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We describe a series of experiments used in a sophomore-level quantum physics course that are
designed to provide students with a hands-on introduction to quantum mechanics. By measuring
correlations, we demonstrate that a helium-neon laser produces results consistent with a classical
model of light. We then demonstrate that a light source derived from a spontaneous parametric
down-conversion process produces results that can only be described using a quantum theory of
light, thus providing a (nearly) single-photon source. These single photons are then sent into a
Mach—Zehnder interferometer, and interference fringes are observed whenever the path of the

photons

cannot be determined. These experiments are

investigated theoretically using

straightforward quantum-mechanical calculations. © 2010 American Association of Physics Teachers.

[DOLI: 10.1119/1.3354986]

I. INTRODUCTION

This article describes our incorporation of single-photon
experiments used in our second-year course titled “Introduc-
tion to Relativistic and Quantum Physics.” Throughout the
paper, we follow the experimental-based approach we use
with our students, introducing concepts as needed to explain
observed results. Most of the experiments described have
been performed by others in both pedagogical and research
settings. The goal of this paper is to offer a slightly different
pedagogical approach than previously reported and to clarify
some confusing aspects of these experiments. Because more
departments will likely introduce similar experiments in the
future, we hope others will find our approach useful. A sec-
ondary goal of this paper is to illustrate that the concept of a
photon, on which most of these experiments rely, is more
complex and subtle than students and physicists typically
assume. Although we make no attempt to resolve this still-
debated concept, we try to present our students, and therefore
the reader, with enough information to clearly see the re-
maining complexities.

Because the experiments examine light, any attempt to
glimpse into the quantum-mechanical world first requires a
demonstration that light is quantized. In textbooks, the quan-
tized nature of light is often introduced by discussing the
photoelectric effect. However, although Einstein’s explana-
tion is beautifully simple, semiclassical theories, which treat
light as a classical electromagnetic wave and only quantize
the detector atoms, are capable of explaining the effect as
well and did so as early as 1927."2 Despite the success of
Dirac’s quantization of the electromagnetic field* and the de-
velopment of quantum electrodynamics,4 the semiclassical
theory is sufficient to explain nearly all observations of li%ht—
matter interactions in the optical region of the spectrum.

At first glance, it seems straightforward to demonstrate the
existence of photons. Simply take a (very) dim light source,
pass it through a beam splitter, and measure the transmission
and reflection intensities with a sensitive detector. If light
consists of quantized packets of energy, then we should
never detect light at the two output ports simultaneously (in
coincidence). As we will discuss in more detail, experiments
are never perfect, and there is always a possibility of mea-
suring an accidental coincidence by chance. The first detailed
experiments examining such intensity correlations took place
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in 1956 when Hanbury Brown and Twiss measured second-
order (intensity) correlations in light for applications in as-
tronomical interferometry. By using an arclamp source, they
observed more coincidences than would be expected by
chance, in contrast to what would be naively expected from
the photon model.®’ If the photon model is correct, these
photons arrived in “bunches.”

Although predicted by semiclassical theories, these results
motivated a theoretical consideration of the statistical and
coherence pro(g)erties of light using a quantum-mechanical
description.g_1 This work, along with contributions from
many others,'" ™ led to the foundation of modern quantum
optics. Experiments examining the statistical properties of
various light sources were performed by several groups,M’17
culminating in the observation of photon “antibunching”—
coincidence measurements less often than random—an effect
that cannot be explained using a classical the01ry.18 Although
this effect requires a quantum-mechanical description of
light, it was not until 1986 that experiments definitively
showed that light hittinlg9 a beam splitter behaves as indivis-
ible quanta or photons.

The appropriate description of a photon has been dis-
cussed since the introduction of the word in 1926.° The
mental picture that many students likely form when hearing
the word photon is that of a small massless particle flying
through space at the speed of light. In reality, quantized
states of the radiation field involve excitations of spatial
modes, which do not readily lend themselves to the mental
pictures we form. It has been suggested that the word photon
itself contributes to the widespread misunderstanding that
surrounds the word and should therefore be eliminated.” The
debate regarding how best to characterize a photon continues
to this day.22 Regardless of how it is described, experiments
with single photons provide the simplest method to date for
demonstrating the essential mystery of quantum mechanics.

Quantum optics experiments that address photon statistics
and single-photon states have been incorporated into the un-
dergraduate curriculum® and are one of the few ways stu-
dents can easily observe a quantum-mechanical effect. The
field has developed rapidly, thanks to technologi al advances
and to the pioneering work of three groups. 531 Much of
what we present here is motivated by these studies.
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II. COUNTING STATISTICS, CORRELATIONS, AND
LIGHT SOURCES

The primary goal of our sophomore-level class is for stu-
dents to observe quantum-mechanical effects using single-
photon states. Although detectors that can, in principle, mea-
sure single photons have existed for some time, we address
two issues regarding this measurement. The first one is fun-
damental; a “click” registered at a detector does not neces-
sarily imply a single photon was measured. As mentioned, a
semiclassical theory predicts a similar pattern of clicks in the
detectors. The second issue is technical; all detectors and
their associated electronics have physical limitations such as
efficiency and temporal resolution that affect the experimen-
tal results. We address both these issues in the following.

A. Radiation counting

Because single-photon experiments invariably rely on
counting statistics and coincidence measurements, we begin
with some counting experiments using radioactive sources.
The students use an inexpensive handheld radiation sensor
and a low-level source of radiation with a reasonably con-
stant activity (half-life more than 1 month or so)’~ to perform
several counting experiments that prompt a discussion of av-
erage, standard deviation, and standard deviation of the mean
(standard error). In particular, students verify that a single
experiment measuring N counts in 7" seconds has an average

count rate of R=N/T with standard error oz~ YR/ T3

The radioactive sample is next used as a source of uncor-
related events to investigate accidental coincidences. Two ra-
diation sensors are placed next to each other a few inches in
front of the source, while the count rates for each detector as
well as the coincidence events are monitored. Radiation de-
tectors, like single-photon detectors, convert an incoming
“particle” to an electronic pulse. Although the output (tem-
poral) pulse width 7 depends on the type and quality of the
detector, typical pulse widths range from tens of nanosec-
onds to milliseconds. For the counting circuit to register a
coincidence, some portion of the pulse from the first detector
must overlap with some portion of the pulse from the second
detector. If the two detectors have the same pulse width 7,
the total coincidence window is 7;:27'.34

For two random and independent sources, all coincidence
counts are purely accidental. If the average count rates for
the two detectors are R, and R,, the expected rate of acci-
dental coincidences is given by

RZ) = 7.R\R,=27R|R,. (1)

The superscript (2r) reminds us that R;ﬁ? is the rate for two-

fold random coincidences. Because radioactive decay is a
random process, the coincidence rate for two radiation detec-
tors should be given, within statistical uncertainties, by Eq.
(D).

Instead of quoting coincidence rates, it is convenient to
introduce the “anticorrelation parameter” « defined by

P,

c ’ D)
PP, 2)

a

where P; is the probability of measuring a count in the ith
detector and P.. is the probability of measuring a coincidence
count. As its name suggests, the anticorrelation parameter
provides a measure of how correlated the two sources are.
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To see its meaning more clearly, we write the probabilities in
Eq. (2) in terms of measurable quantities. If the count rates
are much smaller than the maximum possible count rates for
the detectors, the probability of measuring an event is given
by the number of measured events N, divided by the number
of possible events N, in a given time interval 7, that is,
P=N/N,. In our experiment we measure both singles and
coincidence counts. Experimentally, separate detectors are
determined to be in coincidence if the output pulses overlap
within the coincidence window 7,.. Therefore, the number of
possible events is found by dividing the observation time by
the coincidence window N,=T/7.. Substituting these prob-
abilities into the anticorrelation parameter for two detectors
gives

NC N _ RC _ RC (3)
NN, " zRR, R¥)

acce

g =

where we have used the fact that the average count rates are
given by R;=N;/T. The 2d subscript indicates that the mea-
surement involves two detectors.”’

The two-detector anticorrelation parameter in terms of
rates in Eq. (3) is seen to be the ratio of measured coinci-
dences to the number of coincidences expected for random
sources. This form of a,; shows that correlated sources,
which produce more coincidences than accidental, have
a> 1. Similarly, anticorrelated sources, which produce fewer
coincidences than accidental, have a<<1. As we will discuss,
the classical description of light predicts &= 1, while a quan-
tum description predicts @=0. Thus, a measurement of
a<1 can be described only by a quantum theory of
light.""*

Not surprisingly, our measurements with radiation sensors
give a=1 (within statistical uncertainties). For our purposes,
the main role of these experiments is to get students familiar
with measuring pulse widths, understanding coincidence
measurements, and calculating the anticorrelation parameter
in a straightforward context.

B. Coincidence counting

In principle, coincidence measurements are very straight-
forward. The detector output signals are passed through a
logical AND gate, and any overlap between the detector out-
put pulses results in an output by the AND gate. There are
two issues that complicate matters. First, we wish to reduce
the pulse width from the detectors as much as possible. As
shown in Eq. (1), reducing the pulse width cuts down on
accidental coincidences. Second, we want the flexibility to
measure different twofold and threefold coincidences at the
same time.

The equipment often used to measure coincidences are
time-to-amplitude converters, otherwise known as TACs. A
TAC is a nuclear instrumentation module that is common in
many physics departments. In addition to multiple TACs,
multiple single channel analyzers (SCAs) and a nuclear in-
strumentation module bin are required. These units are a bit
cumbersome for students to work with and cost many thou-
sands of dollars if they are not already available. Further-
more, they have significant dead times that can lead to errors
as the counting rates increase.* Although these errors can be
corrected for, they present an added complication that dis-
tracts students from the primary focus of whether or not pho-
tons exist.
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Fortunately, a low cost coincidence counting module has
been developed just for this purpose.41 We use the more re-
cent field programmable gate array version of this module.
After purchasing the programmable gate array board for
around $300, it took only a few hours to load the program
and get it working. The board takes four input signals and
counts these signals and any four user-chosen coincidence
combinations of the inputs. These data are output to a com-
puter via a serial port (RS232) every tenth of a second, and a
LABVIEW program controls the experiment time and pro-
cesses the data. The user also has the option of shortening the
widths of the input pulses. There are four choices ranging
from no pulse shortening (in our case, =23 ns) down to a
maximally shortened (=4 ns) pulse width. More informa-
tion on this coincidence counting module is available
online.*?

C. An incandescent point source of light

When transitioning from radioactivity to single-photon
counting experiments, students will use optical equipment
they may not have encountered before, including fiber optic
cables, photon counting modules, and neutral density filters.
To help ease this transition, it is useful to begin with an
experiment that is qualitatively identical to the radioactivity
experiment. This experiment also serves the purpose of al-
lowing us to measure the coincidence window 7. for our
system. This information will be important when we measure
the anticorrelation parameter for a helium-neon (HeNe) laser.

We begin by using a small incandescent light bulb as a
point source of light; a “minimaglite” flashlight in candle
mode is ideal. We treat this light as an incoherent source that
emits light randomly in all directions and is therefore
analogous to the radioactivity experiment in terms of setup.
Light is collected with two fiber-optic-coupled lenses (cou-
plers) and sent to our light sensors. Because our ultimate
goal is to demonstrate the existence of single photons, the
light sensors must be extremely sensitive. We use a multi-
channel single-photon counting module (SPCM) produced
by Perkin-Elmer (SPCM-AQ4C), which consists of four ava-
lanche photodiodes. Because of the sensitivity and cost of
the single-photon counting module, it is extremely important
to ensure that any light entering the device is sufficiently dim
by working in an appropriately darkened room and using
neutral density filters whenever needed. In addition, placing
780 nm long-pass filters in-line with each channel of the
module allows us to safely turn on lights that emit only vis-
ible wavelengths. A green LED lamp provides plenty of
work light without affecting the detectors. Even with these
filters in place, the minimaglite must be significantly dimmed
with neutral density filters.**

One obvious feature of this experiment is that the count
rate in each detector is not constant but fluctuates in a seem-
ingly random manner. This behavior suggests to students that
the light source is randomly emitting photons. However, the
randomness of the detector outputs does not necessarily im-
ply that the input to the detectors is random quantized pack-
ets. It is equally reasonable for (classical) electromagnetic
waves to continually impinge on the detectors, which re-
spond by randomly emitting single electrons that are ampli-
fied to produce clicks. The inability to distinguish between
these two descriptions leads to one of the key points we
make with our students: Because the predictions of the quan-
tum and semiclassical theories are the same, we cannot dis-
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Fig. 1. The correlation experiment for a HeNe laser light source.

tinguish between a random stream of photons and classical
electromagnetic waves. This conclusion is important because
it encourages students to think critically about what consti-
tutes evidence for the photon.

Following such a discussion, we perform one additional
experiment with the incandescent light source. We use the
random output pulses from the single-photon counting mod-
ule to determine the coincidence window for our system. If
we measure the number of coincidences as well as the single
count rates in the two detectors, we can use Eq. (1) to deter-
mine 7.. Because our coincidence counting module allows us
to choose between four different pulse widths, we run four
separate experiments to determine the coincidence window
for each setting.

D. Statistics of laser light

After finding that light from an incandescent source is
random in the sense that multiple detectors respond with
random and uncorrelated clicks, we turn our attention to a
light source that appears to be much less random, a HeNe
laser. Using a laser allows us to make our first attempt at
demonstrating the existence of photons. Because the laser
emits light in a single direction, we insert a polarizing beam
splitter into the beam path and direct the transmitted and
reflected light into two optical fiber couplers labeled B and
B’ as shown in Fig. 1. A waveplate in front of the beam
splitter allows us to adjust the polarization so that the mea-
sured amount of transmitted and reflected light is approxi-
mately the same. The coupler lenses can be aligned by eye
while viewing the unconnected fiber output for transmission.
Although the long-pass safety filters in front of the single-
photon counting module have an optical density (at 632 nm)
of approximately 103, a 1-10 mW laser still produces far
more power than the single-photon counting module can
handle.”

The experiment is simple to perform once the alignment
and filtering are complete. The single-photon counting mod-
ule has a maximum sustained count rate of around 10° counts
per second (cps), so we aim for single count rates of less than
10° cps. Students measure the count rates in detectors B and
B’ as well as the BB’ coincidences, and the anticorrelation
parameter a,gq is then calculated using Eq. (3). Typical results
for various coincidence windows are summarized in Table I
where we report the averages of 25 5 s runs.*® The values in
parentheses give the uncertainty in the two rightmost digits
as determined by the standard error.

Our results are consistent with «,,;=1, which is expected if
the detectors measure random and independent counts. This
result suggests one of two possibilities. One option is that
laser light consists of a random stream of quantized units
(photons) that randomly reflect or transmit at the beam split-
ter, thereby causing the detectors to trigger randomly and
independently. In this scenario, coincidences appear because
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Table I. Correlation results for the transmitted and reflected channels of a HeNe laser through a beam splitter

(rates in cps). We report averages of 25 5 s runs. Rﬁ? is calculated according to Eq. (1). The values in

parentheses are the uncertainty in the rightmost digits as determined by the standard error.

7. (ns) Rg Rg: Rgp Rﬁ? ayy

45.51 43 280 43 640 854 86.0 0.993(07)
18.10 43220 43 520 34.4 34.0 1.009(12)
12.31 43110 43370 22.5 23.0 0.977(24)
8.12 43 100 43290 15.6 15.2 1.029(20)

there is always some chance that two (or more) photons ap-
pear very close together in time, one being transmitted while
the other is reflected.

A second option is that the laser emits classical waves that
divide equally at the beam splitter and impinge on the
quantum-mechanical detectors, causing them to trigger ran-
domly and independently as ?redicted by the semiclassical
theory of radiation detection.*’ We stress to the students that
a two-detector anticorrelation measurement of laser light
cannot distinguish between a semiclassical and fully
quantum-mechanical description of the light-matter interac-
tion. Therefore, we are not justified in claiming that we have
measured photons even though the detectors clearly trigger
as individual events.

It is worth commenting further on this result. The fact that
the measurement is consistent with a semiclassical theory
comes about because the correct quantum-optical description
of laser light above threshold is that of a coherent state,
which is a superposition of photon number states with a
Poissonian distribution.'**® Although quantum states, they
corres%ond very closely to a classical description of electric
fields,” and our measurement cannot distinguish between the
two.

If we assume laser light is a Poissonian distribution of
photon number states, our reduced-intensity laser beam is
comprised predominately of single-photon states, even
though a,,;=1. For example, in the results shown in Table I,
approximately 99.9% of the measurements result in singles
as opposed to coincidences. Practically speaking, these re-
sults suggest that reduced-intensity laser light is a good
single-photon source, a fact that has been utilized in simple
experiments demonstrating interference and which-way
information.’%! Nevertheless, because a,,=1 for laser light,
these types of experiments are incapable of distinguishing
between photons and classical electromagnetic waves, and
hence we cannot yet claim we have detected a photon.

If we reduce the intensity further, we eventually reach the
point where no coincidences are measured over an appre-
ciable time (many seconds). Over this duration,

ary=Rpp// R;i?:O, and we measure only single-photon
states. The low count rates required to achieve this condition
necessitate that the experiments be done over longer times,
which leads to two problems. First, the single-photon count-
ing module dark counts (those due to electronic noise and
spurious light in the room) become important, complicating
the analysis considerably. Second, running the experiment
for longer times increases the chance of measuring a coinci-
dence, resulting in a nonzero anticorrelation parameter. It
turns out that when appropriately averaged over very long
times, a,, is always equal to one for a HeNe laser.
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E. Spontaneous parametric down conversion

It is clear we need a different type of light source if we
want to definitively demonstrate the quantum-mechanical
properties of light. We use the process of type I spontaneous
parametric down conversion, a nonlinear optical effect where
light at a éiven frequency is converted into light of lower
frequency.”” Spontaneous parametric down conversion (here-
after referred to as down conversion) has become the stan-
dard method for generating quantum states of light.53 Here,
we provide only a brief overview of those aspects relevant to
our experiments.

1. Down-conversion basics

Spontaneous parametric down conversion is not predicted
classically and can be thought of as a quantum-mechanical
process in which a single photon at frequency w; is con-
verted into two photons at frequencies w, and w; such that
energy and momentum are conserved: w;=w,+w3; and
k;=k,+k;. (Although we have yet to demonstrate the exis-
tence of photons, we use the term throughout this section for
simplicity.) Simply put, a single photon goes in and two pho-
tons come out simultaneously. Down conversion requires a
nonlinear crystal, and due to momentum conservation in the
crystal, the two lower-frequency photons exit in a cone about
the input propagation axis. We use a blue diode laser
(A=405 nm) as the “pump” and choose the output “arms” in
the same horizontal plane as the laser. Figure 2 shows a
schematic of the experimental setup. Further details regard-
ing the down-conversion process for these types of experi-
ments can be found in Refs. 27 and 30.

The essential aspect of down conversion that permits ob-
servation of the quantum-mechanical properties of light is
the correlation that exists between the two down-converted
beams. Because each photon is in an energy superposition
state and the total energy is fixed, the two photons are actu-
ally in an entangled state. Thus, a measurement of a photon
in one arm provides, with absolute certainty, that a corre-
sponding photon exists in the other arm at the same distance

BBO A
"2
ser UDB—f\

Fig. 2. A pump laser undergoes spontaneous parametric down conversion in
a B-barium borate (BBO) crystal. The down-converted light is filtered be-
fore hitting the couplers. Although most of the pump laser passes unaffected
through the crystal, we omit this beam from the diagram for clarity.
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Table II. Correlation results for the two arms of our down-converted light source at two different count rates (all
rates measured in cps). We report averages of 25 5 s runs. The values of the anticorrelation parameter indicate
that the two arms are correlated (standard errors in parentheses).

R(ln)

R(2r)

T (l’lS) RA RB RAB acc acc ]
45.51 45720 45 620 1910 95.4 95.0 20.07(0.05)
18.10 45730 45670 1840 38.4 37.8 48.64(0.16)
12.31 45720 45670 1820 25.6 25.7 70.81(0.22)
8.12 45 700 45670 1810 17.0 16.9 107.02(0.33)
45.51 11 350 11 300 414 6.00 5.83 71.1(0.3)
18.10 11 360 11 300 411 2.26 2.32 176.8(0.7)
12.31 11370 11320 412 1.60 1.59 259.6(1.2)
8.12 11 340 11 290 407 1.02 1.04 391.2(1.7)

from the crystal.15 We refer to these two output photons as
“twins,” even though their energies are not necessarily equal.

In our experiment we use a B-barium borate (BBO) crystal
cut at 29° so that the twin photons emerge with approxi-
mately equal energies (A=810 nm) at 3° from the initial
pump direction. The finite thickness (3 mm) of the crystal
allows for a range of angles and wavelengths, and hence
detector alignment is important and is performed before stu-
dents enter the laboratory. The couplers are first set crudely
in place using a ruler. A visible diode laser is shone back
through the coupler and steered until it hits the center of the
BBO crystal. This process typically aligns the coupler well
enough to see the down-converted light in the single-photon
counting module; the coupler is then tweaked to maximize
the signal. The final adjustment is made using a 1 nm band-
pass filter in front of the coupler. A similar procedure is used
to align the second detector coupler, which is tweaked to
maximize the coincidence signal. After the alignment is com-
plete, we use 10 nm bandpass filters during the experiments
to reduce the number of accidental coincidences.

2. Down-conversion correlations

Once in the laboratory, students perform a correlation
measurement as before, except now the two detectors, A and
B, measure counts in both arms of down-converted light.
Because the beams are correlated, we expect the number of
measured coincidences to be greater than those of a random
source, that is, a,,> 1. Typical results from 25 5 s runs are
summarized in Table II.

The most obvious feature of the data in Table II is that «,,
is larger than one, indicating the down-converted light is
correlated. Because in theory the two arms are perfectly cor-
related, it might be surprising that «,, is not found to be even
larger. To understand why, we consider an ideal experiment
with perfect coupler alignment, perfect detectors, and no
background noise. In this case every twin pair produced by
the down-conversion crystal will be measured by both detec-
tors and all of these pairs will be in perfect coincidence.
Therefore, if the rate of twins incident on the detectors is R,
then R,=Rz=R,z=R", and a,, is given by

__Rap 1
" TRuRg TR’

[2%Y] (4)
For typical singles rates of 10* cps and 7.=8 ns, we would
measure a,,=12 500. In reality, the overall efficiency of our
system, including the optics, alignment, and detector, is
around 4% (see Appendix A for details). Such a small effi-
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ciency tells us that the twin production rate must be about 25
times higher than our measured singles rates, resulting in an
anticorrelation parameter of at most ~500, in rough agree-
ment with our measurements. A more careful analysis is car-
ried out in Appendix A.

Interestingly, a,, can be increased by decreasing the num-
ber of twins, a behavior born out in Table II. Although such
an increase seems counterintuitive, it is merely an indication
that the accidental coincidence rate depends quadratically on
RE’;, while the measured coincidence rate depends linearly on
RY,

3. Accidental coincidences

Another obvious feature in Table II is that the coincidence
counts are not constant as we decrease the coincidence win-
dow despite the fact that perfectly correlated twin coinci-
dences should not depend on 7,. This suggests that a portion
of our measured coincidences is accidental. Depending on
the amount of filtering and how carefully the detector cou-
plers have been aligned, these accidental coincidences may
or may not account for a substantial percentage of the mea-
sured coincidences.

Fortunately, it is straightforward to measure the number of
accidental coincidences. Because the down-conversion pro-
cess is random and the twins occur simultaneously, we delay
the output of one channel of the single-photon counting mod-
ule so that a twin pair no longer triggers a coincidence. This
delay is accomplished by inserting a longer coaxial cable
between the output of one channel of the single-photon
counting module and the counter. Because this shift does not
affect the (average) count rate of accidental coincidences, the
net effect is to eliminate the twin coincidences and leave
only the accidentals. These measured accidentals are dis-
played as Rg'c"c) in Table II (the superscript denotes that these
are measured accidentals). When these accidentals are ac-
counted for, the rate of real (twin) coincidences is found to
be independent of the coincidence window.

As the data in Table II show, the accidental coincidence
counts can be made negligibly small by reducing the overall
count rate or by reducing the coincidence window. Eliminat-
ing accidental coincidences obviates the need for a lengthy
discussion of their cause. Nevertheless, it can be instructive
to at least discuss qualitatively how such accidentals arise.
Such a discussion and a detailed analysis of the accidental
coincidences are given in Appendix A. The result is that the
rate of expected accidentals is approximately given by the
twofold accidental coincidence rate
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Fig. 3. The three-detector correlation experiment using a light source de-
rived from spontaneous parametric down conversion.

R

acc

= R,(zr) = TCRARB' (5)

As shown in Table II, this twofold accidental coincidence
rate agrees with the measured accidentals.

We emphasize that the down-converted light can be
thought of as two perfectly correlated streams of random
photons as can be confirmed by sending one arm, say, the B
line, into a beam splitter and measuring the anticorrelation
parameter for the transmitted and reflected beams (B and B’).
Just as with the HeNe experiment, we find a,,=1. Thus, we
still do not have a light source that unequivocally demon-
strates the existence of photons. To accomplish this, we must
exploit the correlated properties of this light source to reveal
its true quantum-mechanical nature.

acc

III. PHOTON QUANTUM MECHANICS
A. Photons at last

Because the two arms of down-converted light are per-
fectly correlated, the measurement of a photon in one arm
guarantees the existence of a photon in the other. This source
is often called a “heralded” single-photon source because one
photon announces the arrival of the other. Knowing exactly
when there is a photon in the second arm is the key to this
experiment. The arrangement is nearly the same as the ex-
periment with the HeNe laser. The B line of the down-
converted light enters a beam splitter, while the A line goes
directly to a single detector (see Fig. 3). When detector A is
triggered, we know there is a photon at the beam splitter in
the B line. Thus, we perform a correlation experiment be-
tween B and B’, conditioned on a measurement at A.

The probabilities used to calculate the anticorrelation pa-
rameter between B and B’ must now be found in reference to
the counts N, in the A arm. Specifically, the number of pos-
sible events is now N, (these are the only times we look at
the B and B’ detectors) compared to T/ 7, as we had in the

two-detector situation. This large decrease in the number of
possible events leads to a dramatic increase in the
probabilities—knowing precisely when to look means we are
much more likely to detect an event. Increasing the prob-
abilities in Eq. (2) in turn leads to a decrease in the anticor-
relation parameter.

Quantitatively, the probability of measuring a count at B
(conditioned on A) is

(6)

where N,p is the number of AB coincidence counts. A similar
expression holds for Pg.. The conditional probability for
measuring BB’ coincidence counts is

NABB'
N,

(7)

PBB’z

where N,gp: is the number of ABB' triple coincidences. We
combine these probabilities as in Eq. (2) and express the
anticorrelation parameter in terms of measurable quantities
as

RABB’
RA BRA B’

NABB’
NABNAB’

a3q= A As (8)

where we have written a;, to signify that this measurement
involves three detectors.

Once the beam splitter is in place,54 the experiment is
straightforward. We measure the appropriate coincidence
rates and calculate according to Eq. (8). Because a semiclas-
sical theory of light predicts «=1, a measurement of o<1
is an indication that the source must be treated quantum me-
chanically. In brief, measuring « less than one demonstrates
the existence of photons. The closer « is to zero, the closer
we are to having a single-photon source.

Typical results are shown in Table III. We find o<1,
which provides clear evidence for the quantum nature of
light. This result tells us that light consists of quanta that can
either be transmitted or reflected at a beam splitter, but never
both. This result is worth emphasizing to students because
later we will show that such light quanta can travel both
ways at a beam splitter but only if it is impossible to deter-
mine which way the photon travels.

Table III. Correlation results for a three-detector measurement using a down-converted light source (all rates
measured in cps). We report averages of 25 5 s runs. Although not shown, R; and Ry, are approximately the
same as R,. The values in parentheses are the uncertainties in the rightmost digit as determined by the standard

€rror.

7, (ns) Ry Ryp Ryp Rypp R, azg

45.51 45 300 1750 1470 6.38 6.6 0.113(5)
18.10 45 280 1690 1400 2.18 2.5 0.042(2)
12.31 45 340 1660 1390 1.64 1.7 0.032(2)
8.12 45310 1660 1390 091 1.1 0.018(1)
45.51 15350 536 446 0.78 0.71 0.050(5)
18.10 15 350 528 443 0.18 0.28 0.012(3)
12.31 15 360 526 436 0.20 0.19 0.014(3)
8.12 15350 524 432 0.09 0.12 0.006(2)
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B. Estimating three-detector accidentals

A true single-photon source™® would yield a3,=0. Because
we do not measure az, to be identically zero, it is clear from
Eq. (8) that R,z cannot be zero. In other words, we must be
measuring some threefold coincidences. Here, we estimate
the number of accidental threefold coincidences we expect to
find in this experiment.

One possibility is for three uncorrelated photons to end up
at detectors A, B, and B’ within a small enough time
such that the pulses overlap. However, for small pulse
widths, such threefold random accidentals are extremely
rare because this rate depends on the square of
TZR222)=3T2RARBRBr.35 A quick calculation shows that Rg)
is approximately two orders of magnitude less than the mea-
sured rate.

Much more likely is a twofold random accidental between
a real AB coincidence and a random B’ single (or similarly,
between a real AB’ coincidence and a random B single). The
threefold accidentals are dominated by such coincidence/
single events. When background and nontwin events are neg-
ligible (see Appendix A), the coincidence/single events are
easy to calculate with the help of Eq. (1), which gives

R, = 7(RapRy: + RupRy). )

acc

The approximate threefold coincidence rates as calculated by
Eq. (9) are shown in Table III. The agreement between
theory and experiment gives us confidence that these acci-
dentals account for essentially all of the measured ABB’ co-
incidences and explains why the anticorrelation parameter is
not exactly zero.

If we want to improve our correlation measurement, we
must reduce these accidental coincidences. From Eq. (9) it is
clear that one way to do so is to reduce the coincidence
window as much as possible. Although this procedure is sup-
ported by the data in Table III, the coincidence window is
ultimately limited by hardware and can only be reduced so
far. As discussed more fully in Appendix B, a more effective
way to reduce « is by reducing the twin production rate. This
reduction is accomplished by reducing the power of the
pump laser, which effectively lowers all of the count rates in
Eq. (9). This effect can be seen in Table III and more clearly
in Fig. 6.

Interestingly, down-converted light is similar to “normal”
laser light in that lower count rates are needed to keep the
likelihood of multiphoton states to a minimum. Using a
down-conversion light source as described here is often re-
ferred to as a “pseudo-single-photon source” because the
maximum count rate must be limited. This requirement is in
contrast to microscopic single-photon sources that have neg-
ligible multiphoton probabilities at comparable brightness. >
Although similar in some ways, a fundamental difference
between dim laser light and down-converted light is that for
sufficiently low count rates, the average value of as, for
down-converted light is much less than one, a result that is
inconsistent with a classical description of light.

C. Interference of single photons

With this pseudo-single-photon source, we can now per-
form experiments that exhibit the essential mystery of quan-
tum mechanics (dubbed complementarity by Niels Bohr).
Because these experiments have been well described,”’ we
provide only an overview. We construct a Mach—Zehnder
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Fig. 4. Two steering mirrors guide one arm of the down-converted light into
a Mach—Zehnder interferometer with movable mirror M2. By using detec-
tors A, B, and B’, we continually monitor a3, to verify single photons in the
interferometer.

interferometer with nonpolarizing beam splitters, a path
length of about 30 cm, and a movable, piezocontrolled mir-
ror (see Fig. 4). Single photons, as determined by continu-
ously measuring an anticorrelation parameter less than one,
are then directed into the interferometer. Because these pho-
tons spend no more than 1 ns in the interferometer and are
separated by at least 4 ns (using our smallest pulse width
setting), we guarantee that only single photons inside the
interferometer contribute to our measurements.

As mirror M2 is moved by a few microns, the conditioned
counts in B and B’ exhibit interference fringes. We stress to
students that these interference fringes depend on the path
length difference between the two arms of the interferometer.
Because the interference pattern is constructed from single
photons, our conclusion is that each photon must somehow
“sample” both paths of the interferometer. Precisely how this
sampling occurs, of course, is the central mystery of quan-
tum mechanics.

Although other interferometers exist that are simpler to
align,31 we use a Mach—Zehnder for three main reasons.
First, our students have experience constructing such an in-
terferometer with a HeNe laser in a previous course, and
although the alignment using down-converted light is more
challenging and done by the instructor, their experience
makes this portion of the experiment easy to understand.
Second, a Mach—Zehnder interferometer presents an obvious
physical separation between the two arms that helps maxi-
mize the impact of the experimental results; how can a single
photon be in two places at once? Third, there is a well-
defined procedure for aligning a Mach—Zehnder interferom-
eter that makes the process painless,5 % even though the path
lengths of the two arms must be equal to within the coher-
ence length of our source (=65 um when using 10-nm
filters).”’

Typical results for this experiment are plotted in Fig. 5,
which shows the conditioned counts in the B detector as a
function of the scaled path length difference Al/\ between
the two arms. The conditioned B’ counts (not shown) are
180° out of phase with the B counts. The fringe visibility,
which is used to quantify the quality of the interference pat-
tern, is defined as

V= Rmax - Rmin (10)
Rmax + Rmin

and is 94% in this case. Because the interferometer is sensi-

tive enough to be affected by vibrations and air currents,

experimental errors are not necessarily dominated by statis-

tical fluctuations. The error bars in Fig. 5 represent the mea-

sured standard deviations. The error bars for the “tagged”

and “erased” photons (described in the following) are ap-
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Fig. 5. Conditioned count rate as a function of the (scaled) path length
difference for single photons in a Mach—Zehnder interferometer. Interfer-
ence is observed when photons are “untagged” (filled circles) but is not
observed when photons are tagged (crosses). Interference returns when a
polarizer erases the path information (open circles). The smooth curves are
the predictions given by Eq. (21).

proximately the size of the markers and have been eliminated
for clarity.

The interference pattern depends on both paths in the in-
terferometer. Because only single photons are ever present,
each photon somehow “knows” about both paths of the
interferometer—it appears to travel both ways at the same
time. But how is this possible when our earlier experiment
demonstrated that photons incident on a beam splitter are
either transmitted or reflected but never both? To answer this
question, we look carefully at the difference between the two
experiments. In the first case the detectors are placed after a
single beam splitter, allowing us to determine whether each
photon is transmitted or reflected. But in the interferometer
experiment, the detectors are placed after the two paths have
been recombined on a second beam splitter. Therefore, we
can no longer determine whether each photon was transmit-
ted or reflected at the first beam splitter. This difference is
crucial.

To emphasize this point we now “tag” each photon by
altering the polarization in one arm of the interferometer.
This is accomplished by using half waveplates in both arms
of the interferometer. With orthogonal polarizations each
photon carries information that unambiguously determines
which way it travels in the interferometer. If we know with
certainty that each photon takes one and only one path
through the interferometer, it is impossible for there to be an
interference pattern.58 Sure enough, repeating the experiment
while scanning the mirror results in no interference fringes
(see Fig. 5).

We can “‘erase” the path information by placing a linear
polarizer in one of the output ports of the Mach—Zehnder
interferometer. This polarizer is oriented at 45° to the two
polarizations so that every photon has a 50% chance of being
transmitted. Transmitted photons all have the same polariza-
tion, and it is therefore impossible to determine which path
they take through the interferometer. When repeating the ex-
periment in this configuration, the interference pattern re-
turns as shown in Fig. 5. The fact that the amplitude has
decreased by more than a factor of two is due to the fact that
our linear polarizer is only about 75% efficient for light po-
larized along the transmission axis.

Lastly, we describe an experiment that dramatically illus-
trates the quantum-mechanical nature of our experimental
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setup. As mentioned, interference fringes are observed only
if the two path lengths in the Mach—Zehnder interferometer
are equal to within the coherence length of our light source.
We can move mirror M2 so that the path length difference is
well beyond this coherence length. With no bandpass filters,
a 40 um path length difference gives no interference fringes
when the mirror is scanned through a few microns. The
fringes return if we place a 1 nm bandpass filter in front of
the A detector (thereby increasing the coherence length of
light in the A arm), even though no direct changes were
made to the light traversing the interferometer.

The (orthodox) quantum-mechanical description of this
experiment is as follows. Because the two down-converted
photons are in an energy-entangled state, measuring the
wavelength (energy) in the A-line collapses the wave func-
tion so that the wavelength (energy) is now determined in the
interferometer as well. Although there are other descriptions
that explain these results, this nonlocal description provides
students with some of the background they will need to un-
derstand Bell’s theorem. The experimental setup described in
this section can be easily modified to test for violations in
Bell’s inequalities.60 We are currently working on such ex-
periments for use in our upper-level quantum mechanics
course.

D. Quantum-mechanical predictions

The experiments we have described are used with second-
year physics majors, and thus a formal treatment of quantum
mechanics is beyond the scope of the course. Nevertheless,
we want these students to learn the basic skills necessary to
calculate quantum-mechanical probabilities for simple situa-
tions. Thus, we spend much time discussing two-state spin
systems and Stern—Gerlach experiments as described in Ref.
61. As is becoming more common in elementary treatments
of quantum mechanics, this text uses bra-ket notation. Al-
though this notation is unfamiliar and a bit exotic for these
students, that is precisely one of its pedagogical advantages.
In quantum mechanics the interpretation is dramatically dif-
ferent from classical mechanics, and we find that this nota-
tion helps students understand that we are dealing with
something unlike anything they have seen before.

Because of the mathematical similarities, our Mach—
Zehnder interferometer experiments can be elegantly de-
scribed using a similar approach to Stern—-Gerlach experi-
ments. The advantage is that our students have done these
experiments themselves. We hope that when students are
able to compare their calculations to their experimental re-
sults, they will begin to see quantum mechanics as being
“real” and concrete rather than mystical and confusing.

Our approach is similar in spirit to those in Refs. 26, 27,
and 62. Although the mathematics is the same as if we were
treating light classically, the fact that our experiments happen
one photon at a time forces us to interpret the equations in a
completely different manner. This interpretation gives these
calculations their quantum-mechanical “feel.” In the follow-
ing, we outline the calculations our students work through,
beginning with a simple beam splitter and ending with the
quantum eraser.

1. A beam splitter

Suppose we send a photon into a beam splitter and ask
whether the photon is transmitted or reflected. Quantum me-
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chanics says we cannot determine the answer to this question
in advance. Instead, we can only predict the probability of
observing each outcome. We represent the input state, which
consists of a single photon entering one input port of the
beam splitter and zero photons entering the other input port,
by |#,). There are two possible output states: A single pho-
ton reflected and zero photons transmitted, represented by
|¢g), and a single photon transmitted and zero photons re-
flected, represented by |¢;). These output states are eigen-
states of the number operator. For our purposes the important
point is that these two output states can be used as an ortho-
normal basis.

Quantum mechanics tells us that there is a (complex)
probability amplitude associated with §oing from the input
state to each of the two output states.”® We write these am-
plitudes as r=|r|e?r for reflection and r=|t|e’% for transmis-
sion. Our input state is then transformed by the beam splitter
according to

i) — rli) + t] o). (11)

The probability of finding the photon in state | ) (reflected)
is Pr=[(tr| ¥)|*=|r|*=R, and the probability of finding it
in state |¢y) (transmitted) is Py=[(ify| )>=t|>=T. Here, R
and T are the reflection and transmission probabilities for this
input port of the beam splitter. A lossless beam splitter has
R+T=1 because the photon must be found somewhere.

2. A simple Mach—Zehnder interferometer

Now suppose we send a photon into a Mach—Zehnder in-
terferometer with equal and fixed path lengths. The input
state is still labeled as |s,), and |¢/%) and |i7) now represent
the intermediate states of the interferometer. The output
states, which are used as an orthonormal basis, are repre-
sented by |iz) and |¢p:) according to whether the photon
travels toward detector B or B’, respectively (see Fig. 4).
Because each path through the interferometer has a single
mirror and equal path lengths, any phase contributions from
these two paths are identical and can safely be ignored (for
now).

The second beam splitter transforms each of the interme-
diate states in the interferometer. For a symmetric beam
splitter (one that has identical reflection and transmission
properties for both input ports), we find

i) — rlag) + t]hpr) (12)
and
|y — 1| ) + rlihpr). (13)

Upon substitution into Eq. (11), we find the probability that a
photon arrives at detector B is

Py = [(hplgn)|* = R* + T2+ 2RT cos[2(¢, = $)1,  (14)
and the probability that a photon arrives at B’ is
Pgr = (s |¢hn)|* = 4RT. (15)

For lossless beam splitters the sum of these probabilities
must be unity, which, with R+7T=1, constrains the phases of
the reflection and transmission amplitudes to satisfy

b~ = = 2. (16)
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3. Interference in a Mach—Zehnder interferometer

As our first example of interference, we consider the more
general Mach—Zehnder interferometer where the two path
lengths are not exactly equal. When the photon arrives at the
second beam splitter, the intermediate state wave functions
will have acquired an extra phase factor, which depends on
the distance traveled. Let €, represent the distance traveled in
state |ig) and ¢, the distance traveled in state |i/7). Then the
right-hand sides of Egs. (12) and (13) pick up phase factors
of ¢! and e'®, respectively, where &=2m¢;/\. We follow
the same procedure as before, make use of Eq. (16), and take
R=T=1/2 to find

P=%(1 ¥ cos ), (17)

where 8=68,— 6, and the upper (lower) sign gives the prob-
ability that a photon arrives at detector B (B'). These prob-
abilities display the characteristic interference fringes as a
function of path length difference between the two arms of
the interferometer. Because single photons are traveling
through the interferometer, the conclusion is that each photon
must “take both paths,” making this a natural place to quali-
tatively describe Feynman’s sum-over-paths approach to
quantum mechanics.** When going from an input state to an
output state, a photon, or any other quantum object, takes
“all possible paths” that are available. To correctly calculate
the probability, we must sum the amplitudes for every pos-
sible path and square the result.

Because it seems preposterous to students that a particle
can take multiple paths through the Mach—Zehnder interfer-
ometer, we next propose to tag the photons by giving each
intermediate path in the interferometer an orthogonal linear
polarization. We do so by using half waveplates in each arm
of the interferometer. In our experiment the waveplates are
oriented so that photons reflected at the first beam splitter
remain vertically polarized, while photons transmitted are
horizontally polarized. Thus, in addition to the path length
phase factors, the right-hand sides of Egs. (12) and (13) pick
up polarizations |V) and |H). With R=T=1/2, we find the
probabilities for arriving at detectors B and B’ to be

Pp=Pg =1, (18)

Lastly, we need to describe how the addition of a polarizer
outside the interferometer brings back the interference
fringes. The action of a linear polarizer with its transmission
axis at an angle 6 with respect to the vertical is described by
the projection operator |Tg)=cos 6|V)+sin 6|H). That is, the
probability that a photon in polarization state |¢p> passes
through the polarizer is given by [(T,|#,)|*. In our experi-
ment, photons exiting the Mach—Zehnder interferometer to-
ward detector B are in the (polarization) state

lih,) = r?e1|V) + el |H). (19)

For 6=-m/4 the probability that such a photon will pass
through the polarizer is®

Pp= }‘(1 —cos 9), (20)

where we have used Eq. (16) and set R=T=1/2. Note that
Eq. (20) is half of our original interference result given in
Eq. (17), which is what we would expect for a perfect polar-
izer. In reality, our linear polarizer has an efficiency of 75%,
and therefore Eq. (20) must be appropriately modified when
comparing to experiments.
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The data shown in Fig. 5 were taken at detector B so that
the applicable predictions are given by Egs. (17), (18), and
(20). These predictions give probabilities, while the experi-
ments are measured in counts per second; thus they cannot
be directly compared. In addition, it is very difficult to align
the interferometer to obtain perfect fringe visibility. To ac-
count for these experimental imperfections, the data are
modeled using the expression

Ryyo(1 =V cos §), (21)

where R, is the average count rate and V is the fringe
visibility defined in Eq. (10). Equation (21) is used to model
the data and is displayed as solid curves in Fig. 5 with
Ry,=1,985 and V=0.94 or V=0. The erased prediction is
further multiplied by 0.75 to account for the polarizer effi-
ciency. The agreement between theory and experiment is im-
pressive, particularly to students who have labored over the
experiments and calculations.

IV. CONCLUSIONS

We have described a series of experiments that have been
adapted for use in our second-year quantum physics class.
These experiments provide students the opportunity to wit-
ness the counterintuitive behavior of quantum phenomena in
a hands-on setting. The associated calculations give students
a brief introduction to quantum theory in a way that is di-
rectly connected to the experiments. This connection helps
students see the “big picture” behind quantum theory and
reduces the confusion that often accompanies a more ad-
vanced course in quantum mechanics.

Although we are in the early stages of development, the
material presented here was classroom tested in the Spring of
2009. Our formative assessments have focused almost solely
on student attitudes, and we can report that students were
extremely enthusiastic about these experiments. This enthu-
siasm seemed to motivate the students to really want to un-
derstand the theory behind the experiments. In the future we
hope to quantify these student attitudes and begin to probe if
students are actually learning this material as well as it
seems.

Incorporating these experiments into the curriculum took a
substantial investment of time and money. Some of the
equipment took a month or more to arrive, and it can require
several weeks just to get items unpacked and properly set up.
Once everything is assembled, the experiments themselves
might take a few weeks to get working satisfactorily. We
opted to have four physics majors set up these experiments
as part of a senior project. None of them had any optics
experience, and thus we included some simple optics experi-
ments to give them the relevant background they would
need. Ultimately, it took the students about a full semester to
get things working reliably.

Although there have been several articles published on
this topic, we have tried to elaborate on many of the details
that we found confusing when implementing these experi-
ments. We have also attempted to include a reasonably com-
plete account of what we present to our students. Incorporat-
ing these experiments into our curriculum has been a
rewarding endeavor for the faculty and students involved,
and we hope this presentation will motivate others to incor-
porate similar experiments into the undergraduate curricu-
lum.
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APPENDIX A: ACCIDENTAL COINCIDENCE RATE
FOR A SPONTANEOUS PARAMETRIC DOWN-
CONVERSION LIGHT SOURCE

In this appendix we consider more closely the accidental
coincidence rate for the spontaneous parametric down-
conversion experiment described in Sec. II E. There are three
main sources of accidental coincidences in this experiment.
The first is due to detector inefficiency. In an ideal experi-
ment, the only light that enters the detectors are twins from
the down-conversion crystal, which means that each photon
incident on detector A has a twin that is simultaneously in-
cident on detector B. Because the single-photon counting
module is not 100% efficient and many photons are lost in
the optical elements (filters and fiber cables), when a photon
is measured at detector A, there is a good chance that the
twin photon appearing at detector B will not be measured. If
only one of a twin pair is measured at A and only one of a
separate twin pair is measured at B, there is a chance that
these two events will give rise to an accidental coincidence.

Another cause of accidentals is due to the misalignment of
the detector couplers. It is almost impossible to align the two
detectors so that they see exactly the same bandwidth from
the crystal. Thus, in addition to twin pairs incident on the
detectors, there will be “nontwins” coming from the crystal
that are incident on the detectors. The third cause of acciden-
tals is what we call background, which consists of ‘“dark
counts” from within the detector plus any stray light that
enters the detectors that is not generated in the crystal. All of
these sources are assumed to be random.

We denote the rate of twins measured by detectors A and B
to be RE:) and Rg), respectively. Although the number of twins
emanating from the crystal toward the detector couplers is
exactly the same (by definition), the number of twins actu-
ally measured by the detectors will not be the same because
each detector and accompanying optics have a different over-
all efficiency. This efficiency is the probability that a down-
conversion photon produced by the crystal and in the appro-
priate solid angle (that is, traveling toward the detector
coupler) is actually measured by the detector. We denote
these efficiencies as 7, and 7 so that

RY=nR" and RY = nzRY, (A1)

where R" is the average rate of twins traveling from the
crystal toward the detector couplers.

Similarly, we denote the measured rate of nontwins and
background counts by RX“), Rg“), Rgbg), and Rg’g). In theory,
the background counts can be measured by closing the align-
ment irises. Usually the rate of twins or nontwins emanating
from the crystal is much higher than the background rates
unless the count rates have been purposely reduced. For ex-
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ample, we measure background rates of approximately 1000
cps in our experiments (see Tables II and III).

Having accounted for all sources of light in the detectors,
the measured count rates are given by

Ry = 7,RY + R + RYY (A2)
and
Rg= 7RV + Ry + RY®. (A3)

The measured coincidence rate is given by the sum of real
plus accidental coincidences

Ryp=RS 4 Rl (A4)

Real coincidences are found by multiplying the twin rate by
the probabilities that each detector will trigger

RXE‘“) = 4R © . (A5)

To find the rate of accidental coincidences, we rely again on
the twofold random coincidence expression in Eq. (1), sub-
ject to the condition that R, and R, (R4 and Ry in our experi-
ment) represent the measured count rates, not including any
real coincidences. Thus, we need to subtract the rate of real
coincidences from the measured rates R, and Ry (Ref. 65) to
get

foagc) = 7Ry~ 14 7]BR<Z)) (Rg— s WBR(t))- (A6)

When Egs. (A5) and (A6) are substituted into Eq. (A4), we
are left with three equations, (A2)—(A4), and five unknowns
(R;“t), Rg“), 7, Mg, and RY). These equations cannot be
solved without additional information. However, we can in-
fer from Eq. (A6) that the expected accidental coincidence
rate is always less than the twofold random rate, and for low
efficiencies they are approximately equal

RX};C) ~ T.R,Rp. (A7)

As we will demonstrate, our efficiencies are typically under
5%, making Eq. (A7) an excellent approximation. To say
anything more requires that we make certain assumptions
about the system. Two situations warrant further investiga-
tion.

1. Perfect coupler alignment

Here we assume the detector couplers are nearly perfectly
aligned so that twin events dominate nontwin events. This is
the situation we seek to attain in the laboratory. In practice,
aligning the detectors perfectly is almost impossible. How-
ever, using narrow-band filters limits the spectrum reaching
the detectors so that twin events will dominate even for im-
perfect coupler alignment. In such a scenario, we have

R, =~ R + RP? (A8)
and
RB = nBR(t) + Rgbg) s (A9)

which when combined with Egs. (A4)—(A6) give three equa-
tions with three unknowns. Although these equations can be
solved exactly, the results are cumbersome and not enlight-

ening. Nevertheless, given measurements of R,, Rp, Rgbg),

R , and R,p, we can numerically determine 7,, 7y, and
Rg). For the data in Table II, we find 7,=~4.05%,
7p~4.05%, and R¥~=1.10X 10° cps for the higher-count-
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rate data and 7,~3.99%, 73~4.01%, and R"=~256
X 10° cps for the lower-count-rate data.

Given such low efficiencies, Eq. (A7) is a valid approxi-
mation. This allows us to solve Egs. (A7)—(A9) analytically
to find the efficiencies and the twin rate in terms of easily
measurable quantities. The results are

R R
e~ 2L, gy~ L, (A10)
Rg Ry
and
0 ~ RaRs (A11)
RAB

where RA:RA—R;bg), RB:RB_Rg)g), and RAB:RAB_TL‘RARB
are the real (in contrast to measured) rates. This set of equa-
tions yields results that are almost identical to the numerical
results quoted following Eq. (A9) and are far simpler to use.

The equations simplify further when the background rates
and accidental coincidences can be neglected. In this case we
have the relations

Ry~ mR"Y, Ry~ nR", (A12)

and

Rpp= s ﬂBR(t), (A13)

which are seen frequently in the literature.® From an educa-
tional perspective Egs. (A12) and (A13) are simple to under-
stand from first principles because they only make use of
twin events and system efficiencies. They are easily solved to
give

Rup Ry
~ A8 g~ 2B Al4
N Ry B R, ( )
and
R,R
RY =~ AR ) (A15)
Ry

By using the data in Table II, we find 7,=4.04%,
7p~=4.03%, and R¥~1.13X 10° for the higher-count-rate
data. These values compare favorably with the numerical
results calculated following Eq. (A9). For the lower-count-
rate data, we find 7,~3.64%, 75~3.62%, and R"~3.12
X 10°. The fact that the lower-count-rate data do not agree as
well with the earlier numerical results should not be a sur-
prise. In this case we have neglected background events,
which account for a substantial portion (=10%) of the
singles counts.

The anticorrelation parameter can be calculated using Egs.
(A12) and (A13), and the result is the same as for a perfect
experiment, a=1/(7.R").

2. A “noisy” system

Because the bandpass filters prevent some of the down-
converted light from entering the detector couplers, they re-
duce the total efficiency of our system. Thus, we might ex-
pect our experimental results to improve if we remove the
filters after aligning the system. To test this idea, we perform
an identical set of experiments as described in Sec. II E. The
only difference is that the bandpass filters are removed. The
results are shown in Table IV.
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Table IV. Correlation results for the two arms of our down-converted light source with no bandpass filters in
front of the detector couplers (all rates measured in cps). We report averages of 25 5 s runs. The values in
parentheses are the uncertainty in the rightmost digit as determined by the standard error.

R(’")

R(Zr)

T (l’lS) RA RB RAB acc acc Q24
45.51 422 400 425 300 20 200 8200 8180 2.47(2)
18.15 422 500 425 500 15 200 3280 3250 4.68(6)
12.31 422 400 425900 14 200 2230 2210 6.41(7)
8.12 422 400 425 300 13 400 1480 1460 9.2(1)
45.51 101 700 101 200 3340 465 469 7.13(6)
18.15 101 700 101 200 3040 187 186 16.3(2)
12.31 101 700 101 300 2970 129 127 23.4(3)
8.12 101 800 101 200 2920 85.3 83.7 34.9(5)

We note that Eq. (A7) is still an excellent approximation
for accidental coincidences. We also see substantially more
singles and coincidence counts compared to our earlier ex-
periment (see Table II). Unfortunately, the accidental coinci-
dences have increased even more, causing the anticorrelation
parameter to be significantly lower. Thus, the removal of the
bandpass filters degrades the experimental results. In other
words, the use of bandpass filters improves the correlation
between the two arms of the down-converted light source.

Let us examine this situation a little more closely. Because
we suspect that there are significant nontwin events in this
experiment, there is no way to solve Egs. (A2)—(A6) without
additional information. However, we can use the results of
the same experiment with bandpass filters to provide the nec-
essary data. The only difference between these two experi-
ments is the removal of the bandpass filters, which increases
the overall efficiency of the system and possibly the nontwin
and background events measured by the detectors. However,
it has no effect on R” (although it will certainly affect the
twins measured by the detectors). Thus, R remains the
same when the filters are removed.

Knowing R, we can use Eq. (AS) to determine the effi-
ciencies of the system if we assume that the efficiencies of
the A and B lines are the same. Based on our previous re-
sults, this assumption appears to be reasonable. We have

R§;" =Ry — 7.R\Ry= 7’R", (A16)

from which we obtain 7=10.4% for the higher-count-rate
data and 7= 10.6% for the lower-count-rate data. Equations
(A2) and (A3) can then be used to determine the rate of
non-twins measured by the detectors. We find that approxi-
mately 75% of the singles rates are now due to nontwin
events. Because these nontwin events lead to accidental co-
incidences, the removal of the bandpass filters increases the
“noise” in the system. Although the efficiencies of the sys-
tem are reduced with the use of bandpass filters, viewed in
this way the signal-to-noise ratio improves.

APPENDIX B: REDUCING a3,

In Sec. IIT A we discussed a three-detector anticorrelation
experiment that would ideally give az,;=0. Here we investi-
gate what factors affect a3, For simplicity, we restrict our
attention to a situation in which the only events registered by
the detectors are due to down-conversion twins. As before,
we let R® be the rate of twins heading toward the detector
couplers and let 74, 7, and 7 be the total efficiencies of
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the A, B, and B’ lines, respectively. Then, for a 50-50 beam
splitter (see Fig. 3), the count rates detected in A, B, and B’
are

1 1
RA =~ nAR(t), RB = EﬂBR(r), and RBr = EﬂBrR(t),
(B1)
while the twofold coincidences are
Rup=~5mampRY  and Ryp =~ 57, mpRY. (B2)

In Sec. III B we showed that Eq. (9) accounted for all of the
measured triple coincidences. If we replace R,z in Eq. (8)
by the right-hand side of Eq. (9) and use Egs. (B1) and (B2),
we can reduce the anti-correlation parameter to

Ry R
g = (—B + —B> TRy~ 27'CR(’). (B3)
Rapr Rup

In this form we see that a3, is proportional to the coinci-
dence window and the twin count rate; the efficiencies have
no effect. While 7, is determined by the hardware, R® is
continuously variable by adjusting the input laser power.
This variability makes it straightforward to test the predicted
relation between as, and R given in Eq. (B3). As shown in
Fig. 6, the linearity is clearly evident in our results (see also
Refs. 30 and 40).

Interestingly, the slope of the best-fit line in Fig. 6 is 6.1
ns, somewhat less than our previously measured
7,=8.12 ns. Although part of the discrepancy might arise
from the approximations used in deriving Eq. (B3), we also

20

0 T T T T T
0 0.5 1 1.5 2 2.5 3

2R (109 ¢ps)

Fig. 6. Three-detector anticorrelation parameter as, as a function of the twin
production rate 2R, The error bars denote the standard error.
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made the implicit assumption that a coincidence between a
random single event and a real twin event would have the
same coincidence window as a coincidence between two ran-
dom single events. This assumption should hold if the twin
event results in two pulses that leave the single-photon
counting module at exactly the same instant. Evidently this
assumption is not applicable. Our results suggest that there is
a =2 ns average delay time between the two channels of our
single-photon counting module. We are investigating this de-
lay further and will report the results elsewhere.
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O, E is a field

Waves in Free Space
Bob Panoff, Shodor Foundation
Tune: Home on the Range

Whose divergence will yield
The charge density times four pi.
Its curl is B dot,

Hence, in statics it’s naught;
And the flux rate is just minus L.

Waves, waves in free space.

At the speed of light ¢ they do hurl.
They flux energy as their modes E and B
Oscillate with divergenceless curl.

No monopoles yet,

So del dot B is nyet,

But the search will go with new toys.
As waves impact matter,

They reflect and back-scatter.
Transforms filter signals from noise.

Waves, waves in free space.

At the speed of light ¢ they do hurl.
They flux energy as their modes E and B
Oscillate with divergenceless curl.

The curl of B is dE by dt

If charges move, add in Jf.
But don’t be a fool

Cuz’ there’s no left-hand rule:
So only the right one is left.

Waves, waves in free space.

At the speed of light ¢ they do hurl.
They flux energy as their modes E and B
Oscillate with divergenceless curl.
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