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Controlling fingering instabilities in rotating ferrofluids
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We perform a detailed analytic and numerical study of the evolution of a ferrofluid drop confined to a
rotating Hele-Shaw cell in the presence of an azimuthal magnetic field. Our results demonstrate that the
centrifugally driven interfacial instabilities can be simply controlled with the use of a current-carrying wire. We
compare an analytic linear analysis to our computational results and show that a number of observed features
cannot be explained by linear theory alone, including a ‘‘diamond ring’’ instability that results when a droplet
is nearly stabilized.
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The shape evolution of a rotating liquid drop has bee
subject of long-standing interest due to its relation to a w
variety of phenomena ranging from nuclear fission to pl
etary motion@1#. The related phenomenon ofspin coating—
the flow of a thin pool of liquid spreading on a rotatin
horizontal surface—is also a topic of considerable scien
and practical importance@2–4#; it occurs in a number of
technological applications such as the manufacture of m
netic storage disks and the application of photoresist in
crocircuit fabrication.

Centrifugally driven flows involve the development of h
drodynamic instabilities. As a thin, rotating liquid dropl
spreads over a solid substrate, its boundary becomes uns
and develops undulations that eventually grow into comp
fingerlike interfacial patterns. Experimental studies rev
the occurrence of fingering instabilities in the spreading
both free and confined thin liquid films. In free surface flow
the development of nearly polygonal structures whose ve
ces eventually break into long radially outgoing fingers
observed@5,6#. Confined flows in Hele-Shaw cells exhibit
different kind of fingering structure in which the central in
tial drop throws out attached droplets, which themsel
form new droplets@7#. Despite their interesting morpholo
gies and rich dynamical behavior, these patterned struct
are typically undesirable in technological applications sin
they can result in uneven surface coverage. Thus, it is im
tant to develop a fundamental understanding of the dynam
of these systems, and to find ways to control such hydro
namic instabilities.

In this paper we focus on an initially circular droplet of
magnetic fluid~ferrofluid! in a rotating Hele-Shaw cell. Fer
rofluids are colloidal suspensions of nanometer-sized m
netic particles suspended in a nonmagnetic carrier fl
These fluids behave superparamagnetically and can easi
manipulated with external magnetic fields that can act
either stabilize or destabilize the fluid interface@8#. Ex-
amples of destabilization include the so-called Rosensw
or normal-field instability—in which an initially flat free sur
face evolves into a hexagonal pattern of peaks, and the l
rinthine instability—in which a ferrofluid confined to a Hele
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Shaw cell evolves into a very intricate, mazelike structu
Examples of stabilization include the elimination of th
Kelvin-Helmholtz instability and suppression of the finge
ing instability in flow through porous media.

Recently, a linear analysis demonstrated that a particul
simple magnetic field configuration, produced by a curre
carrying wire, was capable of stabilizing the interface o
confined, rotating ferrofluid drop@9#. Here, we extend those
results and provide a quantitative investigation of the sys
in both the linear and nonlinear regimes. Consider a He
Shaw cell of thicknessb containing two immiscible, incom-
pressible, viscous fluids with interfacial surface tensions
~see Fig. 1!.

Denote the densities and viscosities of the inner and o
fluids, respectively asr1 , h1 and r2 , h2. We assume tha
the inner fluid is the ferrofluid while the outer fluid is non
magnetic. The Hele-Shaw cell rotates with constant ang
velocity V about an axis perpendicular to the plane of t
flow and a long straight current-carrying wire is direct
along the axis of rotation. The magnetic field produced
the wire isH5I /(2pr ) êu , wherer is the distance from the
wire andêu is a unit vector in the azimuthal direction. Not
that the azimuthal symmetry and radial gradient of the m
netic field will result in a magnetic force directed radial

FIG. 1. A ferrofluid drop in a rotating Hele-Shaw cell; a curren
carrying wire is aligned with the axis of rotation.
©2003 The American Physical Society01-1
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inward. This is exactly what is needed to stabilize the o
ward centrifugal force.

To study the hydrodynamics of rotating ferrofluids, t
usual Navier-Stokes equation is modified through the inc
sion of terms representing magnetic and centrifugal forc
We assume that the ferrofluid is uniformly magnetized a
thatM is collinear with the external fieldH @10–12#. For the
quasi-two-dimensional geometry of a Hele-Shaw cell, we
duce the three-dimensional flow to an equivalent tw
dimensional flowv(r ,u) by averaging over thez direction.
Using a parabolic velocity profile with no-slip boundary co
ditions and neglecting inertial terms~including the Coriolis
force!, one derives Darcy’s law for ferrofluids in a rotatin
Hele-Shaw cell as@9#

v52
b2

12h
“P, ~1!

where the generalized pressureP consists of thez-averaged
hydrodynamic pressure 1/b*p dz, plus magnetic1

2 m0xH2

and centrifugal1
2 rV2r 2 terms. Here,m0 is the free-space

permeability andx is the constant magnetic susceptibilit
Equation~1! describes nonmagnetic fluids by simply dro
ping the magnetic term.

We take the initial state of the interface to be a circle
radiusR. Then, in the framework of linear analysis, we d
scribe the interface in polar coordinates asR(u,t)5R
1z(u,t), and consider a small perturbation of the for
z(u,t)5zn(t)exp(inu), wheren51,2,3, . . . . Theproblem is
then specified by two boundary conditions:~i! the pressure
jump at the interface (P12P2)uR5skuR , wherek denotes
the interface curvature; and~ii ! the kinematic boundary con
dition n•“P1uR5n•“P2uR , where n is the unit normal
vector pointing from fluid 1 to fluid 2. Following the usua
linear stability procedures, we obtain the differential equ
tion for the Fourier perturbation amplitudesżn5l(n)zn ,
where

l~n!5
b2sn

12~h11h2!R3
@NV2NB2~n221!# ~2!

is the linear growth rate. Here, we have definedNV

5@R3(r12r2)V2#/s andNB5m0xI 2/(4p2sR) as the~di-
mensionless! rotational and magnetic bond numbers, resp
tively. Since a positive growth rate leads to an unstable
terface, Eq.~2! tells us that sinceNB is always positive, the
magnetic field will always stabilize the interface. On t
other hand,NV can be either positive or negative dependi
on whether the inner or outer fluid is more dense. Thus,
centrifugal force can be either stabilizing or destabilizing

Some important information can be extracted from
linear growth rate. The first is the neutral stability curves@for
which l(n)50]

NV5NB1~n221!, ~3!

which determine when a particular mode becomes unsta
When NB50, the moden51 is unstable for any value o
NV.0 and higher modes become unstable forNV.n221.
01730
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We also note that for a particular value ofNV , increasingNB
stabilizes more and more modes untilNB5NV , at which
point all modes are stable. Thus, we should see no evolu
under these conditions.

Another useful quantity that linear theory gives us is t
fastest growing moden* , defined as the~integer! mode that
produces the largest growth rate. This is the mode that
tend to dominate during the early stages of the pattern
mation process and will perhaps determine the numbe
fingers in the final state. Now, a given moden is only the
fastest growing whenl(n).l(n21) andl(n).l(n11).
Using Eq. ~2!, we find that the boundaries of the regio
dominated by a particular mode is given, for integern, by

NV5NB13n~n61!. ~4!

Again, one can see that for a givenNV , increasingNB will
tend to decrease the number of fingers that develop.

Figure 2 depicts a ‘‘phase diagram’’ inNV-NB parameter
space for the linearized system. The dividing lineNV5NB
separates the stable and unstable regions of the phase
gram, and represents the neutral stability curve for modn
51. Thus, as long asNB>NV , we are within the stable
region and should observe an unchanging circular dro
centered on the axis of rotation. As one moves further i
the unstable region, the dashed lines represent the bound
where higher modesn ~labeled on the top of the graph! be-
come unstable as given by Eq.~3!. The solid lines that en-
compass the shaded regions, determined from Eq.~4!, denote
zones where a particular mode is the fastest growing and
labeledn* on the graph.

As an example of how one might use this graph, consi
the case whereNV550 is held fixed. WhenNB50, modes
1–7 are all unstable even though we are in a zone ofn*
54. Therefore, one might expect that all else being equal
initially circular droplet would develop into a four-fingere
structure. AsNB is increased, the higher modes become s

FIG. 2. Linear stability phase plot showing neutral stabil
curves~dashed! and zones~shaded! of fastest growing moden* .
Horizontal lines give values ofNV used in the simulations.
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bilized and the fastest growing mode also decreases. N
however, that a particular mode remains unstable long a
losing its status of fastest growing mode.

Finally, we note that in contrast to the usual viscous fi
gering problem in nonrotating Hele-Shaw cells@13#, the Fou-
rier moden51 that corresponds to a rigid translation of
unperturbed circular droplet can become unstable for flo
in rotating cells. This is because the instability is driven b
viscosity difference in one case and a density difference
the other. In Fig. 2, the unstable zone labeled byn* 51
would be related to such interesting dynamical behavior.

To test the predictions from linear theory and also to
amine the long time behavior of this system far into t
nonlinear regime, we perform a series of numerical exp
ments. We take the simplest situation in which the outer fl
has negligible viscosity and density and assume the hy
dynamic pressure is a constant. Since the ferrofluid is inc
pressible,“•v50 and Eq.~1! reduces to a Dirichlet problem
for an arbitrarily shaped simply-connected domain. Since
Dirichlet problem on the unit disk is known, we use a co
formal mapping technique to map that solution to the dom
of interest@14,15#. Using this approach, the interface is give
by the complex functionr(a) and evolves according to

] tr5 i ~]ar!AH Re@z]zA$P%#eia

u]aru2 J
z5eia

, ~5!

wherea parametrizes the interface. Here, the integral ope
tor A takes a real functionP(a) and returns a function tha
is analytic inside the unit disk whose real part evaluated
eia is P(a). For the results presented in this paper, all e
periments begin with the same initial state of a circle c
tered on the axis of rotation with a small amount of rand
noise distributed in the first eight azimuthal modes. Note a
that the data are presented as seen in the rotating fram
reference in which the Hele-Shaw cell appears stationar

FIG. 3. Equally spaced time steps overlaid to show the evolu
of a rotating ferrofluid drop with no magnetic field; largerNV rep-
resents higher rotation rate.
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We begin our numerical experiments by first consider
rotations alone (NB50). Figure 3 shows time overlaid plot
illustrating the evolution for rotation numbersNV53, 10,
25, and 50. The initial state is the same in each case and
experiments were stopped before the complicated ‘‘pin
off’’ process @16#. For clarity, the final shapes have bee
shaded, but it is important to note that these arenot equilib-
rium states. In addition, while the time steps are equa
spaced, the total time is different for each experiment. T
larger the centrifugal effects, the smaller the time required
reach pinch off.

One can immediately notice that higher rotations lead
more fingered structures. In fact, the simulations beautifu
capture the rigid translation of the drop for smallNV . Al-
though this rigid translation is expected from linear theory
is a bit surprising that the droplet maintains its shape a
moves far off axis. A noteworthy point is that the observ
number of fingers for the patterns depicted in Fig. 3 agr
precisely with the fastest growing mode from the line
analysis. As shown in Fig. 2, whenNB50, rotation numbers
of NV53, 10, 25, and 50 lie in the zonesn* 51, 2, 3, and 4,
respectively. This suggests that linear theory is a good p
dictor of the final number of fingers, at least, when there
no magnetic contribution. While one might expect this agr
ment if the initial state is such that each mode has the s
amplitude, it is important to question the role of the initi
conditions. As already mentioned, our initial circles we
sprinkled with a small amount of random noise, but wha
the initial condition was such that a particular mode had

n

FIG. 4. The effect of nonzero magnetic field on the evolutio
shown in Fig. 3. Only the initial circle and final state~shaded! are
shown;NB is listed next to each simulation.
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larger amplitude than the others? Would that affect the p
tern formation process?

To answer this question, we ran a number of simulatio
with an initial perturbation consisting of a single mode. Th
state was then used in experiments with various comb
tions ofNV andNB and we looked at the resulting evolutio
We found that as long as a particular mode was unsta
then an initial condition of that mode led to a structure w
the same number of fingers regardless of what the fas
growing mode was. For example, an initial state of moden
53 led to a three-fingered structure as long as we w
above the mode-3 instability line (n53 dashed line! in Fig.
2. This tells us that the initial conditions can play a ve
important role in the pattern formation process. On the ot
hand, if the initial conditions are such that there is no mo
preference, we should expectn* to be a reasonable predicto
of the number of fingers in the final structure.

Figure 4 shows the effect of an external azimuthal m
netic field on the evolutions shown in Fig. 3. The columns
Fig. 4 are arranged according toNV ~labeled at the bottom!
and in each column,NB ~labeled next to each pattern! in-
creases from top to bottom. In this figure, we show only
position of the initial circle and the final state before pin
off. The introduction of the magnetic field enriches the pro
lem considerably and significantly changes the linear sh
scenario. The magnetic field tends to attract the evolv
ferrofluid droplet toward the current-carrying wire, and
whole different family of patterns arises. For example, wh
NV53, the rigid translation from Fig. 3 is interrupted as
small piece of the circle appears to be pinned down by
n,

ı
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current-carrying wire; the larger the magnetic field, the mo
of the drop seems to get pinned down by the wire. ForNV
510, the two-fingered dumbbell from Fig. 3 has develope
bump in the middle that gets larger for larger magnetic fi
values. In all cases, it is clear that increasingly larger val
of NB progressively reduces the number of outgrowing fi
gers. Ultimately, whenNB>NV , we reach a state of com
plete stabilization where no evolution takes place.

Last, we point out that all patterns shown in Fig. 4 shar
common, interesting feature. Before reaching complete dr
let stabilization, one observes an almost stable circle, w
only one finger protruding from it. We call this nonlinea
phenomenon the ‘‘diamond ring’’ instability. To try to gai
some insight into this interesting behavior, we note from E
~3! that forNV<NB13, the only~possible! unstable mode is
n51. A careful study of the simulations in this region dem
onstrates that the initial circle first begins to undergo a ri
translation but then quickly develops a point of leakage
the spot furthest from the axis of rotation. This leakage po
then gets pinched off resulting in what looks a bit like
diamond ring~particularly for faster rotations!. This is an
intrinsically nonlinear instability that is not predicted by lin
ear theory. Therefore, we see that the introduction of
magnetic field does more than to effectively reduce the
gular velocity of the cell. On the contrary, the interaction
the centrifugal and magnetic effects results in some inter
ing new behaviors and patterns.
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