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prove the accessibility of the theory 
course while maintaining its rigor: 
first, emphasizing search problems 
rather than decision problems in cer-
tain parts of the course; and second, 
employing computer programs written 
in a real programming language as 
one of the standard computational 

T
HE  THE ORY OF computation 
is one of the crown jewels of 
the computer science curric-
ulum. It stretches from the 
discovery of mathematical 

problems, such as the halting problem, 
that cannot be solved by computers, to 
the most celebrated open problem in 
computer science today: the P vs. NP 
question. Since the founding of our 
discipline by Church and Turing in the 
1930s, the theory of computation has 
addressed some of the most fundamen-
tal questions about computers: What 
does it mean to compute the solution 
to a problem? Which problems can be 
solved by computers? Which problems 
can be solved efficiently, in theory and 
in practice?

Yet computational theory occupies 
an ambiguous role in the undergradu-
ate curriculum. It is a required core 
course for the computer science major 
at many institutions, whereas at many 
others it is an upper-level elective. And 
whether required or not, the theory 
course can have a reputation as an aus-
tere and perhaps even irrelevant niche, 
disconnected from the skills and ideas 
that comprise computer science. This 
is not a new phenomenon, and in re-
cent decades the CS community has 
worked diligently to improve the acces-
sibility and perceived relevance of the 

theory course. Notable contributions 
include the JFLAP software for experi-
mentation with automata,8 and various 
efforts to promote “NP-completeness 
for all” via visualizations and practical 
laboratory exercises.1

This Viewpoint discusses two spe-
cific suggestions for continuing to im-
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Using Real Computer Programs 
to Complement Automata
Another technique for increasing stu-
dent engagement and connections 
with other parts of the CS curriculum is 
to employ code in a real programming 
language. This can provide a beneficial 
supplement to the automata and gram-
mars that typically dominate a course 
in theory of computation. Formal mod-
els such as Turing machines are of 
course essential, especially for provid-
ing a rigorous definition of computa-
tion itself. However, it is possible to 
teach a mathematically rigorous theory 
course using a programming language 
as the primary model of computation. 
In this approach, the program model is 
layered over Turing machines as an un-
derlying model, and Turing machines 
are still employed when required in cer-
tain proofs and definitions. A strong 
majority of CS theory textbooks do not 
employ a programming language as the 
primary computational model, but sev-
eral authors have done so, for example 
using Python,6 Ruby,9 and a variant of 
LISP.4,7 As an example of the approach, 
consider the Python program shown in 
the figure here.

This code provides the basis for a 
proof by contradiction, demonstrating 
that a certain computational problem 
is undecidable. Specifically, it proves 
the undecidability of the following 
question: “Given a Python function 
P() and input string I, does P return 
the value 'yes' when invoked with in-
put I?” A detailed explanation of the 
proof is outside the scope of this View-
point; here, I focus on the potential ad-
vantages for undergraduate students 
who are encountering this type of ma-
terial for the first time. Note that, in 
practice, the code shown in the figure 
would be presented in class only after 
exposure to and experimentation with 
prerequisite concepts, such as Python 
functions that take the source code of 
other Python functions as input and 
analyze them or transform them in 
some way. Nevertheless, for concrete-
ness and compactness in this View-
point, I describe the potential benefits 
to students directly as they appear in 
this proof.

First, note the undecidability result 
itself can be described in terms of Py-
thon programs: “It is impossible to 
write a Python program that deter-

models, complementing the use of au-
tomata such as Turing machines. The 
suggestions here apply specifically to 
an undergraduate course in which 
students encounter theory of compu-
tation for the first time. The content of 
such courses varies widely, and the 
following suggestions are most appli-
cable to introductory courses that in-
corporate both computability and 
complexity theory.

Emphasizing Search Problems
The theory of computation is usually 
phrased in terms of decision problems: 
questions with a single-bit yes/no re-
sponse. In other areas of computer sci-
ence, however, we are usually interest-
ed in search problems, whose solutions 
consist of more than a single bit. As an 
example, consider the problem of find-
ing a Hamilton cycle in a graph—that 
is, a route visiting every vertex exactly 
once. Theory courses usually discuss 
the decision problem, “Does the graph 
G contain a Hamilton cycle?” But if the 
answer is yes, we still do not know the 
route of a Hamilton cycle in G. It is 
more natural and useful to consider the 
related search problem, “Find and out-
put a Hamilton cycle of G, if one exists.”

Once they have finished their first 
theory course, computer science un-

dergraduates will recognize the con-
nections between search and decision 
problems. But search problems are 
more familiar and more immediately 
applicable, so there are good reasons 
to teach the more elementary parts of 
the theory course with an emphasis on 
search problems. It is worth noting 
that Knuth prize winner Oded Gold-
reich is an advocate of this approach2; 
his books are among the few modern 
textbooks3,6 that adopt search prob-
lems as a primary paradigm. But 
search problems can easily be incor-
porated into more traditional ap-
proaches that retain decision prob-
lems as the standard model, and I do 
recommend this as a means of con-
necting the theory course more closely 
to other parts of the undergraduate CS 
curriculum.

The advantages of, and techniques 
for, teaching CS theory via search prob-
lems have been discussed in detail 
elsewhere.5 One interesting result, 
based on a survey of CS undergradu-
ates, is that search problems are per-
ceived as significantly more useful 
than decision problems. Because per-
ceived relevance is known to be a factor 
in achieving good learning outcomes, 
this provides indirect evidence the ap-
proach is beneficial.

Python program example.

# yesOnStr(P,I) returns 'yes' if the Python function with 

# source code P returns 'yes' after receiving input I.   

# We assume yesOnStr(P,I) exists and works correctly 

# on all inputs.

from yesOnStr import yesOnStr

# Below is a diagonalized and inverted version of 

# yesOnStr(P,I). What happens when the 

# parameter P is a string consisting of the

# source code of diagYesOnStr?

def diagYesOnStr(P):

    if yesOnStr(P, P)=='yes':

        return 'no'

    else:

        return 'yes'

    

The source code of Python function diagYesOnStr(). This code provides the core of a proof by 

contradiction. When given its own source code as input, the function diagYesOnStr() outputs ‘yes’ if 

and only if it outputs ‘no’. This contradiction means our assumption that the function yesOnStr(P,I) 

can exist is not valid. Therefore, the problem YesOnStr is undecidable: no Python function can correctly 

answer the question “does Python function P output ‘yes’ on input I?” for all inputs.
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about polynomial-time verifiers that 
can be proved more instructively—for 
the target audience of novice under-
graduates—using Turing machines 
rather than computer programs.

Every instructor and every group of 
students is different; instructors must 
adopt a style of teaching that is au-
thentic to themselves, achieves the 
goals of the students, and is based re-
alistically on the students’ level of pre-
paredness. I do believe that many the-
ory courses could benefit from making 
more explicit connections to other 
parts of the computer science curricu-
lum, and it is possible to do this incre-
mentally. If decision problems and 
Turing machines are retained as the 
central paradigms, search problems 
can be still be mentioned when rele-
vant, and snippets of code can be used 
to illustrate subtleties.

Whether or not the specific ideas 
suggested here are adopted, it seems 
important that we continue to strive for 
accessibility and engagement in the un-
dergraduate theory course. The theory 
of computation is a profound and im-
portant cornerstone of computer sci-
ence; I hope that in the years ahead, an 
ever-growing number of students will 
appreciate both its beauty and its sig-
nificant connections to the rest of the 
computer science curriculum. 
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mines whether other Python programs 
will output 'yes' on a given input.” 
From one point of view, this is a purely 
cosmetic change from the equivalent 
statement in terms of Turing ma-
chines: “there does not exist a Turing 
machine that determines whether oth-
er Turing machines will accept a given 
input.” After all, students in any theory 
course must come to understand the 
equivalence between Turing machines 
and computer programs. Nevertheless, 
the practice of discussing results in 
terms of computer programs that have 
clear connections to other areas of 
computer science provides the instruc-
tor with opportunities for increased 
engagement; this has certainly been 
my own experience.

Second, there are some steps in the-
ory proofs that are surprisingly subtle 
when expressed in terms of Turing ma-
chines, but become obvious and famil-
iar in a programming language. One 
example in the figure is the trick in 
which a single parameter P is duplicat-
ed and passed on in two separate roles 
to the two-parameter function 
yesOnStr(P,P). In class, this can be 
further explicated by stepping through 
the program in a debugger and show-
ing the dual roles of P: as source code 
in the first parameter and as a text 
string in the second parameter. (Even 
Alan Turing recognized the challenges 
inherent in proofs based on automata. 
In the seminal 1936 paper that intro-
duced Turing machines, he sympa-
thized with readers who might feel 
“there must be something wrong” in 
his first such proof.10)

Third, students can build an intui-
tive understanding of code-based 
proofs by active experimentation with 
the code. In the example in the figure, 
one can provide an approximate ver-
sion of yesOnStr() that works cor-
rectly on a limited class of inputs. Stu-
dents can then predict the output of 
diagYesOnStr() on various inputs, 
and check their answers by running the 
code. They can construct variants of the 
code, discussing which variants pro-
duce the desired contradiction and 
which do not. By implementing ye-
sOnStr() via simulation, students 
can discover an important extension to 
this result: we can in fact write a Python 
program that always terminates cor-
rectly on positive instances of this prob-

lem, so the problem is recognizable but 
not decidable.

Fourth, some students may find the 
programming approach transfers more 
easily to novel problems. In recent years 
I have taught three different approach-
es for undecidability proofs to all stu-
dents: traditional reductions employ-
ing prose descriptions of Turing 
machines; explicit Python programs 
(similar to the example in the figure 
here) supplemented by a prose explana-
tion of the desired contradiction; and 
the application of Rice’s theorem. In 
tests and exams, students may choose 
which proof method to use, and there is 
an approximately even split among 
these three proof techniques. In partic-
ular, a significant fraction of students 
choose to write out a Python program 
as part of their exam answer. This pro-
vides empirical evidence that the pro-
gramming approach is beneficial for 
some students, and it is plausible all 
students gain improved understanding 
from seeing multiple approaches.

Conclusion
Over a period of eight years, I have ex-
perimented with techniques for mak-
ing the undergraduate theory course 
more accessible and engaging. This 
Viewpoint suggests two possibilities: 
emphasizing search problems and em-
ploying real computer programs. I do 
not advocate the universal or complete 
adoption of these suggestions. I have 
backed away from some aspects of the 
approach myself. For example, after ex-
perimenting with teaching NP-com-
pleteness based on search problems, I 
concluded this part of the course works 
better when taught with the traditional 
focus on decision problems. Similarly, I 
found there are some technical results 

Many theory courses 
could benefit from 
making more explicit 
connections to other 
parts of the computer 
science curriculum. 
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