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Abstract
A magnetic liquid in a horizontal Hele–Shaw cell is subjected to a vertical magnetic field. The
width of the magnetic fluid finger is measured as a function of applied field and compared to a
theoretical model. The theoretical model uses an energy minimization procedure and predicts a
double energy minimum, hysteresis, and discontinuous transitions between a circle and a finger.
The experimental data set agrees very well with the theory for a well-defined magnetic fluid
finger. Near the transitions, the experiments show hysteresis and support for a double energy
minimum; however, the agreement is not quite so good. The discrepancy between theory and
experiment near the transition region is likely due to the simplified finger model used in the
theory.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

When a magnetic fluid is trapped with an immiscible fluid
between two closely-spaced horizontal plates and subjected to
a vertical magnetic field, a fingering instability results in the
magnetic fluid evolving into a complex, branched pattern [1, 2].
Depending on various parameters of the applied magnetic
field [3], the final state pattern can be a relatively simple short
‘finger’ in the shape of a ‘dumbbell’, or a highly convoluted
maze-like labyrinthine structure (see figure 1). In addition,
several investigations of multiple magnetic fluid drops have
demonstrated some degree of predictability in the final state
patterns [4–7].

In all of the patterns shown in figure 1, the magnetic
liquid has a fairly well-defined finger width. In the labyrinthine
pattern, the spacing between fingers is also quite well defined.
Although the finger width and spacing in these labyrinthine
patterns was initially investigated over twenty years ago [8],
some recent work has corrected and expanded on the previous
results and explored three different methods for computing the
magnetic energy of this system [9, 10]. In [10], it is shown
that the assumption of a constant demagnetizing field (called
method B) leads to results that agree with experiments only
for small applied fields, while two other methods (called A and
C) are effectively indistinguishable and agree with experiments
for all applied field values.

Until recently, all theoretical and experimental investiga-
tions into the width of a magnetic fluid finger have centered on
labyrinthine patterns. This is a bit surprising because the cal-
culations involve an infinite number of infinitely long fingers
and are therefore difficult to carry out. For similar reasons, ex-
periments are easily plagued in some way by ‘edge’ effects,
e.g. nonuniformities in the applied field or the boundaries of
the Hele–Shaw cell. In contrast, both theoretical and experi-
mental investigations are simplified a great deal by considering
a system composed of a single magnetic fluid finger (leftmost
image in figure 1).

In this paper, we expand on our previous investigation of
a single magnetic fluid finger in a horizontal Hele–Shaw cell
subjected to a vertical magnetic field [11]. First, we present the
theoretical model used to calculate the finger width and discuss
some surprising features of this model. Second, we present
some experimental results for this system and compare these
results to the theoretical predictions. Finally, we conclude with
a discussion of the results and some suggestions for future
work.

2. Theory

In general, the total energy of a magnetic fluid system consists
of three pieces: gravitational, surface, and magnetic. For a
magnetic fluid in a horizontal Hele–Shaw cell, the gravitational
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Figure 1. Some typical magnetic fluid patterns, from a simple finger (left) to a complex labyrinth (right). The simple finger is investigated in
this paper.

Figure 2. A model of an idealized ferrofluid finger consisting of two
parallel line segments of length 2L and two semicircles of radius w.

energy is constant and can be neglected. This leaves only the
surface and magnetic energies. The surface energy is given by

Es = σh P, (1)

where σ is the surface tension, h is the plate spacing in the
Hele–Shaw cell, and P is the perimeter of the domain. In order
to determine the field energy, we assume that the magnetization
of the magnetic fluid in a uniform magnetic field is both
uniform and constant, an assumption first introduced by Cebers
and Maiorov [12]. This corresponds to method C in [10]. Note
that although the magnetization is assumed to be uniform, the
demagnetizing field is not. It is precisely this ‘fringing field’
that gives rise to the fingering instability in this model [13].
Using this model, the magnetic energy for an arbitrarily-shaped
domain is given by [14]

Em = μ0hM2

2

[
A − 1

2π

∮
ds

∮
ds′ t̂ · t̂′ �(R/h)

]
, (2)

where μ0 is the permeability of free space, M is the
magnetization of the ferrofluid, and A is the area of the domain
as seen from above. The integration is carried out over the
perimeter of the domain with s and s ′ representing arc-length
coordinates along the contour of the domain, and t̂ and t̂′ are
unit tangent vectors at s and s ′, respectively (figure 2). The
distance between s and s ′ is given by R = |r − r′| and
�(ξ) = sinh−1(1/ξ) − √

1 + ξ 2 + ξ is a coupling strength
that arises from integration over the height of the domain.

In order to calculate the energy of a single finger, the
shape of the magnetic fluid domain must be specified. As
seen in the leftmost image of figure 1, the precise shape of
a magnetic fluid finger has slightly bulbous tips and would
be very difficult to specify exactly. An idealized model is
used that assumes the finger is perfectly straight, constant in

width, and has ends consisting of semicircles (see figure 2).
The perimeter of the domain is partitioned into four segments:
two straight lines of length 2L and two semicircles of radius w

(note that L and w are not independent). These segments are
numbered 1–4 beginning with the right semicircle and moving
counterclockwise around the domain.

Using this parametrization in equation (2) leads to 16
separate double integrals, one for each pair of segments.
Fortunately, symmetry immediately reduces the number of
independent integrals to five. This allows us to write down the
total energy for a magnetic fluid finger in dimensionless form
as (see [11] for details)

Ẽ = E/σ R0
2 = 2π

p

(
1 + w̃2

w̃

)

+ NBπ2

(
1 − 1

π2

5∑
i=1

Ji(w̃)

)
, (3)

where w̃ = w/R0 is the scaled finger width, p = 2R0/h is
the aspect ratio, NB = μ0 M2h/(2πσ) is the (dimensionless)
magnetic bond number, and the Ji are dimensionless integrals
defined in the appendix of [11].

For a fixed plate spacing and magnetic field value,
equation (3) gives the total energy of a magnetic fluid finger
in an applied field in terms of the single parameter w̃. This
parameter w̃ = w/R0 = 2w/2R0 is simply the width of the
finger scaled by the initial diameter of the circle. Thus, a value
of w̃ = 1 corresponds to a circle and as w̃ decreases, the
finger becomes longer and thinner. The energy of a circular
ferrofluid domain can be written in terms of complete elliptic
integrals [12, 14] and should be identical to equation (3) with
w̃ = 1. Numerical calculations demonstrate that this is indeed
the case.

Figure 3 demonstrates the behavior of the finger energy
given by equation (3). The left graph shows the total energy
as a function of finger width for a fixed aspect ratio p = 7.2,
and three magnetic bond numbers, NB = 1.0, 1.5, and 1.8. For
convenience, the energies are scaled by the energy of a circular
domain with the same magnetic field value. The location of
each minimum corresponds to the preferred finger width. For
low magnetic fields (low NB), the energy is minimized when
w̃ = 1 (a circle). As the magnetic field increases, the minimum
shifts toward w̃ = 0 demonstrating that the preferred finger
width decreases.

Interestingly, near the transition from a circular domain to
a finger, the energy has a double-well behavior. That is, the
model predicts two stable configurations for a range of applied
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Figure 3. Left: energy as a function of finger width for a fixed aspect ratio, p = 7.2, and three different magnetic bond numbers. The energies
are calculated using equation (3) and scaled by the energy of a circular domain. Right: for a particular range of bond numbers, the energy has
two distinct minima, giving rise to two configurations as shown.

field values. This is demonstrated on the right graph in figure 3.
Here, the energy is plotted using p = 7.2 for NB = 1.265 and
NB = 1.28. Note the change in scale to emphasize this double
minimum.

One immediate consequence of this behavior is that the
preferred finger width first appears with a finite value. That
is, the system is predicted to undergo a first-order transition
as it abruptly changes from a circle to a finite finger. This
happens because there is a barrier that separates the two energy
minima. Therefore, as the magnetic field is increased, the
system will stay trapped in the circular state (w̃ = 1) until
the barrier disappears. Conversely, once a finger has formed
and the magnetic field is decreased, the system will now stay
trapped in the finger state (w̃ < 1) until the barrier disappears.
Since these two transitions occur for different magnetic field
values, the system exhibits a subcritical pitchfork bifurcation
with the associated hysteresis that is common in such systems.
This agrees with the numerical results obtained by Cebers and
Zemitis [15].

3. Experiment

Figure 4 shows a schematic of the experimental setup. A Hele–
Shaw cell consisting of two 30 cm × 30 cm × 0.6 cm glass
plates separated by a 1 mm spacer is placed at the center of
a Helmholtz coil arrangement capable of producing magnetic
fields up to 0.034 T. The Hele–Shaw cell is backlit and images
are obtained using a CCD camera. The entire system is
computer controlled [16] and the resulting high contrast images
are relatively simple to analyze.

The experimental procedure is reasonably straightforward.
The applied magnetic field is increased in small steps and
the magnetic liquid is imaged after it has come to rest.
Unfortunately, the magnetic liquid tends to stick to the glass
plates which makes it very difficult to obtain reproducible data.
To try to eliminate this problem, the glass plates are thoroughly
cleaned before constructing the Hele–Shaw cell. Next, a
solution of Tween-80 (polyoxyethylenesorbitan monooleate)
and distilled water is inserted into the cell. After letting it
sit for a few days, the cell is flushed with distilled water and
the process is repeated. Just prior to running an experiment,

Figure 4. Schematic diagram of the experimental setup. The
Hele–Shaw cell with the magnetic fluid is placed inside a pair of
Helmholtz coils. The magnetic fluid evolution is captured with a
CCD camera.

the cell is filled with either pure water or the water/Tween
mixture and then the immiscible magnetic liquid is injected.
Unfortunately, even this rather laborious procedure does not
always lead to stick-free results. Typically, one portion of the
cell will remain relatively clean and stick free for at least a
few hours, providing a reasonable opportunity to perform the
experiment.

For the experiments presented here, a mineral-oil based
ferrofluid (EFH1) manufactured by FerroTec Corporation is
used1. This ferrofluid has an initial susceptibility of χi = 1.70
and a saturation magnetization of μ0 Ms = 0.040 T.

In the first experiment (previously reported in [11]), the
cell is prepared using a 0.25% water/Tween solution and this
same solution is used as the immiscible liquid in the Hele–
Shaw cell. As the magnetic field is increased, the magnetic
liquid is gently prodded with a small hand magnet to see if
it relaxes back to a circle or grows into a finite finger. When
the magnetic liquid appears to stop moving, a picture is taken
before proceeding with another measurement. Because the
ferrofluid has a tendency to stick to the glass plates, multiple
measurements are made at each magnetic field value. In

1 EFH1 ferrofluid is widely available through a number of educational
suppliers. See [17] for more information.
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Figure 5. Left: a comparison of experimental results and the theoretical prediction for p = 8.5. The data points represent averages of
‘growing’ (field ramped up) and ‘shrinking’ (field ramped down) measurements. The arrows denote the predicted path of the magnetic liquid
and demonstrates the hysteresis in this system. Right: a more recent experiment for p = 7.2. Diamonds (red) represent ‘growing’
measurements and boxes (blue) represent ‘shrinking’ measurements.

Figure 6. Equilibrium patterns of a magnetic liquid in a Hele–Shaw cell for (approximately) the same magnetic field values differ depending
on whether the field is ramped up or down. The patterns are (nearly) circular when the field is ramped up and elongated when the field is
ramped down. This clearly demonstrates hysteresis and a double energy minimum. The final magnetic field values correspond to bond
numbers between 1.36 and 1.38.

each case, the final field is approached from below and from
above so the ferrofluid is growing in one case and shrinking
in the other. Thus, if sticking is a problem, a growing finger
is expected to be slightly shorter and fatter than a shrinking
finger. We found very little difference between the growing
and shrinking fingers indicating that sticking was not a major
problem in this experiment.

The left graph in figure 5 shows the experimental data
and the theoretical prediction for this experiment. Each data
point is an average of four separate measurements, two in
which the magnetic field was approached from below (growing
finger) and two in which the field was approached from above
(shrinking finger). The arrows in the graph denote the predicted
path of the magnetic liquid as the field is increased and then
decreased.

To compare experiment to theory, the magnetic liquid is
assumed to obey a superparamagnetic magnetization law as
given by the Langevin equation M = Ms(coth α−1/α), where
α = 3χi B/(μ0 Ms) [18]. It is also necessary to know the
surface tension of the magnetic liquid in our Hele–Shaw cell.
This is determined by looking for the magnetic field when the
droplet first becomes unstable and comparing this to the critical
bond number for elliptic instability [12]. For this experiment,
the surface tension is found to be σ = 0.030 N m−1. Finally,
since the experimental fingers do not have a perfectly uniform
width, it is not completely clear how to determine the finger
width from the raw data. We calculate the scaled finger width
from the so-called Heywood Circularity Factor, which gives
the ratio of the perimeter of a finger to the circumference of a
circle with the same area. More detail on these procedures can
be found in [11].

As can be seen in the left graph in figure 5, the data shows
very good agreement with the theoretical predictions, even near
the transition points. Unfortunately, this experiment did not
show evidence of two stable configurations. A more recent
experiment was performed using the same magnetic liquid
(EFH1). In this experiment, the Hele–Shaw cell was prepared
using a 2% solution of water and Tween-80 and the experiment
was performed using pure (distilled) water as the immiscible
liquid. This led to a surface tension of σ = 0.057 N m−1,
surprisingly different from the previous experiment.

In this second experiment, sticking appeared to be much
less of a problem. The magnetic field was simply ramped up
or down and an image was taken when the magnetic liquid
stopped moving. The results of this experiment are shown
in the right graph of figure 5. Again, the overall agreement
with the theoretical prediction is quite good, except near the
transition region. This is discussed in more detail in the next
section. The (red) diamonds represent data when the field is
ramped up to a higher value and the (blue) boxes represent data
when the field is ramped down to a lower value. Hysteresis is
evident in this data; the circle-to-finger transition occurs at a
higher bond number than the finger-to-circle transition.

In fact, we observe very clearly and reproducibly that
ramping up to a particular magnetic field value leads to a
different shape than ramping down to (approximately) the same
field value. Figure 6 demonstrates this behavior. The two
images on the left show the final pattern when the field is
ramped from zero up to final field values of 201 and 204 G.2

2 The final field values are not exactly the same due to temperature changes
in the Helmholtz coils. We control the voltage from the power supply but the
resistance of the coils changes throughout the experiment.
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The patterns begin as circles and at first glance, they appear to
remain circular, however, a closer inspection reveals they are
not. A circle has been drawn around the images to demonstrate
this. The right two images show the final patterns when the
field is ramped down to 202 and 203 G. This supports the
idea that the system really has two energy minima and can be
directed into either minimum through careful manipulation of
the applied field (see figure 3).

4. Discussion and conclusions

Let us now return to examine the data in figure 5 in more
detail. The latest data shown in the right graph demonstrates
a couple of interesting features. First, beyond the transition
region—when the bond number is greater than about 1.5—
the data is quite smooth and in very good agreement with the
theoretical prediction regardless of whether the field is ramped
up or down. This suggests that the simple model shown in
figure 2 is a good approximation for an actual magnetic fluid
finger. Second, the experimental data appears to demonstrate
hysteresis in the system, an indication that there are indeed
multiple minima in the energy. However, the transition region
does not agree quite so well with the theoretical predictions and
the transitions appear to be smoother than the discontinuous
nature of the model. It is much more difficult to obtain
experimental data in this region because the shape of the
magnetic liquid depends very sensitively on the applied field.
Thus, while it is clear from the data that the circle does
not jump discontinuously from a circle to a finite finger, it
is still not clear whether the transition is completely smooth
or whether there is a discontinuous jump somewhere in the
transition region.

The most obvious reason for the discrepancy between
the theory and experiment is because the finger model is
simply not terribly accurate in the transition region. A
comparison of the experimental and theoretical finger shapes
(see figure 6 and the right graph in figure 3) shows that this is
not particularly surprising. To accurately capture the hysteresis
region theoretically will require a more realistic model for the
magnetic fluid finger. One possible model is the so-called
ovals of Cassini, a model used to study shape transitions in
lipid monolayers [19]. These researchers employed a strictly
two-dimensional analysis and demonstrate qualitatively similar

results to what we observe here. Employing such a model for
a three-dimensional magnetic liquid system should result in a
more accurate description of the transition region.
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