (3) are approximately modified to

ω(k) ≈
√

ω2
0

(
1 − 1

4
θ2

0

)
+ 2

( c

a

)2
(1 − cos(ka)). (4)

The important standing-wave mode to consider is k3, since it
shares the symmetry of the driven ILM. Therefore, in contrast
to k2, we expect that the driven ILM and a degenerate k3-mode
should be able to exchange energy easily. Thus, when their
frequencies are first matched, the ILM (both components)
transfer energy to the k3-mode. Since the ILM amplitude is
lowered, the excited standing wave (k3-mode) moves back up
in frequency. As its phase relationship to the ILM changes, it
briefly transfers energy back to the ILM and driver, before the
energy transfer stops. Subsequently, the driver can build up
the ILM once more.

Incidentally, this interpretation explains why a lower-
amplitude driver pushes the instability region to higher driver
frequencies, as shown in figure 5. A lower-amplitude driver
simply must be closer in frequency to ω0 in order to excite the
wings to the same amplitude.

In short, the nonlinear coupling and decoupling between
ILM and third allowed plane-wave mode, as well as both
modes’ interaction with the driver, give rise to this pulsating
breather instability. More detailed analytical work is necessary
to fully characterize this phenomenon.
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Appendix

The gravitational restoring torque comes in two parts because
we have a rod of non-negligible mass as well as an end-mass.
The magnitude of this torque is(

MgL + mg
L

2

)
sin(θ).

When dividing by the moment of inertia (which also comes
in two parts), we obtain the frequency squared, as in
equation (2).

The driving torque comes about due to the horizontal
motion of the pendulum array by an outside motor. To obtain
the expression for the driving torque, we stay within the non-
inertial reference frame of the pendulums. In this frame, the
fictitious centrifugal force acts on each pendulum, namely,
Fc = −mabase. This force acts on the rod at its centre of mass
in a horizontal direction, and it thus gives rise to the torque,
τd = Aω2

d cos(ωdt)
(

mL
2

)
cos(θn). For the end-mass, the torque

expression is almost identical, except that the force acts at a
distance L from the pivot. Thus, we obtain the expression for
η in equation (2).
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