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One efficient way of determining the bond strength of adhesives is to measure the force or the work required
to separate two surfaces bonded by a thin adhesive film. We consider the case in which the thin film is not a
conventional adhesive material but a high viscosity ferrofluid confined between two narrowly spaced parallel
flat plates subjected to an external magnetic field. Our theoretical results demonstrate that both the peak
adhesive force and the separation energy are significantly influenced by the action and symmetry properties of
the applied field. Specifically, we show that the adhesive strength of a ferrofluid is reduced if the applied
magnetic field is perpendicular to the plates or if the applied field is in plane and exhibits azimuthal symmetry.
Conversely, the adhesive strength can be either enhanced or reduced if the applied field is in plane and is
directed radially outward. This establishes an interesting connection between adhesion and ferrohydrodynamic
phenomena, allowing the control of important adhesive properties by magnetic means.
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I. INTRODUCTION

The study of adhesive materials is vastly multidisciplinary
and its basic scientific research involves a broad spectrum of
areas ranging from interfacial science and rheology to pattern
formation and chemistry[1,2]. On the practical side, the phe-
nomenon of adhesion is part of our everyday lives, and ad-
hesive tape industries are among the most active and profit-
able [3].

One key aspect on both scientific and practical levels is to
precisely evaluate, characterize, and hopefullycontrol, the
bond strength of adhesives. One efficient and relatively
simple way to study important adhesive properties is pro-
vided by the so-called probe-tack test[4,5], which measures
the force required to separate two surfaces bonded by a thin
adhesive film. The result of such a test is a force-distance
curve, that describes the behavior of the adhesive film under
tension. Good adhesives typically present highly nonlinear
force-distance curves, in which the force increases sharply,
reaches a maximum value, and then drops abruptly, defining
a plateau, before it eventually vanishes. From these curves
the separation energy(work done during the entire separation
process), as well as the peak adhesive force, can be deter-
mined.

Recently, several groups began investigating the funda-
mentals of adhesion in viscous liquids[6–10]. By dealing
with simpler Newtonian and non-Newtonian fluids, these in-
teresting studies tried to gain more insight into the relation
between the complicated rheological properties of conven-
tional adhesives and the force-distance curves. Some note-
worthy findings include the appearance of a cavitation-
induced force plateau for high separation velocities in very

viscous fluids[7], and the important verification of a modest
influence of fingering instabilities on the shape of the curves
[8]. As systematically proposed by Francis and Horn[6], all
these works[6–10] take into account the significant depen-
dence of the force-distance curves on the compliance of the
measurement apparatus.

In this paper we consider the case in which the fluid used
in the adhesion probe-tack test is a magnetic liquid called a
ferrofluid. The field of ferrofluid research is also highly in-
terdisciplinary, bringing physicists, chemists, engineers, and
even physicians together[11,12]. Ferrofluids are colloidal
suspensions of nanometer-sized magnetic particles sus-
pended in a nonmagnetic carrier fluid. These fluids behave
superparamagnetically and can easily be manipulated with
external magnetic fields that can act to either stabilize or
destabilize the fluid interface. As a result of the ferrofluid
interaction with the external field in confined geometries, the
usual viscous fingering instability(Saffman-Taylor instability
[13]) is supplemented by a magnetic fluid instability[11,12],
resulting in a variety of interesting interfacial behaviors. De-
pending on the applied field direction, one observes highly
branched, labyrinthine structures[14–17], patterns showing
an ordered line of peaks[18], or even the suppression of
viscosity-driven[19] and centrifugally induced[20,21] inter-
facial instabilities in thin ferrofluid films.

We stress that although these ferrofluids are viscous and
magnetic, they are not, rigorously speaking, “true”(non-
Newtonian) adhesives. However, in certain situations these
fluids have properties that are quite similar to regular adhe-
sives. Here we show that, in contrast to conventional adhe-
sive materials, the adhesive properties of a ferrofluid can be
enhanced or reduced by varying the intensity of an externally
applied magnetic field. This effect could be used to design
versatile adhesive materials with highly flexible properties
that vary with magnetic field, in which the bonding between
surfaces could be manipulated in a nondestrucitve way. The*Email address: jme@df.ufpe.br
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simplicity and potential usefulness of such a regulatory
mechanism could be of great value in many applications.

This paper is organized as follows: Sec. II formulates our
theoretical approach and derives the adhesion force between
two flat plates due to the presence of a ferrofluid subjected to
an external magnetic field. We study three different magnetic
field configurations:(i) perpendicular, when a uniform field
is normal to the plates of the apparatus,(ii ) azimuthal, for an
in-plane field produced by a long current-carrying wire ori-
ented perpendicular to the plates, and(iii ) radial, for a cy-
lindrically radial magnetic field pointing away from the cyl-
inder’s symmetry axis and decreasing linearly with radial
distance. Initially, the probe-tack apparatus is considered to
be perfectly rigid, and we focus on the derivation of the
adhesive force under the influence of magnetic interactions.
Section III discusses the effects of the three magnetic field
arrangements on the force-distance curves for the ferrofluid
sample. We find that the adhesive strength of the ferrofluid is
decreased in the perpendicular and azimuthal configurations
and can be either increased or decreased in the radial case.
The influence of the magnetic forces on the separation en-
ergy is also investigated. Section IV studies the combined
effects of the apparatus’ intrinsic compliance and the mag-
netic forces, and discusses their role in determining the
force-distance profiles. Our chief conclusions and perspec-
tives are summarized in Sec. V. Last, an alternative method
for determining the magnetic forces is discussed in the Ap-
pendix.

II. ADHESION FORCE: DARCY’S LAW FORMULATION

Figure 1 sketches the geometry of the system under study.
We consider a Newtonian, incompressible ferrofluid of high
viscosity h located between two narrowly spaced circular,
flat plates. The outer fluid is nonmagnetic, and of negligible
viscosity. As in Refs.[6–10] we consider that the apparatus
has a spring constant denoted byk. One end of the lifting
apparatus moves at a specified constant velocityV, subject-
ing the upper plate to a pulling forceF. The lower plate is
held fixed atz=0, where thez axis points in the direction
perpendicular to the plates. The initial plate-plate distance is

represented byb0 and the initial ferrofluid radius byR0. At a
given timet the plate spacing isb=bstd, while the deforma-
tion due to the stretching of the apparatus isL−b, whereL
=b0+Vt. We stress that due to the compliance of the mea-
surement apparatus, the actual plate spacingb is not neces-
sarily equivalent toL. Of course, in the case of a completely
rigid apparatus we haveb=L andḃ=V, whereḃ=db/dt. The
perpendicular, azimuthal, and radial magnetic field configu-
rations are schematically illustrated in Fig. 2.

Our initial task is to calculate the pulling forceF as a
function of displacementL, taking into account both hydro-
dynamic and magnetic contributions. We follow Derkset al.
[8] and deriveF assuming that the ferrofluid interface re-
mains circular during the entire lifting process, with time-
dependent radius defined asR=Rstd. This approach is justi-
fied in Ref. [8], where it has been found that experiments
showing strong fingering instabilities are very well described
by theoretical force-distance curves which assume an exact
circularity of the evolving interface. In the perpendicular
magnetic field configuration conservation of ferrofluid vol-
ume leads to the useful relationR2b=R0

2b0. This expression
can be trivially modified in order to account for the radius of
the current-carrying wire or the cylindrical magnet in the
azimuthal and radial field cases.

To study the hydrodynamics of the system, the usual
Navier-Stokes equation is modified through the inclusion of
terms representing the magnetic effects. We follow the stan-
dard approximations used by Rosensweig[11] and others
[12,14–16] and assume that the ferrofluid is magnetized such
that its magnetizationM is collinear with the applied field
Ha. When this is the case, the magnetic body force is given
by m0M =H, wherem0 is the magnetic permeability of free
space andH is the local magnetic field. The local magnetic
field can include contributions from the applied field as well
as the demagnetizing field. We consider only the lowest or-
der effect of the magnetic interactions that would result in
fluid motion. Thus, in the azimuthal and radial situations, we
consider only the applied field in determining the magneti-
zation. However, in the perpendicular situation, we include
the demagnetizing field produced by the uniform magnetiza-
tion resulting from the applied field.

FIG. 1. Schematic diagram for the plate-plate geometry and lift-
ing apparatus of the adhesion measurement system with ferrofluids. FIG. 2. Schematic diagrams for the different magnetic field con-

figurations considered in this paper.
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For the quasi-two-dimensional plate-plate geometry, we
employ the lubrication approximation and reduce the three-
dimensional flow to an equivalent two-dimensional flow
Usr ,ud by averaging over the direction perpendicular to the
plates(z axis), wheresr ,ud denote polar coordinates. Using
no-slip boundary conditions and neglecting inertial terms,
one derives a modified Darcy’s law as[16,22]

U = −
b2

12h
= P j . s1d

The generalized pressureP j =p−C j in Eq. (1) contains both
the hydrodynamic pressurep and a magnetic pressure repre-
sented by a scalar potentialC j. The subscriptj =1,2,3indi-
cates the perpendicular, azimuthal, and radial magnetic field
configurations, respectively.

We can exploit the irrotational nature of the flow to obtain
the two-dimensional flow field byz averaging the full three-
dimensional incompressibility condition= ·v=0. This yields

Usrd=−sḃr /2bdêr, whereêr is a unit vector in the radial di-
rection. This allows us to integrate Eq.(1) to obtain the pres-
sure field

P jsrd =
3hḃ

b3 sr2 − R2d + P jsRd, s2d

whereP jsRd is the value of the generalized pressure at the
ferrofluid droplet boundary. To determineP jsRd we use the
facts thatC j =0 in the nonmagnetic fluid and the pressure
jump at the interface of a magnetic fluid given by[11,12]

Dp = sk −
1

2
m0Mn

2. s3d

Here,s is the surface tension,k is the curvature of the in-
terface, andMn represents the normal component of the mag-
netization at the interface. In the present case,Mn is given by
the radial component evaluated atr =R, namely,Mn=MrsRd.
These boundary conditions result in a pressure field given by

P jsrd =
3hḃ

b3 sr2 − R2d + p0 − C jsRd −
1

2
m0Mjr

2 sRd, s4d

where p0 denotes the atmospheric pressure outside the fer-
rofluid droplet. As is common in this type of adhesion phe-
nomena[6–10], we have neglected the surface tension term
in Eq. (4).

In the nonmagnetic case, the inward viscous flow induced
by traction is accompanied by a pressure gradient pointing
outward. Therefore in the absence of an applied magnetic
field the border of the ferrofluid droplet is at atmospheric
pressurep0 while the interior of the sample is at a lower
pressure. From Eq.(4) we see that the purely viscous, non-
magnetic contribution to the pressure in the sample is nega-
tive. In other words, when the upper plate is lifted, the pres-
sure gradient causes an inward viscous shearing flow in the
plane of the adhesive film, producing a downward adhesive
force normal to the upper plate. When a magnetic field is
applied, the magnetic contributions in Eq.(4) can modify

this scenario significantly. In fact, as we now show, addi-
tional magnetic terms come into play when calculating the
adhesion force.

Since it is the generalized pressureP j that results in fluid
motion according to Eq.(1), the force exerted by the lifting
machine on the upper plate is calculated by integrating the
generalized pressure difference above and below the upper
plate, taking into account the pressure jump condition(3)
across the magnetic fluid surface in contact with the upper
plate. The net force of separation(adhesion force) is then
given by

Fj =E dAH3hḃ

b3 sR2 − r2d + fC jsRd − C jsrdg

+
1

2
m0fMjr

2 sRd − Mjz
2 srdgJ , s5d

where the integration is carried out over the cross sectional
area of the ferrofluid dropA. In the perpendicular case, this
is simply a circle of radiusR. But in the azimuthal and radial
situations, this is an annulus of outer radiusR and inner
radiusa. The termMjz

2 srd denotes the normal component of
the magnetization evaluated at the boundaryz=b. An alter-
native way of calculating the magnetic terms appearing in
the adhesion force Eq.(5) is presented and discussed in the
Appendix.

We can gain some physical insight into the adhesion force
equation simply by looking at the sign of the magnetic terms.
Positive magnetic terms in Eq.(5) lead to increased adhesion
while negative terms lead to decreased adhesion. In particu-
lar, any radial magnetization at the boundary of the domain
will tend to increase adhesion while magnetization normal to
the plates will tend to decrease adhesion. This can be under-
stood qualitatively by noting that the effect of the normal
component of the magnetization at the fluid interfacer =R is
to “push” outward on the interface. Thus magnetization that
pushes outward at the boundary of the domain leads to the
fluid attempting to “spread out” in the plane of the sample.
This results in a downward force on the upper plate and an
increase in adhesion. Conversely, magnetization that pushes
upward on the upper surfacez=b will exert an upward force
on the plate, resulting in decreased adhesion. The effect of
the other magnetic terms in Eq.(5) will depend on the form
of the scalar potential.

Equation(5) is one of the central results of this work. The
remainder of this paper looks into the details of how the
magnetic effects alter the adhesion force for three different
magnetic field configurations.

A. Perpendicular magnetic field

First, we consider the perpendicular field cases j =1d in
which a uniform magnetic fieldHa=H0êz is applied normal
to the plates. This situation was studied in Refs.[15,23] by
assuming the ferrofluid has a uniform magnetizationM0
=MsH0d. Here,MsHd gives the(possibly nonlinear) relation-
ship between the magnetization and the applied field. This
configuration is then equivalent to a uniformly charged
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parallel-plate capacitor and a scalar potential can be written
in a number of equivalent forms[16]. However, in contrast
to the situation studied in Refs.[15,16,23], which only re-
quired the magnetic pressure at theinterfaceof a fingered
droplet, we are interested in calculatingC1 for an arbitrary
point r of a circular magnetic domains0ø r øRd. In particu-
lar, since we are interested in pointswithin as well ason the
domain boundary, it is essential to choose a form forC1 that
is continuousat the boundary. If we describe the ferrofluid
boundary by a simple closed curveC parametrized by ar-
clengths, then a convenient way of writing the scalar poten-
tial is (see Ref.[16])

C1 =
m0M

2

2pb HRC

ds8D̂ 3 t̂ss8d

+R
C

dx8 lnfsy − y8d + ÎD2 + b2 gJ , s6d

wherex=xssd, x8=xss8d, etc., t̂ss8d is the unit tangent vector

at arclengths8, and D̂=D /D is the unit difference vector
pointing from the pointr =sx,yd to the pointr 8=sx8 ,y8d.

Unfortunately, even though we assume the ferrofluid
sample maintains a circular shape during the lifting of the
upper plate, the evaluation of Eq.(6) for arbitrary points
located inside the sample does not result in a simple closed-
form expression. Substituting Eq.(6) into Eq.(5) results in a
dimensionlessforce

F1 =
ḃ

b5 + NB
'H 2

R0
2E

0

R

Isrdrdr − Sb0

b
DFIsRd +

p

2
GJ , s7d

where

Isrd =E
0

p/2 S zQ + P2sin2 v

ÎQ2 + P2sin2 v
Ddv

+
1

2
E

0

p

lnFÎ1 + Q2 + P2sin2 v −
1

2
z sin 2vG

3z sin 2v dv, s8d

z=2R/b, Q=sR−rd /b, P2=4rR/b2, andNB
'=m0M

2R0
2/kd is

the magnetic Bond number for the perpendicular magnetic
field configuration. Similar to what is done in Refs.[6,8,10],
in Eq. (7) lengths have been re-scaled byd
=s3phR0

4b0
2V/2kd1/6 and velocities byV. It is worth mention-

ing again that since we are dealing with the noncompliant

situation, we haveb=L and henceḃ=1. Equation(7) shows

ḃ explicitly in anticipation of our analysis of the compliant
apparatus situation.

B. Azimuthal magnetic field

For the azimuthal field cases j =2d we consider a long
straight current-carrying wire that is perpendicular to(co-
axial with) the plates(see Fig. 2). This may present an ex-
perimental challenge because the hole necessary for the wire
could result in leakage. The magnetic field produced by this

wire is Ha= I / s2prdêu=sH0a/ rdêu, where I represents the
electric current,a is the radius of the current-carrying wire,
and êu is a unit vector in the azimuthal direction. The mag-
netization is collinear with the magnetic field and is written
M =sM0a/ rdêu, whereM0=MsH0d. Here again,MsHd gives
the (possibly nonlinear) relationship between the magnetiza-
tion and the applied field. In this case, the scalar potential
can be simply written as[20]

C2srd =
m0M0H0a

2

2r2 . s9d

We note that the magnetization in this configuration is every-
where tangential to the interface, and also to the upper sur-
face of the ferrofluid sample. Thus there are no “surface”
contributions to the adhesion force. Furthermore, we note
that fC2sRd−C2srdg will always be negative so that the mag-
netic contribution in the azimuthal case tends to reduce the
bond strength of the ferrofluid. This makes good physical
sense because the radial gradient results in a magnetic force
directed radially inward leading to an increased pressure that
pushes upward on the upper surface.

Under such circumstances, the evaluation of Eq.(5) for
the azimuthal field case leads to thedimensionlessforce

F2 =
ḃ

b5Sg − 1

g
D2

− NB
azi5lnF1 + sg − 1d

b0

b
G

− 3 sg − 1d
b

b0
+ sg − 1d46 , s10d

where g=sR0/ad2 and NB
azi=spm0M0H0a

2d / s2kdd is a mag-
netic Bond number for the azimuthal magnetic field configu-
ration. In the case of a linear relationshipM =xH, the Bond
number can be writtenNB

azi=sm0xI2d / s8pkdd. As in the per-
pendicular field case, lengths and velocities in Eq.(10) have

been re-scaled byd andV, respectively, andḃ=1.

C. Radial magnetic field

Last, we consider a cylindrically radial magnetic field
configurations j =3d [24–26] such thatHa=sH0a/ rdêr. The
experimental conditions required to obtain such a radial
magnetic field are discussed in Ref.[24]. Roughly speaking,
the radial field is produced by shaping the poles of a perma-
nent magnet into concentric cylinders. As before, we assume
the magnetization is collinear with the applied field so that
M =sM0a/ rdêr, where M0=MsH0d. In this case, the scalar
potential can be written as

C3srd =
m0M0H0a

2

2r2 . s11d

Note that the scalar potential in this situation is exactly the
same as in the azimuthal field configuration. Thus we already
know that the force resulting from this potential will tend to
decrease the adhesion force. However, unlike the azimuthal
case, the radial magnetization will lead to a “surface” force
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term that will tend toincreaseadhesion. Under such circum-
stances, the evaluation of Eq.(5) for the radial field case
leads to adimensionlessforce

F3 =
ḃ

b5Sg − 1

g
D2

− NB
rad5lnF1 + sg − 1d

b0

b
G − S1 +

M0

H0
D

33 sg − 1d
b

b0
+ sg − 1d46 , s12d

whereg=sR0/ad2 and NB
rad=spm0M0H0a

2d / s2kdd is a mag-
netic Bond number for the radial magnetic field configura-
tion. In the case of a linear relationshipM =xH, the Bond
number can be writtenNB

rad=spm0xH0
2d / s2kdd. As in the

other cases, lengths and velocities in Eq.(12) have been

re-scaled byd andV, respectively, andḃ=1.
We note in passing that by taking the limita→0 and

eliminating the magnetic terms(by simply dropping the
terms involving the magnetic Bond numbers), all three force
equations(7), (10), and(12) reduce to the equivalent expres-
sion derived in Ref.[8] for nonmagnetic viscous fluids. As
we will see in the remaining sections, the magnetic terms
appearing in these force expressions enrich the physics in-
volved considerably, establishing an interesting link between
adhesion and magnetic phenomena.

III. NONCOMPLIANT APPARATUS CASE

Before turning our attention to the complete force-
distance curves including compliance and magnetic effects,
let us analyze Eqs.(7), (10), and (12) in greater detail and

explore the relevant aspects coming from the magnetic con-
tribution. Figure 3 is a log-log plot that depicts the pulling

force Fj for the rigid apparatus case whereb=L (and ḃ=1).
Along with the usual nonmagnetic case(dashed line), we
have plotted three sets of curves:(1) the perpendicular case
given by Eq.(7) with NB

'=5.0310−2, (2) the azimuthal case
given by Eq.(10) with NB

azi=5.0310−3, and (3) the radial
case given by Eq.(12) with NB

rad=5.0310−3. The shading
represents different initial plate spacings given byb0=1.2
(light gray), b0=1.7 (medium gray), andb0=2.2 (dark gray).
In addition, we have set the parametersR0=100,g=100, and
M0/H0=3.0.

It is clear from Fig. 3 that the presence of magnetic forces
can alter the adhesion force in markedly different ways. For
relatively small separationL the curves are quite similar to
the nonmagnetic case for all magnetic field configurations.
However, asL is increased, the magnetic cases depart more
and more from the nonmagnetic situation. Eventually, each
magnetic case is split further depending on the initial plate
spacingb0.

We note that the behavior of the perpendicular and azi-
muthal field configurations is qualitatively similar. In both
cases, the adhesion force is decreased(compared to a non-
magnetic liquid) throughout the entire range ofL. The azi-
muthal case leads to a much more dramatic decrease than the
perpendicular case but the perpendicular case appears to be
more sensitive to the initial plate spacing.

Interestingly, the adhesion force in the perpendicular and
azimuthal magnetic field configurations becomes negative
and then falls asymptotically to zero asL increases. This is in
stark contrast to a nonmagnetic liquid in which the adhesion
force is always positive and drops smoothly to zero as 1/L5.
Thus, in these two magnetic field configurations, this force
will cease to be anadhesionforce and will instead become a
sort of separation force. Thus, instead of pulling on the
plates, one would need to start pushing to keep the plate
velocity constant. Thus it may be possible to create a ferrof-
luid adhesive such that the adhesive force can be completely
eliminated simply by bringing a small hand magnet up close.

The situation is even more interesting in the radial field
configuration. Here, we have the possibility of increased or
decreased adhesion compared to a nonmagnetic liquid. This
configuration is also much more sensitive to the initial plate
spacing than the other configurations, with smaller initial
plate spacings leading to more increased adhesion. However,
unlike the perpendicular and azimuthal cases, the adhesion in
the radial case may or may not become negative asL in-
creases. This depends on the value of the parameterM0/H0
(the magnetic susceptibilityx in the linear case). In addition,
by taking the largeb limit of Eq. (12), we see thatF3
,1/L so that for large enoughL, the adhesion force in the
radial case will always end up larger than the adhesion force
in the nonmagnetic case. Thus, in the radial case, there are
two possibilities. Either the adhesion force remains an adhe-
sion force throughout the entire plate separation process, or
the adhesion force first becomes a separation force and then
returns to being an adhesion force as the plates are separated.

FIG. 3. Pulling forceFj as a function ofL for the purely rigid
case described by Eqs.(7), (10), and (12). The dashed line shows
the nonmagnetic case and the solid curves show the magnetic situ-
ations withNB

'=5.0310−2, NB
azi=5.0310−3, and NB

rad=5.0310−3.
The solid curves are plotted in hues of gray forb0=1.2 (light), b0

=1.7 (medium), andb0=2.2 (dark).
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Figure 4 examines the radial situation further by varying
both g and M0/H0. As in Fig. 3, NB

rad=5.0310−3 and the
shading represents the same initial plate spacingsb0=1.2
(light gray), b0=1.7 (medium gray), andb0=2.2 (dark gray).
The solid black line is the nonmagnetic case and the dashed
(solid) curves haveg=100 sg=25d andM0/H0 is either 0.5
or 3.5 as labeled in the figure. The most obvious feature of
Fig. 4 is that the value ofM0/H0 determines whether adhe-
sion is increased or decreased for small plate spacings. Of
course, for large enough plate spacing, we have already seen
that adhesion will be increased relative to a nonmagnetic
liquid. As a practical matter, there is a point at which the
fluid film will rupture or the lubrication approximation will
no longer be valid. SelectingM0/H0 can therefore effectively
result in a magnetic liquid that either increases or decreases
adhesion throughout the useful range ofb.

Another relevant physical quantity of interest is the work
of separation given by

Wj =E
b0

Lf

Fj dL. s13d

For a nonmagnetic liquid and for the perpendicular and azi-
muthal situations, the upper limit of integration can safely be
taken to beLf =` with no problems. However, in the radial
magnetic field configuration, the largeL force varies as 1/L
so the work of separation diverges logarithmically. This
causes some difficulty in trying to calculate the work of
separation as there is no obvious termination point for this
integral. We follow the approach adopted in Ref.[6], and
integrate Eq.(13) to a finite end point. Consistently with the
restrictions imposed by the lubrication approximation, we
take Lf =b, where b@b0. Using b=100, Fig. 5 illustrates
how the work of separationW3 varies with initial plate spac-
ing b0 for a nonmagnetic liquid(dashed) and for a magnetic

liquid in the radial field configuration(solid). As in Fig. 4,
we takeM0/H0 as either 0.5 or 3.5 and use two different
magnetic Bond numbers,NB

rad=5.0310−4 (light gray) and
NB

rad=5.0310−3 (dark gray). The results for the azimuthal
and perpendicular cases are qualitatively similar to the
M0/H0=0.5 results in the radial case and are therefore not
shown.

IV. COMPLIANT APPARATUS CASE

As briefly discussed at the beginning of this work, typical
force-distance curves increase sharply during the initial
stages of the plate separation process. This effect is not de-
scribed by the ferrohydrodynamic forces within the ferrof-
luid, but is a result of the elasticity of the apparatus[6,8].
Now we examine the complete form of the force-distance
curves, including the magnetic properties of the ferrofluid
and the intrinsic flexibility of the lifting machine. To accom-
plish this, we adapt a method originally developed by Fran-
cis and Horn[6] for their sphere-plate geometry with non-
magnetic fluids.

It is assumed that, during the entire separation process,
there is a perfect balance between the viscous, ferrohydrody-
namic force and the spring restoring forceL−b which results
from the deflection of the apparatus. By equating Eqs.(7),
(10), and(12), to L−b, we obtain nonlinear first order differ-
ential equations forb=bstd. Then, using the relationL=b0

+ t we can writeḃ=db/dL so that

Fjsb,b8d = L − b, s14d

where the prime denotes differentiation with respect toL. We
utilize differential equations(14) to obtain the complete
force-distance profiles. We solve them numerically forbsLd
and find the force curves fromFj =L−bsLd.

FIG. 4. Pulling forceF3 for radial magnetic field case described
by Eq.(12). The solid black line denotes a nonmagnetic fluid while
the dashed(solid) gray curves haveg=100 sg=25d. The curves
with M0/H0=0.5 lead to decreased adhesion while those with
M0/H0=3.5 lead to increased adhesion for small plate spacings.

FIG. 5. Work of separationW3 as a function ofb0 for the purely
rigid case for a nonmagnetic(dashed) and a magnetic liquid in the
radial field configuration(solid). Two values ofM0/H0 are used and
the light (dark) gray curves haveNB

rad=5.0310−4 sNB
rad=5.0

310−3d.
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Figure 6 presents the complete force-distance curves for
thin layers of ferrofluid obtained by numerically solving Eq.
(14) with F3 given by Eq.(12). It compares the curves in the
absence of magnetic field(black dashed curves) with those
calculated for nonzero applied field(gray solid curves). We
useNB

rad=5.0310−3, g=100, and two values ofM0/H0. As in
Figs. 3 and 4, the gray hues indicate the initial plate spacing
with b0=1.2 (light gray), b0=1.7 (medium gray), and b0
=2.2 (dark gray). The perpendicular and azimuthal field re-
sults are again qualitatively similar to the radial case with
M0/H0=2.0 and are therefore not shown.

By inspecting Figs. 6(a) and 6(b), we conclude that during
the beginning of the plate separation process the system is
dominated by the elastic force regardless of the nature(per-
pendicular, azimuthal, or radial) of the applied magnetic
field. We also note that the peak adhesive force decreases

considerably in the perpendicular and azimuthal cases but
can be either decreased or increased in the radial case de-
pending onM0/H0. In all field configurations, this increase
or decrease in the peak force is more pronounced for larger
b0.

Towards the end of the lifting process the contribution
from the ferrohydrodynamic force becomes much more im-
portant. One can see from Figs. 6(a) and 6(b) that the behav-
ior of the force can be “controlled” in some sense depending
on the type of ferrofluid and the field configuration. When
the applied field is zero, there is no magnetic force and all
cases converge to the same 1/L5 behavior that was seen in
Fig. 3. In the perpendicular and azimuthal magnetic field
cases, the magnetic forces decrease adhesion and the force
curves all drop off more rapidly than in the nonmagnetic
case, separated slightly based on the initial plate spacing. In
the radial case, the situation is a little different. Here, the
magnetic force can increaseor decrease adhesion during the
initial stages of the pulling process. However, at some point
all of the radial force curves will drop off as 1/L, muchless
rapidly than in the nonmagnetic case. By choosing an appro-
priate ferrofluid(that is, by tuningM0/H0), one can presum-
ably control when the force curves cross over from reducing
adhesion to increasing adhesion.

Finally, observe that for a givenb0, the area below the
gray solid curves in Fig. 6(a) [Fig. 6(b)] are considerably
smaller(larger) than the corresponding area under the black
dashed curves. This implies that the magnetic forces can re-
duce(enhance) the energy of separation as anticipated by the
rigid case results depicted in Fig. 5. From Fig. 6 we conclude
that both the peak adhesive force and the separation energy
are significantly influenced by magnetic forces.

V. CONCLUSION

In this paper, we have shown that the introduction of a
ferrofluid plus the action of an appropriate magnetic field
configuration in a modified adhesion measurement system
permits the adhesive strength to be opportunely controlled by
magnetic means. Our analytical and numerical results show
that the adhesive strength of a ferrofluid is reduced if the
magnetic field is perpendicular to the plates or applied in-
plane with azimuthal symmetry. Additionally, we have
shown that the adhesive strength can be enhanced or reduced
if the external field is in plane and pointing radially outward.
So, having a bond strength adaptable to different applica-
tions, a magnetic fluid can perform different functions: it
could either reduce adhesion when mechanical, nondestruc-
tive removal is needed, or increase adhesion when a high-
shear strength, tough structural adhesive is necessary.

The ferrofluid thus acts as a sort of adjustable “magnetic
glue,” for which the adhesion strength is regulated by an
applied magnetic field. This important and suggestive con-
trolling mechanism is not only intrinsically interesting, but
may allow the development of technological applications
overlapping the fields of adhesion and ferrofluid research.
Possible future applications may include the development of
adhesive products in which adhesion could be switched on
and off by a suitable magnetic field. In particular, removing

FIG. 6. ForceF3=L−bsLd as a function of displacementL for
the flexible apparatus case for three initial plate spacingsb0. The
curves are obtained by numerically solving Eq.(14) with Fj given
by Eq. (12). The black dashed curves are for zero magnetic field
and the gray solid curves haveNB

rad=5.0310−3, g=100, andb0

=1.2 (light), b0=1.7 (medium), andb0=2.2 (dark).
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the adhesive force via a small hand-held magnet seems like a
very useful possibility. Recent interesting studies have dem-
onstrated that the adhesive properties of some solid/polymer
interfaces can indeed be tuned by temperature[27,28]. The
magnetically monitored adhesive process we present here
would certainly add a welcome versatility to adhesion tech-
nology, even possibly allowing the emergence of a system-
atic way of controlling the reversibility of adherence using
magnetic fields.

Our theoretical work makes specific predictions that have
not yet been subjected to experimental check. It would be of
interest to examine the relationship between adhesion and
magnetic phenomena by performing probe-tack measure-
ments with ferrofluids subjected to perpendicular, azimuthal,
and in particular, radial magnetic field configurations
[24,29,30]; these might even include such configurations as
rotating [31–33] magnetic fields. A natural extension of the
current work would be the investigation of the influence of
magnetic forces on the adhesive properties of more complex
magnetic fluids, such as magnetorheological suspensions
[34], in which other important effects like elasticity, plastic-
ity, shear thinning, and shear thickening could be monitored
by external magnetic fields. In summary, we hope this work
will instigate further theoretical and experimental studies on
this rich topic.
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APPENDIX: CALCULATION OF MAGNETIC FORCES
USING AN ENERGY APPROACH

In this work, the magnetic effects were taken into account
via a modified Darcy’s law given by Eq.(1). This presup-
poses that one can write the magnetic forces in terms of a
scalar potentialC j. Indeed, the azimuthal and radial configu-
rations both led to relatively simple scalar potentials and the
magnetic forces could be calculated in closed form as shown
in Eqs.(10) and(12). However, in the perpendicular configu-
ration the scalar potential is a more complicated integral ex-
pression given by Eqs.(6) and(8) that leads to an even more
complex expression for the force via Eq.(7). Because of the
difficulties involved in calculating the forces in the perpen-
dicular situation, we wondered whether there was an alterna-
tive method for calculating this force.

Because most of our difficulties involved integrating
rather complicated expressions, it seemed appropriate to try
to find the force using a differentiation process. Specifically,
for a ferrofluid droplet whose magnetic energy is given as a
function of height byEmsbd, the force exerted by the ferrof-
luid is given by

Fm = −
dEm

db
. sA1d

Now, the change in magnetic energy obtained by intro-
ducing a volume of magnetic fluid into a static magnetic field
in free space is[11,12]

Em = −
1

2
E M ·B0dV, sA2d

whereM is the magnetization of the ferrofluid,B0 is the field
that would be present in the absence of the ferrofluid, and the
integration is taken over the volume of the ferrofluidV. For
example, in the azimuthal situation, we have a ferrofluid cy-
lindrical annulus of heightb and inner(outer) radiusa (R).
To be consistent with the approximations used in the Darcy
approach, we assume the applied magnetic field given by
Ha=sH0a/ rdêu and magnetization given byM =sM0a/ rdêu.
Equation(A2) then gives

Em
azi = − pm0M0H0a

2b lnSR

a
D . sA3d

Using volume conservation and performing the required dif-
ferentiation, we obtain a magnetic force(scaled bykd) of

Fm
azi = NB

azi5lnF1 + sg − 1d
b0

b
G −

sg − 1d
b

b0
+ sg − 1d6 , sA4d

whereg and NB
azi are as previously defined. Equation(A4)

indicates an upward force and is exactly the same as the
magnetic force given in Eq.(10) as expected. Note that the
minus sign difference between Eq.(A4) and the correspond-

FIG. 7. Adhesion force for the perpendicular field configuration
with the magnetic terms calculated via(a) the Darcy approach using
Eq. (7), and (b) the energy approach using Eq.(A7). We have set
NB

'=5.0310−3, R0=100, and used the same initial plate spacings as
before, b0=1.2 (light gray), b0=1.7 (medium gray), and b0=2.2
(dark gray). The black dashed line shows the nonmagnetic situation.
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ing terms in Eq.(10) is due to our choice of coordinate
system in describing the adhesion force.

Let us now try the same approach with the radial field
configuration. In this case we have an applied field given by
Ha=sH0a/ rdêr and a magnetization given byM =sM0a/ rdêr.
Carrying out the energy and force calculations, we find that
the magnetic force in the radial case is exactly the same as in
the azimuthal case given by Eq.(A4). At first this might
seem strange since the radial and azimuthal magnetic fields
point in different directions. However, since it is thegradient
of the field magnitude that determines the force and the spa-
tial dependence is identical in both situations, this should not
be too surprising. What is surprising is the fact that in the
radial situation, the magnetic force calculated from the en-
ergy as given by Eq.(A4) does not equal the magnetic force
calculated from the Darcy approach as given in Eq.(12). The
difference between the two approaches can be traced to the
“surface” force term that comes from the boundary condition
(3). This means that if we want to use the energy method, we
must augment the force by inclusion of these surface terms.
Specifically, Eq.(A1) should be replaced by

Fm = −
dEm

db
+

1

2
m0E dAfMjz

2 srd − Mjr
2 sRdg. sA5d

Here, as in Sec. II, the integration is taken over the cross
sectional areaA of the ferrofluid surface in contact with the
upper plate.

Although Eq.(A5) is not quite as simple as Eq.(A1), it is
still potentially much easier to use in some situations than
Eq. (5). As an example, let us now consider the perpendicu-
lar field configuration. In this case, the ferrofluid droplet is in
the shape of a cylinder of heightb and radiusR. The energy
of this configuration, is, apart from a constant term propor-
tional to the volume, given by[14,15]

Em
' =

4

3
m0M

2R3h1 − q−3fs2q2 − 1dEsqd + s1 − q2dKsqdgj,

sA6d

whereK and E are, respectively, complete elliptic integrals
of the first and second kind, andq2=z2/ s1+z2d (recall that

z=2R/b). Again, using volume conservation and performing
the differentiation, Eq.(A5) gives a dimensionless force of

Fm
' = NB

'Sb0

b
DHq3 − s2 − q2dEsqd + 2s1 − q2dKsqd

q2Î1 − q2
+

p

2J ,

sA7d

whereNB
' is defined as before.

Equation (A7) gives a closed form expression for the
magnetic contribution to the adhesion force in the perpen-
dicular field configuration. But this information is suppos-
edly contained in Eq.(7) as well. Figure 7 shows the adhe-
sion force as calculated using both(a) the Darcy approach
and(b) the energy approach. Although qualititatively similar,
these two forces are clearlynot the same. The energy ap-
proach shows a dramatically decreased adhesion force. But
why? It turns out that when using the Darcy approximation
in the perpendicular field configuration, one uses only the
lowest nonvanishing component of the magnetic field[16],
whereas in the energy calculation, the entire demagnetizing
field is taken into account. Thus it seems as though the en-
ergy approach in this case should provide a more accurate
approximation to the magnetic force. Additionally, the en-
ergy approach gives a closed form expression for the mag-
netic force and is therefore much simpler to use in calcula-
tions.

We find it a bit surprising that there is such a large differ-
ence between the Darcy approach and the energy approach in
the perpendicular configuration. This suggests that the radial
component of the demagnetizing field may play an important
role in determining the evolution of a ferrofluid drop. Of
course, the results reported in Ref.[16] show excellent
agreement with experiments suggesting that the radial com-
ponent is not a relevant factor in determining the final state
patterns. Clearly, this is an unresolved issue. It would be very
interesting to know exactly what role(if any) the radial com-
ponent plays in these ferrofluid evolutions.
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