
OCTOBER 2020 | VOL. 63 | NO. 10 | COMMUNICATIONS OF THE ACM 33

V V
viewpoints

I
M

A
G

E
 B

Y
 A

N
D

R
I

J
 B

O
R

Y
S

 A
S

S
O

C
I

A
T

E
S

,
U

S
I

N
G

 S
H

U
T

T
E

R
S

T
O

C
K

prove the accessibility of the theory
course while maintaining its rigor:
first, emphasizing search problems
rather than decision problems in cer-
tain parts of the course; and second,
employing computer programs written
in a real programming language as
one of the standard computational

T
HE THE ORY OF computation
is one of the crown jewels of
the computer science curric-
ulum. It stretches from the
discovery of mathematical

problems, such as the halting problem,
that cannot be solved by computers, to
the most celebrated open problem in
computer science today: the P vs. NP
question. Since the founding of our
discipline by Church and Turing in the
1930s, the theory of computation has
addressed some of the most fundamen-
tal questions about computers: What
does it mean to compute the solution
to a problem? Which problems can be
solved by computers? Which problems
can be solved efficiently, in theory and
in practice?

Yet computational theory occupies
an ambiguous role in the undergradu-
ate curriculum. It is a required core
course for the computer science major
at many institutions, whereas at many
others it is an upper-level elective. And
whether required or not, the theory
course can have a reputation as an aus-
tere and perhaps even irrelevant niche,
disconnected from the skills and ideas
that comprise computer science. This
is not a new phenomenon, and in re-
cent decades the CS community has
worked diligently to improve the acces-
sibility and perceived relevance of the

theory course. Notable contributions
include the JFLAP software for experi-
mentation with automata,8 and various
efforts to promote “NP-completeness
for all” via visualizations and practical
laboratory exercises.1

This Viewpoint discusses two spe-
cific suggestions for continuing to im-

Viewpoint
Using Computer Programs
and Search Problems
for Teaching Theory
of Computation
Recognizing the significance of a cornerstone of computer science.

DOI:10.1145/3382036 John MacCormick

http://dx.doi.org/10.1145/3382036

34 COMMUNICATIONS OF THE ACM | OCTOBER 2020 | VOL. 63 | NO. 10

viewpoints

Using Real Computer Programs
to Complement Automata
Another technique for increasing stu-
dent engagement and connections
with other parts of the CS curriculum is
to employ code in a real programming
language. This can provide a beneficial
supplement to the automata and gram-
mars that typically dominate a course
in theory of computation. Formal mod-
els such as Turing machines are of
course essential, especially for provid-
ing a rigorous definition of computa-
tion itself. However, it is possible to
teach a mathematically rigorous theory
course using a programming language
as the primary model of computation.
In this approach, the program model is
layered over Turing machines as an un-
derlying model, and Turing machines
are still employed when required in cer-
tain proofs and definitions. A strong
majority of CS theory textbooks do not
employ a programming language as the
primary computational model, but sev-
eral authors have done so, for example
using Python,6 Ruby,9 and a variant of
LISP.4,7 As an example of the approach,
consider the Python program shown in
the figure here.

This code provides the basis for a
proof by contradiction, demonstrating
that a certain computational problem
is undecidable. Specifically, it proves
the undecidability of the following
question: “Given a Python function
P() and input string I, does P return
the value 'yes' when invoked with in-
put I?” A detailed explanation of the
proof is outside the scope of this View-
point; here, I focus on the potential ad-
vantages for undergraduate students
who are encountering this type of ma-
terial for the first time. Note that, in
practice, the code shown in the figure
would be presented in class only after
exposure to and experimentation with
prerequisite concepts, such as Python
functions that take the source code of
other Python functions as input and
analyze them or transform them in
some way. Nevertheless, for concrete-
ness and compactness in this View-
point, I describe the potential benefits
to students directly as they appear in
this proof.

First, note the undecidability result
itself can be described in terms of Py-
thon programs: “It is impossible to
write a Python program that deter-

models, complementing the use of au-
tomata such as Turing machines. The
suggestions here apply specifically to
an undergraduate course in which
students encounter theory of compu-
tation for the first time. The content of
such courses varies widely, and the
following suggestions are most appli-
cable to introductory courses that in-
corporate both computability and
complexity theory.

Emphasizing Search Problems
The theory of computation is usually
phrased in terms of decision problems:
questions with a single-bit yes/no re-
sponse. In other areas of computer sci-
ence, however, we are usually interest-
ed in search problems, whose solutions
consist of more than a single bit. As an
example, consider the problem of find-
ing a Hamilton cycle in a graph—that
is, a route visiting every vertex exactly
once. Theory courses usually discuss
the decision problem, “Does the graph
G contain a Hamilton cycle?” But if the
answer is yes, we still do not know the
route of a Hamilton cycle in G. It is
more natural and useful to consider the
related search problem, “Find and out-
put a Hamilton cycle of G, if one exists.”

Once they have finished their first
theory course, computer science un-

dergraduates will recognize the con-
nections between search and decision
problems. But search problems are
more familiar and more immediately
applicable, so there are good reasons
to teach the more elementary parts of
the theory course with an emphasis on
search problems. It is worth noting
that Knuth prize winner Oded Gold-
reich is an advocate of this approach2;
his books are among the few modern
textbooks3,6 that adopt search prob-
lems as a primary paradigm. But
search problems can easily be incor-
porated into more traditional ap-
proaches that retain decision prob-
lems as the standard model, and I do
recommend this as a means of con-
necting the theory course more closely
to other parts of the undergraduate CS
curriculum.

The advantages of, and techniques
for, teaching CS theory via search prob-
lems have been discussed in detail
elsewhere.5 One interesting result,
based on a survey of CS undergradu-
ates, is that search problems are per-
ceived as significantly more useful
than decision problems. Because per-
ceived relevance is known to be a factor
in achieving good learning outcomes,
this provides indirect evidence the ap-
proach is beneficial.

Python program example.

yesOnStr(P,I) returns 'yes' if the Python function with

source code P returns 'yes' after receiving input I.

We assume yesOnStr(P,I) exists and works correctly

on all inputs.

from yesOnStr import yesOnStr

Below is a diagonalized and inverted version of

yesOnStr(P,I). What happens when the

parameter P is a string consisting of the

source code of diagYesOnStr?

def diagYesOnStr(P):

 if yesOnStr(P, P)=='yes':

 return 'no'

 else:

 return 'yes'

The source code of Python function diagYesOnStr(). This code provides the core of a proof by

contradiction. When given its own source code as input, the function diagYesOnStr() outputs ‘yes’ if

and only if it outputs ‘no’. This contradiction means our assumption that the function yesOnStr(P,I)

can exist is not valid. Therefore, the problem YesOnStr is undecidable: no Python function can correctly

answer the question “does Python function P output ‘yes’ on input I?” for all inputs.

OCTOBER 2020 | VOL. 63 | NO. 10 | COMMUNICATIONS OF THE ACM 35

viewpoints

about polynomial-time verifiers that
can be proved more instructively—for
the target audience of novice under-
graduates—using Turing machines
rather than computer programs.

Every instructor and every group of
students is different; instructors must
adopt a style of teaching that is au-
thentic to themselves, achieves the
goals of the students, and is based re-
alistically on the students’ level of pre-
paredness. I do believe that many the-
ory courses could benefit from making
more explicit connections to other
parts of the computer science curricu-
lum, and it is possible to do this incre-
mentally. If decision problems and
Turing machines are retained as the
central paradigms, search problems
can be still be mentioned when rele-
vant, and snippets of code can be used
to illustrate subtleties.

Whether or not the specific ideas
suggested here are adopted, it seems
important that we continue to strive for
accessibility and engagement in the un-
dergraduate theory course. The theory
of computation is a profound and im-
portant cornerstone of computer sci-
ence; I hope that in the years ahead, an
ever-growing number of students will
appreciate both its beauty and its sig-
nificant connections to the rest of the
computer science curriculum.

References
1. Crescenzi, P., Enstrom, E. and Kann, V. From theory to

practice: NP-completeness for every CS student. In
Proceedings of ITiCSE, 2013.

2. Goldreich, O. On teaching the basics of complexity
theory. Theoretical Computer Science: Essays in
Memory of Shimon Even. (2006), 348–374.

3. Goldreich, O. P, NP, and NP-Completeness: The Basics
of Computational Complexity. Cambridge University
Press, 2010.

4. Jones, N.D. Computability and Complexity: From a
Programming Perspective. MIT Press, 1997.

5. MacCormick, J. Strategies for basing the CS theory
course on non-decision problems. In Proceedings
of the 49th ACM Technical Symposium on Computer
Science Education (SIGCSE ‘18), 2018.

6. MacCormick, J. What Can Be Computed?: A Practical
Guide to the Theory of Computation. Princeton
University Press, 2018.

7. Reus, B. Limits of Computation: From a Programming
Perspective. Springer, 2016.

8. Rodger, S.H. and Finley, T.W. JFLAP: An Interactive
Formal Languages and Automata Package. Jones &
Bartlett, 2006.

9. Stuart, T. Understanding Computation: From Simple
Machines to Impossible Programs. O’Reilly, 2013.

10. Turing, A.M. On Computable Numbers, With An
Application To The Entscheidungsproblem. In Proc.
London Math Soc., Vol. 2–42, 1, (1937), 230–265.

John MacCormick (jmac@dickinson.edu) is Associate
Professor of Computer Science at Dickinson College,
Carlisle, PA, USA. He is the author of Nine Algorithms
That Changed the Future: The Ingenious Ideas That Drive
Today’s Computers.

Copyright held by author.

mines whether other Python programs
will output 'yes' on a given input.”
From one point of view, this is a purely
cosmetic change from the equivalent
statement in terms of Turing ma-
chines: “there does not exist a Turing
machine that determines whether oth-
er Turing machines will accept a given
input.” After all, students in any theory
course must come to understand the
equivalence between Turing machines
and computer programs. Nevertheless,
the practice of discussing results in
terms of computer programs that have
clear connections to other areas of
computer science provides the instruc-
tor with opportunities for increased
engagement; this has certainly been
my own experience.

Second, there are some steps in the-
ory proofs that are surprisingly subtle
when expressed in terms of Turing ma-
chines, but become obvious and famil-
iar in a programming language. One
example in the figure is the trick in
which a single parameter P is duplicat-
ed and passed on in two separate roles
to the two-parameter function
yesOnStr(P,P). In class, this can be
further explicated by stepping through
the program in a debugger and show-
ing the dual roles of P: as source code
in the first parameter and as a text
string in the second parameter. (Even
Alan Turing recognized the challenges
inherent in proofs based on automata.
In the seminal 1936 paper that intro-
duced Turing machines, he sympa-
thized with readers who might feel
“there must be something wrong” in
his first such proof.10)

Third, students can build an intui-
tive understanding of code-based
proofs by active experimentation with
the code. In the example in the figure,
one can provide an approximate ver-
sion of yesOnStr() that works cor-
rectly on a limited class of inputs. Stu-
dents can then predict the output of
diagYesOnStr() on various inputs,
and check their answers by running the
code. They can construct variants of the
code, discussing which variants pro-
duce the desired contradiction and
which do not. By implementing ye-
sOnStr() via simulation, students
can discover an important extension to
this result: we can in fact write a Python
program that always terminates cor-
rectly on positive instances of this prob-

lem, so the problem is recognizable but
not decidable.

Fourth, some students may find the
programming approach transfers more
easily to novel problems. In recent years
I have taught three different approach-
es for undecidability proofs to all stu-
dents: traditional reductions employ-
ing prose descriptions of Turing
machines; explicit Python programs
(similar to the example in the figure
here) supplemented by a prose explana-
tion of the desired contradiction; and
the application of Rice’s theorem. In
tests and exams, students may choose
which proof method to use, and there is
an approximately even split among
these three proof techniques. In partic-
ular, a significant fraction of students
choose to write out a Python program
as part of their exam answer. This pro-
vides empirical evidence that the pro-
gramming approach is beneficial for
some students, and it is plausible all
students gain improved understanding
from seeing multiple approaches.

Conclusion
Over a period of eight years, I have ex-
perimented with techniques for mak-
ing the undergraduate theory course
more accessible and engaging. This
Viewpoint suggests two possibilities:
emphasizing search problems and em-
ploying real computer programs. I do
not advocate the universal or complete
adoption of these suggestions. I have
backed away from some aspects of the
approach myself. For example, after ex-
perimenting with teaching NP-com-
pleteness based on search problems, I
concluded this part of the course works
better when taught with the traditional
focus on decision problems. Similarly, I
found there are some technical results

Many theory courses
could benefit from
making more explicit
connections to other
parts of the computer
science curriculum.

mailto:jmac@dickinson.edu

Copyright of Communications of the ACM is the property of Association for Computing
Machinery and its content may not be copied or emailed to multiple sites or posted to a
listserv without the copyright holder's express written permission. However, users may print,
download, or email articles for individual use.

