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Controlling fingering instabilities in rotating ferrofluids
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We perform a detailed analytic and numerical study of the evolution of a ferrofluid drop confined to a
rotating Hele-Shaw cell in the presence of an azimuthal magnetic field. Our results demonstrate that the
centrifugally driven interfacial instabilities can be simply controlled with the use of a current-carrying wire. We
compare an analytic linear analysis to our computational results and show that a number of observed features
cannot be explained by linear theory alone, including a “diamond ring” instability that results when a droplet
is nearly stabilized.
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The shape evolution of a rotating liquid drop has been &haw cell evolves into a very intricate, mazelike structure.
subject of long-standing interest due to its relation to a wideExamples of stabilization include the elimination of the
variety of phenomena ranging from nuclear fission to planKelvin-Helmholtz instability and suppression of the finger-
etary motion[1]. The related phenomenon spin coating—  ing instability in flow through porous media.
the flow of a thin pool of liquid spreading on a rotating  Recently, a linear analysis demonstrated that a particularly
horizontal surface—is also a topic of considerable scientifi¢imple magnetic field configuration, produced by a current-
and practical importancE2—4]; it occurs in a number of Carrying wire, was capaple of stabilizing the interface of a
technological applications such as the manufacture of magconfined, rotating ferrofiuid drofg]. Here, we extend those
netic storage disks and the application of photoresist in mifesults and provide a quantitative investigation of the system
crocircuit fabrication. in both the linear and nonlinear regimes. Consider a Hele-

Centrifugally driven flows involve the development of hy- Shaw cell of thicknes$ containing two immiscible, incom-
drodynamic instabilities. As a thin, rotating liquid droplet Pressible, viscous fluids with interfacial surface tensien
spreads over a solid substrate, its boundary becomes unstaf€€ Fig. 1 . . N )
and develops undulations that eventually grow into complex 'Denote the .densmes and viscosities of the inner and outer
fingerlike interfacial patterns. Experimental studies reveafluids, respectively ap,, 7, andp,, 7,. We assume that
the occurrence of fingering instabilities in the spreading ofthe inner fluid is the ferrofluid while the outer fluid is non-
both free and confined thin liquid films. In free surface flows, Magnetic. The Hele-Shaw cell rotates with constant angular
the development of nearly polygonal structures whose vertivelocity 1 about an axis perpendicular to the plane of the
ces eventually break into long radially outgoing fingers isflow and a long straight current-carrying wire is directed
observed5,6]. Confined flows in Hele-Shaw cells exhibit a &long the axis of rotation. The magnetic field produced by
different kind of fingering structure in which the central ini- the wire isH=1/(2#r) e,, wherer is the distance from the

tial drop throws out attached droplets, which themselvesyire ande, is a unit vector in the azimuthal direction. Note
form new droplet{7]. Despite their interesting morpholo- that the azimuthal symmetry and radial gradient of the mag-

gies and rich dynamical behavior, these patterned structurgsfetic field will result in a magnetic force directed radially
are typically undesirable in technological applications since

they can result in uneven surface coverage. Thus, it is impor-
tant to develop a fundamental understanding of the dynamics = Q
of these systems, and to find ways to control such hydrody-
namic instabilities.

In this paper we focus on an initially circular droplet of a
magnetic fluid(ferrofluid) in a rotating Hele-Shaw cell. Fer-
rofluids are colloidal suspensions of nanometer-sized mag-
netic particles suspended in a nonmagnetic carrier fluid.
These fluids behave superparamagnetically and can easily be
manipulated with external magnetic fields that can act to
either stabilize or destabilize the fluid interfag®]. Ex-
amples of destabilization include the so-called Rosensweig
or normal-field instability—in which an initially flat free sur-
face evolves into a hexagonal pattern of peaks, and the laby- FIG. 1. Aferrofluid drop in a rotating Hele-Shaw cell; a current-
rinthine instability—in which a ferrofluid confined to a Hele- carrying wire is aligned with the axis of rotation.
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inward. This is exactly what is needed to stabilize the out-
ward centrifugal force.

To study the hydrodynamics of rotating ferrofluids, the
usual Navier-Stokes equation is modified through the inclu-
sion of terms representing magnetic and centrifugal forces.
We assume that the ferrofluid is uniformly magnetized and
thatM is collinear with the external fieltl [10—12. For the
guasi-two-dimensional geometry of a Hele-Shaw cell, we re-
duce the three-dimensional flow to an equivalent two-
dimensional flowv(r,#) by averaging over the direction.
Using a parabolic velocity profile with no-slip boundary con-
ditions and neglecting inertial term@cluding the Coriolis
force), one derives Darcy’s law for ferrofluids in a rotating
Hele-Shaw cell a$§9]

b2
V:—TVH, (1)
127 020 30 40 50 N,

where the generalized pressuieconsists of the-averaged
hydrodynamic pressure dfp dz plus magnetics woxH?
and centrifugal3 pQ?r? terms. Here,u, is the free-space
permeability andy is the constant magnetic susceptibility.
Equation(1) describes nonmagnetic fluids by simply drop-
ping the magnetic term.

We take the initial state of the interface to be a circle of
radiusR. Then, in the framework of linear analysis, we de-
scribe the interface in polar coordinates & 6,t)=R
+{(6,t), and consider a small perturbation of the form fa
£(0,t)=¢q(t)expnd), wheren=1,2,3 . ... Theproblem is
then specified by two boundary conditior(s: the pressure
jump at the interfacell;—1I1,)|x=o«|z, wherex denotes
the interface curvature; anid) the kinematic boundary con-
dition n-VII;|r=n-VII,|z, wheren is the unit normal
vector pointing from fluid 1 to fluid 2. Following the usual
linear stability procedures, we obtain the differential equa

tion for the Fourier perturbation amplitudes=\(n)¢,,
where No=Ng+3n(n=*1). 4

FIG. 2. Linear stability phase plot showing neutral stability
curves(dashegl and zonegshaded of fastest growing mode* .
Horizontal lines give values dfl, used in the simulations.

We also note that for a particular valueNdf, , increasing\Ng
stabilizes more and more modes urltif=Ng, at which
pointall modes are stable. Thus, we should see no evolution
under these conditions.

Another useful quantity that linear theory gives us is the
stest growing mode*, defined as théintegey mode that
produces the largest growth rate. This is the mode that will
tend to dominate during the early stages of the pattern for-
mation process and will perhaps determine the number of
fingers in the final state. Now, a given modds only the
fastest growing whe (n)>A(n—1) and\(n)>A(n+1).
Using Eg. (2), we find that the boundaries of the region
"dominated by a particular mode is given, for integeby

b2on ) Again, one can see that for a givéh,, increasingNg will
A(n)= T2t 7R )Rg[NQ_NB_(n —D] @  tend to decrease the number of fingers that develop.

T N2 Figure 2 depicts a “phase diagram” N,,-Ng parameter
is the linear growth rate. Here, we have defindg, SPace for the linearized system. The dividing liNg=Ng
=[R3(py— p5) Q2]/o andNg= pox!2/(4m20R) as the(di- separates the stable and unstable regions of the phase dia-
mensionlessrotational and magnetic bond numbers, respecdram, and represents the neutral stability curve for mode
tively. Since a positive growth rate leads to an unstable in=1: Thus, as long aflg=Nq, we are within the stable
terface, Eq(2) tells us that sincé\g is always positive, the €gioN and should .observe an unchanging circular dro_plet
magnetic field will always stabilize the interface. On the centered on the. axis of rotation. As one moves further into
other handN,, can be either positive or negative dependingthe unstable region, the dashed lines represent the boundaries
on whether the inner or outer fluid is more dense. Thus, th&/here higher modes (labeled on the top of the grapbe-

centrifugal force can be either stabilizing or destabilizing. C0Me unstable as given by E@). The solid lines that en-
Some important information can be extracted from theCOmMpass the shaded regions, determined from4jgdenote

linear growth rate. The first is the neutral stability curffies ~ 20nes where a particular mode is the fastest growing and are

which \(n)=0] labeledn* on the graph. _ _ _
As an example of how one might use this graph, consider
No=Ng+(n®—1), ®) the case wher&l, =50 is held fixed. WhemNg=0, modes

1-7 are all unstable even though we are in a zone’of
which determine when a particular mode becomes unstable= 4. Therefore, one might expect that all else being equal, an
When Ng=0, the moden=1 is unstable for any value of initially circular droplet would develop into a four-fingered
No>0 and higher modes become unstable Ngy>n?—1. structure. AsNg is increased, the higher modes become sta-
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We begin our numerical experiments by first considering
rotations aloneNlg=0). Figure 3 shows time overlaid plots
illustrating the evolution for rotation numbefd,=3, 10,

25, and 50. The initial state is the same in each case and the
experiments were stopped before the complicated “pinch-
off” process [16]. For clarity, the final shapes have been
shaded, but it is important to note that these rameequilib-

rium states. In addition, while the time steps are equally
spaced, the total time is different for each experiment. The
larger the centrifugal effects, the smaller the time required to
reach pinch off.

One can immediately notice that higher rotations lead to
more fingered structures. In fact, the simulations beautifully
capture the rigid translation of the drop for small}, . Al-
though this rigid translation is expected from linear theory, it
is a bit surprising that the droplet maintains its shape as it
moves far off axis. A noteworthy point is that the observed
number of fingers for the patterns depicted in Fig. 3 agrees

FIG. 3. Equally spaced time steps overlaid to show the e"O'Utiorbreciser with the fastest growing mode from the linear
of a rotati_ng ferroflu_id drop with no magnetic field; largey, rep- analysis. As shown in Fig. 2, whé¥i,=0, rotation numbers
resents higher rotation rate. of N =3, 10, 25, and 50 lie in the zone$ =1, 2, 3, and 4,

N ) respectively. This suggests that linear theory is a good pre-
bilized and the fastest growing mode also decreases. Notgjctor of the final number of fingers, at least, when there is
however, that a particular mode remains unstable long afteio magnetic contribution. While one might expect this agree-
losing its status of fastest growing mode. . ment if the initial state is such that each mode has the same

Finally, we note that in contrast to the usual viscous fin-gmpjitude, it is important to question the role of the initial
gering problem in nonrotating Hele-Shaw c¢llS], the Fou-  conditions. As already mentioned, our initial circles were
rier moden=1 that corresponds to a rigid translation of an gprinkled with a small amount of random noise, but what if
unperturbed circular droplet can become unstable for flowgne initial condition was such that a particular mode had a

in rotating cells. This is because the instability is driven by a
10 i
25 E

viscosity difference in one case and a density difference in
the other. In Fig. 2, the unstable zone labeled n¥y=1
would be related to such interesting dynamical behavior.

To test the predictions from linear theory and also to ex-
amine the long time behavior of this system far into the
nonlinear regime, we perform a series of numerical experi-
ments. We take the simplest situation in which the outer fluid
has negligible viscosity and density and assume the hydro-
dynamic pressure is a constant. Since the ferrofluid is incom-
pressibleV -v=0 and Eq/(1) reduces to a Dirichlet problem
for an arbitrarily shaped simply-connected domain. Since the
Dirichlet problem on the unit disk is known, we use a con-
formal mapping technique to map that solution to the domain
of interesf{14,15. Using this approach, the interface is given
by the complex functiom(«) and evolves according to

1.0

Re zd, A{I1}]¢ia

|9p|? ’ ©

&tp=i(z9ap)«4l
z=el

wherea parametrizes the interface. Here, the integral opera- 1.5 35

tor A takes a real functiohl («) and returns a function that

is analytic inside the unit disk whose real part evaluated at

e'® is II(a). For the results presented in this paper, all ex-

periments begin with the same initial state of a circle cen- N No=10 No=25 No=50

tered on the axis of rotation with a small amount of random o ¢ @ o

noise distributed in the first eight azimuthal modes. Note also FIG. 4. The effect of nonzero magnetic field on the evolutions

that the data are presented as seen in the rotating frame sfiown in Fig. 3. Only the initial circle and final statshaded are

reference in which the Hele-Shaw cell appears stationary. shown;Ng is listed next to each simulation.
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larger amplitude than the others? Would that affect the pateurrent-carrying wire; the larger the magnetic field, the more
tern formation process? of the drop seems to get pinned down by the wire. Rgr

To answer this question, we ran a number of simulations= 10, the two-fingered dumbbell from Fig. 3 has developed a
with an initial perturbation consisting of a single mode. Thisbump in the middle that gets larger for larger magnetic field
state was then used in experiments with various combinavalues. In all cases, it is clear that increasingly larger values
tions of N, andNg and we looked at the resulting evolution. of Ng progressively reduces the number of outgrowing fin-
We found that as long as a particular mode was unstablélers. Ultimately, wherNg=N, , we reach a state of com-
then an initial condition of that mode led to a structure with Pleté stabilization where no evolution takes place.

the same number of fingers regardless of what the fastest -@St, we point out that all patterns shown in Fig. 4 share a
growing mode was. For example, an initial state of made Cf;m;“gq; m:_erestlng feta)lture. Before lreac?lntg glomple}e drqt;?]-
=3 led to a three-fingered structure as long as we werdft stabilization, one observes an almost stable circle, wi

. S NP only one finger protruding from it. We call this nonlinear
above the mode-3 instability linenE& 3 dashed lingin Fig. i L o :
2. This tells us that the initial conditions can play a veryphenomenon the “diamond ring” instability. To try to gain

: tant role in th ttern f " On the othes2™e insight into this interesting behavior, we note from Eq.
Important role in e patiern formation process. ©n the o ef3) that forNg<Ng+ 3, the only(possiblg unstable mode is
hand, if the initial conditions are such that there is no mod

act : fh=1. A careful study of the simulations in this region dem-
preference, we should expett to be a reasonable predictor ,ngirates that the initial circle first begins to undergo a rigid
of the number of fingers in the final structure.

translation but then quickly develops a point of leakage at

Figure 4 shows the effect of an external azimuthal magy, e gpot furthest from the axis of rotation. This leakage point
netic field on the evolutions shown in Fig. 3. The columns iny, o gets pinched off resulting in what looks a bit like a

Fig. 4 are arranged according i, (labeled at the bOI'FO)n diamond ring(particularly for faster rotations This is an
and in each columng (labeled next to each patterm- inyinsically nonlinear instability that is not predicted by lin-
creases from top to bottom. In this figure, we show only thegsr theory. Therefore, we see that the introduction of the
position of the initial circle and the final state before pinch magnetic field does more than to effectively reduce the an-
off. The introduction of the magnetic field enriches the prob-g,ar velocity of the cell. On the contrary, the interaction of

lem considerably and significantly changes the linear shapg,e centrifugal and magnetic effects results in some interest-
scenario. The magnetic field tends to attract the evolvmgng new behaviors and patterns.

ferrofluid droplet toward the current-carrying wire, and a

whole different family of patterns arises. For example, when We would like to thank the Brazilian Research Council-
Nqo=3, the rigid translation from Fig. 3 is interrupted as a CNPq(J.A.M.), Santa Clara University, and Dickinson Col-
small piece of the circle appears to be pinned down by théege (D.P.J) for financial support of this research.
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