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Abstract. When a ferrofluid drop is trapped in a horizontal Hele-Shaw cell and subjected to a vertical
magnetic field, a fingering instability results in the droplet evolving into a complex branched structure.
This fingering instability depends on the magnetic field ramp rate but also depends critically on the initial
state of the droplet. Small perturbations in the initial droplet can have a large influence on the resulting
final pattern. By simultaneously applying a stabilizing (horizontal) azimuthal magnetic field, we gain more
control over the mode selection mechanism. We perform a linear stability analysis that shows that any
single mode can be selected by appropriately adjusting the strengths of the applied fields. This offers a
unique and accurate mode selection mechanism for this confined magnetic fluid system. We present the
results of numerical simulations that demonstrate that this mode selection mechanism is quite robust and
“overpowers” any initial perturbations on the droplet. This provides a predictable way to obtain patterns
with any desired number of fingers.

PACS. 47.65.Cb Magnetic fluids and ferrofluids – 47.15.gp Hele-Shaw flows

1 Introduction

Ferrofluids [1, 2] are a class of soft material that can be
easily manipulated by an applied magnetic field. They are
colloidal suspensions of nanometer-sized magnetic parti-
cles suspended in a nonmagnetic carrier fluid. These mag-
netic fluids behave superparamagnetically and are distin-
guished by their ready response to even modest stimuli.
Due to their sensitivity and responsiveness to applied mag-
netic fields, ferrofluids are well suited for exploring tech-
nological applications and for understanding fundamental
scientific aspects of soft matter [3–6].

One interesting facet of ferrofluid research relates to
the study of the interfacial patterns formed when it is in
contact with a nonmagnetic fluid in the quasi-2D geom-
etry of a Hele-Shaw cell. Depending on the nature and
geometrical configuration of the applied magnetic field,
it can either stabilize or destabilize the fluid-fluid inter-
face. For such ferrohydrodynamic problems in a confined
geometry the traditional Saffman-Taylor instability [7] is
supplemented by a magnetically induced instability, lead-
ing to a variety of interfacial behaviors. In particular, if
a strong magnetic field is applied perpendicular to the
spatially constrained ferrofluid sample, the interfacial in-
stability results in a highly convoluted, labyrinthine struc-
ture [8–11]. A destabilizing behavior is also observed by
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the simultaneous action of a uniform perpendicular field
and an in-plane AC rotating magnetic field, which leads
to the formation of amazing spiral and protozoan-like
shapes [12–14]. On the other hand, the equally interesting
stabilizing nature of the magnetic field can be revealed if
it is applied in the plane of the Hele-Shaw cell, and par-
allel to the unperturbed fluid-fluid interface. In this case,
one may observe the suppression of the Saffman-Taylor
fingers in rectangular Hele-Shaw flow [15], the emergence
of peculiar diamond-ring–shaped patterns in a rotating
Hele-Shaw setup [16, 17], or even the magnetic inhibition
of interfacial cusp singularies in time-dependent gap Hele-
Shaw cells [18,19].

The majority of studies investigating pattern forma-
tion of a ferrofluid confined in a Hele-Shaw cell focus
on the competition between magnetic and nonmagnetic
forces. For instance, in references [8–11] a perpendicu-
lar magnetic field acts to deform the ferrofluid inter-
face while capillary or gravitational forces tend to keep
it undisturbed (circular or planar). In contrast, in refer-
ences [16–19] the magnetic field is stabilizing while the in-
terface deformations are induced by centrifugal or lifting
(nonmagnetic) forces. References [12–14] address the case
in which two destabilizing magnetic fields (perpendicular
and rotating) compete with surface tension forces.

In this work we study a different scenario and examine
a situation in which the two major competing forces are
both magnetic in nature. Specifically, we analyze the sit-
uation where a ferrofluid droplet is under the influence of
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two crossed magnetic fields: a (destabilizing) uniform per-
pendicular magnetic field, and a (stabilizing) nonuniform
azimuthal magnetic field. The fact that the two relevant
driving mechanisms are magnetically induced adds a wel-
come versatility to the system, allowing a more systematic
way of manipulating the pattern formation phenomena via
externally applied fields. This is in contrast to the major-
ity of the confined ferrofluid problems in Hele-Shaw cells
studied so far, in which the precise control of both mag-
netic and nonmagnetic forces is not as easy to implement.
For example, while controlling the direction and intensity
of applied magnetic fields is relatively easy, accurately con-
trolling the surface tension between the fluids [20] or the
angular velocity in a rotating Hele-Shaw cell [21,22] is not
quite so simple.

The understanding and elucidation of the mechanisms
of selection in the usual viscous fingering problem (using
nonmagnetic fluids) has been a subject of lively discus-
sion in the literature since the publication of the pioneer-
ing work by Saffman and Taylor [7]. Their problem is re-
lated to the more general subject of pattern selection in
nonequilibrium phenomena, which has been of much sub-
sequent interest [23–31]. However, similar studies involv-
ing magnetic fluids in Hele-Shaw cells have been largely
neglected [32]. The purpose of the present work is to ex-
amine the pattern formation process of a ferrofluid in a
Hele-Shaw geometry, and in particular, to investigate if
the mode-selection mechanism can be conveniently and
accurately regulated by applied magnetic fields. It turns
out that because one has control over both the stabilizing
and destabilizing forces, tuning the strengths of these two
fields can be used to precisely control the pattern forma-
tion process. That is to say, one has the ability to drive
any single mode, and only that mode, unstable.

The novelty of having such precise control over the
pattern formation process should not be underestimated.
This kind of control has not been previously observed even
when both stabilizing and destabilizing forces have been
present. For example, when a stabilizing azimuthal field is
used in conjunction with a destabilizing centrifugal insta-
bility [16, 17], one does obtain some control over the pat-
tern selection mechanism. However, precise single-mode
control is not possible. In this sense, the results presented
here —from the simultaneous combination of both perpen-
dicular and azimuthal fields— could not have been pre-
dicted based on any previous study. These results demon-
strate a unique method of controlling pattern formation
in this magnetic fluid system.

The paper is organized as follows: In Section 2 we
perform a Fourier decomposition of the interface shape,
and from a modified form of Darcy’s law we study the
combined influence of the crossed magnetic fields at early
stages of pattern evolution. A linear stability analysis
shows that the field strengths can be manipulated to allow
any single mode to be driven unstable while all others are
stable. The results of our linear analysis are further ana-
lyzed and probed in Section 3 through numerical simula-
tions that confirm the ability to select any particular mode
for growth. Our conclusions are summarized in Section 4.
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Fig. 1. A ferrofluid droplet in a Hele-Shaw cell simultaneously
subjected to a uniform perpendicular magnetic field, and to
an azimuthal magnetic field. The current-carrying wire passes
through the center of the cell.

2 Linear stability results

Figure 1 illustrates a Hele-Shaw cell of thickness b, con-
taining an initially circular droplet of ferrofluid of radius
R and viscosity η, surrounded by a nonmagnetic fluid of
negligible viscosity. The surface tension between the two
fluids is given by σ. As in references [1, 2, 8–10] we as-
sume that the ferrofluid is magnetized such that its mag-
netization M is collinear with the applied magnetic field.
The system is under the influence of two crossed magnetic
fields that are constant in time. The first is a uniform field
acting perpendicular to the cell produced by a suitable
solenoid or Helmholtz coil arrangement. This field is given
by Hperp = Hperp êz, where êz is a unit vector pointing
perpendicular to the Hele-Shaw cell. The second is an az-
imuthal field produced by a long straight, current-carrying
wire that runs perpendicular to the Hele-Shaw cell. This
field is given by Hazi = I/(2πr) êθ, where I denotes the
constant electric current, r is the distance from the wire,
and êθ is a unit vector in the azimuthal direction.

The basic hydrodymanic equation for this system ex-
presses the two-dimensional velocity field as given by a
generalized Darcy’s law [10,33]

v = −
b2

12η
∇Π. (1)

The generalized pressure Π = P − Ψ contains both the
(z-averaged) hydrodynamic pressure P and a magnetic
pressure represented by a scalar potential Ψ = Ψperp+Ψazi.
If we describe the ferrofluid boundary by a simple closed
curve Γ parametrized by arclength s, then a convenient
way of writing the perpendicular scalar potential is [10]

Ψperp =
µ0RM

2
perp

2πb
J(s), (2)

where µ0 is the free-space permeability, Mperp is the mag-
netization created by the axial field (see App. A), and J(s)
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is the (dimensionless) integral

J(s) =
1

R

∮

Γ

ds′ D̂ × t̂(s′)
[

√

1 + (b/D)2 − 1
]

. (3)

Here, t̂(s′) is the unit tangent vector at arclength s′ and

D̂ = D/D is a unit vector pointing in the direction of
D = r(s′)−r(s). In the azimuthal case, the scalar potential
can be simply written as [17]

Ψazi =
µ0χI

2

8π2r2
, (4)

where we have used the fact that Mazi = χHazi, with χ
representing the constant magnetic susceptibility.

It is worth mentioning that the magnetic body force
which gives rise to the magnetic portion of equation (1)
depends on the gradient of the local magnetic field. The
local magnetic field can include contributions from the
applied field as well as the demagnetizing field [1,2]. Here
we consider only the lowest order effect of the magnetic
interactions that would result in fluid motion. Thus, in
the perpendicular situation, we include the demagnetiz-
ing field produced by the uniform magnetization resulting
from the applied field. However, in the azimuthal situa-
tion, we consider only the applied field in determining the
magnetization. This is well justified for ferrofluids of low
magnetic susceptibility, and this will be assumed for the
remainder of this paper. Finally, we note that it is possi-
ble to write the scalar potential Ψ as a sum of two parts
(Ψperp and Ψazi) when the magnetization depends linearly
on the total magnetic field (see App. A for more details
regarding this point).

Before we specify the motion of the ferrofluid bound-
ary, we note that since the fluid is incompressible, we have
∇ · v = 0 and by virtue of equation (1), the generalized
pressure obeys Laplace’s equation ∇2Π = 0. The bound-
ary conditions are that the fluid velocity vanish at infinity
and that the pressure at the boundary be given by

Π(s) ≡ Π
∣

∣

Γ
= σκ− Ψperp

∣

∣

Γ
− Ψazi

∣

∣

Γ
−

1

2
µ0M

2
n, (5)

with κ the boundary curvature and µ0M
2
n/2 being the

so-called magnetic normal traction [1, 2, 34]. The mag-
netic normal traction considers the influence of the normal
component of magnetization at the ferrofluid boundary
Mn = M · n̂. The motion of the boundary is then found
using the kinematic boundary condition

n̂ ·
∂r

∂t

∣

∣

∣

∣

Γ

= −
b2

12η

(

n̂ · ∇Π
∣

∣

Γ

)

. (6)

Notice that we need only specify the normal component
of the boundary velocity as the tangential component has
no physical significance. This flexibility will prove useful
when implementing a numerical routine to solve for the
ferrofluid evolutions.

Due to the action of the perpendicular field, a cir-
cular droplet may deform. To determine the stability of
the ferrofluid boundary, we consider a slightly perturbed

circle given by R(θ, t) = R + ζ(θ, t), where ζ(θ, t) =
ζn(t) exp (inθ) and n are the integer Fourier modes. Fol-
lowing the usual linear stability procedures [10,16,17,35],
we obtain the differential equation for the Fourier pertur-
bation amplitudes ζ̇n = λ(n)ζn, with the linear growth
rates given by

λ(n) =
b2σn

12ηR3

[

Dn(p)N⊥

B −NB − (n2 − 1)
]

, (7)

where

Dn(p) =
p2

2

{

[

ψ

(

n+
1

2

)

− ψ

(

3

2

)]

+

[

Qn−1/2

(

p2 + 2

p2

)

−Q1/2

(

p2 + 2

p2

)]

}

, (8)

N⊥
B = µ0bM

2
perp/(2πσ) is the magnetic Bond number for

the perpendicular field configuration, p = 2R/b is the as-
pect ratio, and NB = µ0χI

2/(4π2σR) is the azimuthal
magnetic Bond number. In equation (8), Qn represents
the Legendre function of the second kind, while Euler’s
psi-function ψ is the logarithmic derivative of the Gamma
function. Notice that the function Dn(p) ≥ 0 for n > 0.
Therefore, since the sign of the growth rate governs the
interface stability, equation (7) tells us that the perpen-
dicular (azimuthal) magnetic field will always destabilize
(stabilize) the interface. Typical values of the material pa-
rameters (µ, χ, b, etc.) require perpendicular magnetic
fields of order 10−2 Tesla to drive the system unstable [36].
This is fairly easy to accomplish with a Helmholtz coil ar-
rangement and currents of a few amperes. An appropriate
azimuthal field strength to stabilize the system would re-
quire currents of 100A if a single wire is used; this current
can be significantly reduced (to a few amperes) by using
multiple wires in a loop configuration.

It is worth noting that the magnetic normal traction
term in equation (5) does not affect the linear growth
rates in equation (7). The lowest-order contribution of
µ0(M · n̂)2/2, with n̂ = ∇[r − R(θ, t)]/|∇[r − R(θ, t)]|,
is proportional to (∂ζ/∂θ)2. Since this is second order in
ζ, it is neglected in our linear analysis. This is simply a
statement of the fact that to linear order, the magnetic
normal traction acts as if the boundary of the ferrofluid
were parallel to the azimuthal field.

Figure 2 shows the dimensionless linear growth rate
λ̃(n) = 12ηR3/(b2σ)λ(n) as a function of mode number
n for p = 10 and various N⊥

B and NB . A few important
features are seen from Figure 2. First, we see that larger
values of N⊥

B lead to a larger band of unstable modes,
larger growth rates, and the peak in the growth rate curve
occurring for larger mode numbers. These features agree
with similar results that have been previously observed
in reference [10]. In addition, we see that increasing the
azimuthal Bond number NB leads to a smaller band of un-
stable modes, smaller growth rates, and a slight decrease
in the peak of the growth rate curves. Of course, a large
enough azimuthal field will stabilize the entire system.
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Fig. 2. Dimensionless linear growth rate λ̃(n) as a function of
Fourier mode n for N⊥

B = 2.0 (top) and N⊥

B = 2.5 (bottom)
(p = 10 in both cases). Larger azimuthal Bond numbers NB

causes the band of unstable modes to shrink on both sides. An
appropriate value for NB leaves only a single unstable mode.

One immediate consequence of an azimuthal magnetic
field should be to slightly reduce the number of fingers at
the interface. In fact, this behavior was already expected
from previous studies involving azimuthal fields [16, 17].
However, it is important to note that unlike the classi-
cal fingering problem in outward radial flow [37, 38] and
the centrifugally-driven problem in rotating Hele-Shaw
cells [21,39], here the band of unstable modes shrinks from
both ends. This peculiar behavior allows one to tune the
magnetic fields to produce a situation in which any mode
can be selected as the only unstable mode. It is this unique
feature that makes this such an interesting system. Here,
we have the ability to fine tune the system to promote
any specific mode we might want. This kind of selectivity
could prove useful because it allows precise control over
exactly what kinds of patterns are allowed to form.

All of the features we have been describing are con-
tained in the growth rate equation. For example, the neu-
tral stability curves for which λ(n) = 0 are found by set-
ting equation (7) equal to zero. This results in

N⊥

B =
NB + (n2 − 1)

Dn(p)
. (9)

Another useful quantity is the fastest growing mode n∗,
defined as the (integer) mode that has the largest growth
rate. This is the mode that will tend to dominate dur-
ing the early stages of the pattern formation process and
will perhaps determine the number of fingers in the final
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Fig. 3. Linear stability phase portrait showing neutral stability
curves (solid black lines) and zones (shaded regions bounded by
white lines) of fastest growing mode n∗ for p = 10. The black
diamonds show the values chosen for simulations as described
in Section 3.

state. Now, a given mode n is only the fastest growing
when λ(n) > λ(n − 1) and when λ(n) > λ(n + 1). Using
equation (7), we find that the boundaries of the regions
dominated by a particular mode n∗ are given by

N⊥

B =
NB + 3n∗(n∗ ± 1)

[Dn∗±1(p)(1 ± n∗) ∓ n∗Dn∗(p)]
. (10)

A very useful way of organizing all the information
contained in equations (9) and (10) is to make a linear
stability phase portrait (Fig. 3). This figure shows the neu-
tral stability curves for each mode as solid black lines and
simultaneously shows the zones of fastest growing mode
n∗ as shaded regions separated by white lines. The black
diamonds plotted in Figure 3 show the parameters used
in some of our numerical simulations, to be discussed in
Section 3.

Although Figure 3 contains a plethora of information,
perhaps the most interesting feature of this graph is that
the neutral stability curves cross each other. This makes
it possible to go from the stable region to the unstable
region by crossing the neutral stability curve of any mode
one desires. In fact, as one crosses into the unstable re-
gion, there are triangular-shaped “islands” that represent
regions where only a single mode is unstable. Thus, choos-
ing parameters that lie inside one of these islands will al-
low you to specify precisely which mode is unstable. This
convenient mode-selection feature is unique to this system
and provides much more control than is possible in pre-
vious ferrofluid studies where the perpendicular and the
azimuthal fields act separately [9, 10,16,17].

Studying Figure 3 further shows that in addition to
regions with only a single unstable mode n, there are also
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regions where only modes n and n− 1 are unstable. Per-
haps not surprising is the fact that each of these (quadri-
lateral) regions is divided into sub-regions where mode n
is fastest growing and where mode n−1 is fastest growing.
Furthermore, one can find regions where modes n, n− 1,
and n − 2 are the only unstable modes; where modes n,
n− 1, n− 2, and n− 3 are the only unstable modes; and
continuing on to regions where modes n, n−1, n−2 . . . 4,
3, and 2 are the only unstable modes. These last regions
are located along the N⊥

B axis of Figure 3.
Most of the regions in Figure 3 with more than one

unstable mode are divided into multiple sub-regions dom-
inated by different fastest growing modes n∗. Others have
only a single fastest growing mode throughout the entire
region. To what extent this affects the pattern formation
process is discussed in the next section.

3 Numerical simulations

Although our linear analysis provides a significant amount
of interesting information, linear theory is only valid for
the very early stages of the pattern formation process. Of
course, in some situations, linear theory can still be an
excellent predictor of certain features of the patterns that
form. One such example is how the interactions of multiple
domains can affect the pattern formation process [40–42].

To explore beyond the early stages of the pattern for-
mation process, we turn to numerical evolutions of the
equations of motion. As described in Section 2, the mo-
tion of the ferrofluid boundary is specified only by the
normal component of the generalized pressure gradient at
the boundary (6). The pressure field is found by solving
Laplace’s equation on an arbitrarily shaped (simply con-
nected) domain with a specified value (5) on the bound-
ary. Thus, we need to solve a Dirichlet problem on an
arbitrarily shaped domain that evolves in time. Our basic
approach is to use a conformal mapping algorithm to map
the domain of interest (the z-plane) to the unit disk (the
ω-plane) where the solution is given by the Poisson inte-
gral formula. The Riemann mapping theorem guarantees
that such a map always exists. This method specifies a
particular tangential velocity to maintain the analyticity
of the mapping function for all time [23].

If z = f(t, ω) is the map that takes you from the
ω-plane to the z-plane at time t, then the boundary of
the ferrofluid domain is given by γ(t, s) = f(t, eis). After
rescaling time by 12ηR3/(b2σ), the equation of motion for
the ferrofluid is given by [10]

∂γ

∂t
= −ω∂ωfA







Re
[

ω∂ωA
{

Π̃(s)
}]

|ω∂ωf |2







, (11)

where ω lies on the unit circle and Π̃(s) is a dimensionless
version of equation (5) given by

Π̃(s) = κ̃−
1

4
p2N⊥

B J(s) −
1

2

NB

r̃2
[

1 + χ(n̂ · êθ)
2
]

, (12)

with κ̃ and r̃ dimensionless variables that have been
rescaled by the radius of the initial ferrofluid drop R. In
equation (11), A{· · · } is an integral operator that acts on
a real-valued function g(s) and returns a complex function
that is analytic inside the unit disk and whose real part
on the boundary is g(s). That is, given a real function

g(s) =

∞
∑

n=0

(

ane
ins + a∗ne

−ins
)

, (13)

then

A{g(s)} = 2
∞
∑

n=0

anz
n. (14)

Because the operator A can be simply written in terms of
the Fourier coefficients an, these calculations can be done
using fast Fourier transform routines. The bottleneck in
the routine is in the calculation of the integrals given in
equation (3) for each point on the interface.

We also note that the magnetic traction term in
equation (12) arises solely from the azimuthal magnetic
field and provides a stabilizing influence with a similar
functional form as the other azimuthal magnetic field
term. Since the traction term is multiplied by the mag-
netic susceptibility χ (assumed small), we have neglected
the final term in equation (12). This simplifies the
computations considerably and should have very little
effect on the resulting patterns.

As previously mentioned, one of the most interesting
features arising in the linear analysis is the ability to
specify the two control parameters, NB and N⊥

B , so
that there is only a single unstable mode. A natural
question to ask is if there is only a single unstable mode,
does the “final state” pattern (stable pattern after the
evolution has stopped) bear the signature of this mode
in some way? Perhaps the final-state pattern will have
precisely the same number of fingers as the initial mode
of instability. While this may seem like a natural expec-
tation, it is not at all certain that this should be the case
because the equation of motion (11) is highly nonlinear.
These nonlinearities can lead to mode competition that
can result in the number of fingers being different from
what might naively be expected based on linear theory
alone [10, 16, 43]. On the other hand, in this situation,
there should not be any mode competition at all since
there is only a single unstable mode.

To explore this possibility, we numerically evolve the
equation of motion (11) using appropriate values for the
control parameters that produce only a single unstable
mode. When possible, these points are plotted on the
phase portrait in Figure 3. Figure 4 shows the results
of these simulations for p = 10 when the only unstable
modes are n = 3, 4, 5, and 6. One can immediately see
that the final-state patterns have exactly the same num-
ber of fingers as the initial mode of instability. This agrees
perfectly with the predictions of the linear analysis. For
each of these simulations, we begin with a slightly per-
turbed circle that consists of small random amplitudes
added to the first eight Fourier modes. It is important to
note that the exact same initial condition is used for all
of the simulations shown in Figure 4. Thus, the fact that
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Fig. 4. Numerical evolutions of the equation of motion (11)
with p = 10 and various NB and N⊥

B using the exact same
initial condition (a slightly noisy circle). The Bond numbers,
chosen so that there is only a single unstable mode in each
case, are plotted in Figure 3 when possible. The left column
shows the early stages of the evolution and the right column
shows the final-state patterns.

each simulation ends with a different number of fingers
cannot be attributed to the initial conditions.

In addition to testing the linear theory when only a
single mode is unstable, we also run simulations with a
fixed value of N⊥

B = 2.5 while changing the values of NB

(still with p = 10). In this way we see how the applica-
tion of the stabilizing azimuthal magnetic field affects the
final-state pattern produced by the perpendicular mag-
netic field. Figure 5 shows the results of these simulations.
When NB = 0, we see a familiar pattern formed from the
perpendicular field alone. This particular pattern is in ex-
cellent agreement with the corresponding shapes obtained
experimentally [9,10,43]. Reference to Figure 3 shows that
for N⊥

B = 2.5 and NB = 0 modes 2 through 8 are all
unstable and n = 6 is the fastest growing mode. There-
fore, one might naively expect that the final-state pattern
should have six fingers. In contrast to this prediction, Fig-
ure 5 shows that the final-state pattern for this case has 7
fingers. This discrepancy has been noted and a fairly suc-
cessful description of early finger formation was proposed
to accommodate these observations [10].

NB=0.0 NB=2.5

NB=5.0 NB=7.5

NB=10.0 NB=10.5

Fig. 5. Numerical evolutions with p = 10, N⊥

B = 2.5, and
various values for NB (plotted in Fig. 3). A different initial
condition was used here compared to those shown in Figure 4.

Referring back to Figure 5, we see that as NB is in-
creased, the number of fingers in the final-state pattern
is observed to decrease. This agrees qualitatively with the
linear phase portrait shown in Figure 3. Not only does
the fastest growing mode decrease as NB increases, but
the actual modes that are unstable changes as well. First
mode 8 becomes stable, then mode 2, then modes 7, 3, 6,
and 4 become stable (in this order). This finally leaves the
single unstable mode n = 5. We also note that as NB in-
creases, the fingers become much less curved and are more
radially oriented. We believe this is a result of less mode
competition during the pattern formation process. The
fewer unstable modes that are available as NB increases
means the pattern formed early in the evolution is likely
to attain a more symmetrical appearance. Although not
perfect, this symmetry is clearly visible in the left column
of Figure 4 when there is only a single unstable mode.

Interestingly, although n = 5 is the only unstable
mode in the final simulation in Figure 5 (with N⊥

B = 2.5
and NB = 10.5), the final-state pattern has only four
well-developed fingers. This is in contrast to what is shown
in Figure 4. The reason for the difference is that we used a
different initial condition for the set of simulations shown
in Figure 5. Thus, just because there is only a single un-
stable mode does not necessarily mean that the final-state
pattern will have exactly that number of fingers. The pat-
tern will begin developing with precisely that number of
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NB=0.0 NB=0.25

NB=0.5 NB=0.75

NB=1.0 NB=1.25

Fig. 6. Numerical evolutions with p = 10, N⊥

B = 1.5, and
various values for NB (plotted in Fig. 3). The initial condition
was a small amplitude n = 2 Fourier mode. Notice that the
initial condition does not appear to have an impact on the
final-state pattern after this mode has become stable (when
NB = 1.25).

fingers but small differences in the initial conditions can
lead to one or more of these fingers disappearing by the
time the evolution stops.

In addition to simulations with random initial condi-
tions, we also run some simulations with a prescribed ini-
tial condition of a particular Fourier mode to see whether
this perturbation would have an impact on the final-state
pattern even when this Fourier mode was stable. Fig-
ure 6 shows the results of these simulations with p = 10,
N⊥

B = 1.5, and various values of NB (plotted in Fig. 3 as
before). The initial condition was a small amplitude n = 2
mode aligned in the left-right direction. When NB = 0,
modes 2, 3, and 4 are all unstable, and although n = 3 is
the fastest growing mode, the final-state pattern ends up
with four fingers and reflects the left-right symmetry of
the initial condition. When NB = 0.25, the n = 4 mode is
no longer stable and although the n = 3 mode is still the
fastest growing mode, the final-state pattern has only two
fingers and still reflects the initial condition. We also note
that there is a small bulge near the center of the pattern.
This is because the stabilizing azimuthal field acts to pull
the fluid in toward the origin.

As NB is increased further, the length of the fingers
decreases as more and more of the fluid is drawn towards
the central region. Then, when NB = 1.25, the n = 2
mode becomes stable, leaving mode n = 3 as the only
unstable mode. Although the final-state pattern has only
two fingers, the symmetry of the pattern no longer reflects
the symmetry of the initial condition but instead reflects
the symmetry of the mode-3 instability. Thus, we see that
as in Figure 4, the initial conditions can be overridden
when there is only a single unstable mode available to
seed the growth of the pattern.

4 Conclusion

In this work we have studied the evolution of a confined
ferrofluid droplet in the presence of two crossed mag-
netic fields: perpendicular (destabilizing) and azimuthal
(stabilizing). This particular setup differs from previous
pattern-forming investigations in a very important aspect
—the two major competing forces are both magnetic in
nature. This provides a large amount of control over the
pattern formation process and in some cases allows us to
predict with relative certainty the morphology of the final
patterns. This predictability comes about because the
band of unstable modes shrinks from both ends as the az-
imuthal field is increased. Thus, the magnetic fields can be
specifically tuned so that any particular mode —and only

that mode— can be driven unstable. This mode-selection
mechanism is not only precise but is also robust enough to
overcome any preference resulting from the initial pertur-
bations on the ferrofluid drop. Furthermore, these initial
instabilities have a dramatic impact on the final-state
patterns as demonstrated with our numerical results.

Our theoretical work makes specific predictions that
have not been investigated experimentally. We are very
interested in seeing our predictions tested with actual ex-
periments, and hope the results presented here will en-
courage some investigators to attempt these experiments.

This type of pattern selectivity could prove very useful
in other pattern-forming systems including dendritic so-
lidification [44,45] and electrochemical deposition [46–48]
among others. Recent experimental works [49, 50] have
demonstrated that the presence of external magnetic fields
during pattern formation in electrochemical growth can
lead to very different arborescent morphologies. When
submitted to the combined action of perpendicular and
azimuthal magnetic fields, these electrochemical growth
systems could be promising candidates to test the mode-
selection mechanism we discuss here for confined magnetic
fluids. Finally, we point out that very recent numerical
simulations describing the flow of miscible ferrofluids in
lifting Hele-Shaw cells (under the action of crossed mag-
netic fields) [51] also indicate the existence of a similar
mode-selection scheme.
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research.

Appendix A. Magnetic body force and

Darcy’s law under crossed magnetic fields

Here we would like to discuss a few important points re-
lated to the usefulness and validity of equation (1) when
the azimuthal and the perpendicular magnetic fields act
simultaneously (crossed-field situation). In general, if the
ferrofluid magnetization function is nonlinear with the
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total magnetic field, one cannot simply add the sepa-
rate magnetic force components together as expressed in
our generalized Darcy’s law (Eq. (1)): the magnetic fields
themselves certainly obey linear superposition, but the
magnetization may not. Thus, it is important to clar-
ify under what conditions equation (1) is valid in the
crossed-field case.

We begin with the magnetic body force, which can be
written as [1, 2]

Fm = µ0M∇H, (A.1)

where M = |M| is the magnitude of the magnetization

and H =
√

H2
perp +H2

azi is the magnitude of the total

magnetic field. If we consider a linear relationship M =
χH, where χ is the constant magnetic susceptibility, then
equation (A.1) can be easily rewritten as

Fm = µ0χ
1

2
∇H2 (A.2)

= µ0Mperp∇Hperp + µ0Mazi∇Hazi , (A.3)

where Mperp = χHperp and Mazi = χHazi. Equation (A.3)
immediately tells us that the magnetic body force is sim-
ply the sum of the “perpendicular body force” and the
“azimuthal body force.” Then, using a fairly standard ap-
proach (see for instance, Refs. [1,2,8–11,16,17,52]), we in-
troduce scalar potentials and average over the gap height
to obtain equation (1).
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